

AUSTRALIAN PREMIUM IRON JV HARDEY PROJECT

HYDROSTRATIGRAPHIC DRILLING, BORE COMPLETION, AND GROUNDWATER MODELLING REPORT

AUGUST 2011

REPORT FOR API MANAGEMENT PTY LTD

371.0/11/02

76 Jersey Street Jolimont 6014 Western Australia ABN: 43 008 804 653 Postal: PO Box 201 Wembley 6913 Western Australia Ph: 61 8 9284 0222 Fax: 61 8 9284 1785 Email: consult@rockwater.com.au www.rockwater.com.au

TABLE OF CONTENTS

1	INTR	ODUCTION	1
2	GEO	LOGICAL SETTING	1
3	DRIL	LING PROGRAMME RESULTS	6
	3.1	HYDROSTRATIGRAPHIC BORE CONSTRUCTIONDRILLING ANDMONITORING3.1.1HAMB 0013.1.2HAMB 0023.1.3HAMB 0033.1.4HAMB 0043.1.5HAMB 0053.1.6HAMB 0063.1.7HAMB 0073.1.8HAMB 0083.1.9HAMB 009	6 9 9 13 13 13 17 17
	3.2	LARGE DIAMETER PRODUCTION BORES3.2.1 HAWB 0033.2.2 HAWB 0043.2.3 HAWB 005	21 21 24 24
4	PUM	PING TEST RESULTS	27
	4.1	HAWB 003	27
	4.2	HAWB 004	31
	4.3	HAWB 005	31
5	WAT	ER QUALITY	34
6	HYD	ROGEOLOGY	37
7	NUM	IERICAL MODELLING	40
	7.1	MODEL DESCRIPTION	40
	7.2	MODEL CALIBRATION	42
	7.3	MODELLING RESULTS	45
8	DEW	ATERING STATEGY	57
9	SUM	MARY AND CONCLUSIONS	57
10	RECO	OMMENDATIONS	59
REFE	RENC	ES	60

TABLE OF CONTENTS (continued)

Tables

Table 1:	Stratigraphic Column of the Southwest Hamersley Province–Hardey Project	5
Table 2:	Hydrostratigraphic Drilling Results	8
Table 3:	Large Diameter Test Bore Construction Details	22
Table 4:	Summary of Test Pumping Results	28
Table 5:	Laboratory Water Quality Results	35
Table 6:	Model Parameters	42
Table 7:	Dewatering Modelling Results	47

Figures

1	Regional Map Central Pilbara – Hamersley Province	2
2	Topographic Map with API Mineral Leases	3
3	Geological Map	4
4	Bore Locality Map	7
5	Monitoring Bore HAMB 001 Composite Log	10
6	Monitoring Bore HAMB 002 Composite Log	11
7	Monitoring Bore HAMB 003 Composite Log	12
8	Monitoring Bore HAMB 004 Composite Log	14
9	Monitoring Bore HAMB 005 Composite Log	15
10	Monitoring Bore HAMB 006 Composite Log	16
11	Monitoring Bore HAMB 007 Composite Log	18
12	Monitoring Bore HAMB 008 Composite Log	19
13	Monitoring Bore HAMB 009 Composite Log	20
14	Water Bore HAWB 003 Composite Log	23
15	Water Bore HAWB 004 Composite Log	25
16	Water Bore HAWB 005 Composite Log	26
17	HAMB 007 Barometer Corrected Water Level During Test Pumping	29
18	HAWB 003 Constant Rate Pumping Test Results	30
19	HAWB 004 Constant Rate Pumping Test Results	32
20	HAWB 005 Constant Rate Pumping Test Results	33
21	Piper Diagram of Hardey Bore Water Chemistry	36
22	Hardey Project Deep Aquifer Groundwater Level Contour Map	38
23	Hardey Project Proposed Pit Designs	39
24	Modelled Horizontal Permeability Values Layer 1	41
25	Measured vs. Modelled Static Water Levels	43
26	Modelled Initial Water Levels	44
27	HAWB 003 Measured vs. Modelled Drawdown after 48 hours of Pumping	48
28	HAWB 004 Measured vs. Modelled Drawdown after 48 hours of Pumping	49
29	HAWB 005 Measured vs. Modelled Drawdown after 48 hours of Pumping	50

TABLE OF CONTENTS (continued)

Figures (cont.)

30	Dewatering Bore Locality Map	51
31	Modelled Water Levels (m AHD) after 40 Days of Dewatering	52
32	Modelled Water Levels (m AHD) after 1 Year (360 Days) of Dewatering	53
33	Modelled Water Levels (m AHD) after 5 Years (1800 Days) of Dewatering	54
34	Modelled Water Levels (m AHD) after 5 Years (2880 Days) of Dewatering	55
35	Water Level vs. Pit Floor Elevation and Proposed and Existing Bores	56

Appendices

- II Large-Diameter Test Bore Completion Data
- III Step-Rate Pumping Test Plots
- IV Water Quality Laboratory Certificates
- V Glossary of Hydrogeological Terms

1 INTRODUCTION

API Management Pty Ltd (API) is planning to develop, on behalf of the Australian Premium Iron Joint Venture, open-cut mines at its Hardey Project iron ore deposits, located about 45 km northwest of Paraburdoo in the Pilbara region of Western Australia. A locality map is provided in Figure 1. API holds mineral lease E 17/1413 covering two separate parcels of land. The locations are shown on the topographical map presented in Figure 2. The eastern lease covers the Hardey Project, which contains two separate iron ore deposits: the Brockman and Marra Mamba deposits. Locations of the deposits are shown in Figure 3.

During January 2010, Rockwater investigated the groundwater resources on the API leases for ore-processing and the potential dewatering requirements for the project (Rockwater 2010a). The report provided the assessment, together with recommendations for a hydrostratigraphic drilling and testing programme. One of the main conclusions of the initial assessment was that the planned Marra Mamba open pit will not be mined below the water table and will therefore not require dewatering.

A hydraulic-testing programme using airlift-recovery and slug-test methods was conducted in March 2010 on uncased, reverse circulation (RC) holes and cased production and monitoring bores. The results were used to better understand the aquifers in the project area and to help refine targets for a proposed hydrostratigraphic drilling programme (Rockwater, 2010b).

API commissioned Rockwater to undertake and supervise a hydrostratigraphic drilling programme, which was conducted from May to July 2010. Nine holes were drilled and constructed as monitoring bores and three test-production bores were drilled, constructed, and test pumped. The results of the drilling programme are presented in this report along with the results from a numerical groundwater model, which focused on assessing the dewatering requirements of the Brockman deposit and the availability of groundwater as a source of water for the Hardey Project.

2 GEOLOGICAL SETTING

The geology of the area has been described in a previous report (Rockwater 2010a) and is summarised below.

API plans to mine two iron ore deposits within sedimentary rocks of the Hamersley Group: a bedded hematite iron deposit in the Brockman Iron Formation (Brockman deposit), and limonite and goethite in the Marra Mamba Iron Formation (Marra Mamba deposit), which is lower in the sequence of strata.

371-0/Surfer/10-003/Figure 1 Regional Map Central Pilbara.srf

CLIENT:	API Management Pty Ltd
PROJECT:	Hardey Project Dewatering and Water Supply
DATE:	August 2011
Dwg. No:	371-0/11/02-1

REGIONAL MAP CENTRAL PILBARA - HAMERSLEY PROVINCE

API Hardey Project - Bore Completion Report

Shale and other sedimentary strata of the Mt McRae Shale and Mt Silvia Formations, and dolomite of the Wittenoom Formation, separate the two iron deposits. The footwall of the Marra Mamba Iron Formation consists of metavolcanic and metasedimentary rocks of Archaean age.

The project area lies at the eastern end of the Hardey syncline, an asymmetrical feature striking roughly east–west with steeply-dipping sediments to the north of the synclinal axis and gently-dipping sediments to the south. A geological map prepared by Nick Lockett and Associates (Nick Lockett 2009) using Quickbird photographic interpretation is presented in Figure 3. The map also shows the API mineral holes drilled during exploration campaigns during 2006 – 2009. Also shown on Figure 3 are the proposed pit perimeters for the Brockman and Marra Mamba deposits.

A summary stratigraphic column compiled by Rockwater for the Hardey project is given in Table 1.

Age	Grou	ıp	Formation	Member	Description			
erozoic	rozoic		Quaternary sediments	undifferentiated	Alluvium and colluvium			
Phane			Cainozoic sediments	undifferentiated	Calcrete, laterite and duricrust deposits			
				*Yandicoogina Shale Member	Interbedded shale and chert			
oic				Joffre Member	BIF with minor shale			
Proteroz		dn	Brockman Iron Formation	Mt Whaleback Shale Member	Interbedded chert and shale with two BIF bands at the base			
	dnc	Gro		Dales Gorge Member	Sequence of BIF and shale			
	lpergro	ersley	Mt McRae Shale		Interbedded shale and chert			
	truce St	Hame	Mt Silvia Formation		Dolomitic shale and BIF			
ean	Mount B					Wittenoom Formation	undifferentiated	Dolomite and chert
cha			Marra Mamba Iron	Mt Newman Member	BIF minor chert			
Ar				Macleod Member	Shale, chert BIF			
				Nammuldi Member	Goethite, limonite and chert			
			Jeerinah Formation	undifferentiated	Metabasalt metasediments			

 Table 1: Stratigraphic Column of the Southwest Hamersley Province–Hardey Project

*Absent at the Hardey Project

3 DRILLING PROGRAMME RESULTS

The drilling programme was carried out by Welldrill of Henderson, WA, using a Fraste FS-500 rig. The programme, which was undertaken from 19 May 2010 to 6 July 2010, was supervised by Rockwater hydrogeologists.

There were 16 sites selected across the Hardey project as potential drilling targets; nine were selected to assess the dewatering requirements of the main ore body (Dale Gorge Member of the Brockman Formation) and seven were chosen to target potential water supplies in the Wittenoom, Marra Mamba and Jeerinah Formations. Hydrostratigraphic holes were drilled and completed as monitoring bores at nine of the sites. Large diameter production bores were drilled and constructed at three of the hydrostratigraphic sites.

3.1 HYDROSTRATIGRAPHIC DRILLING AND MONITORING BORE CONSTRUCTION

A total of 1,147 metres were drilled in the hydrostratigraphic programme. The holes were drilled using air-hammer methods at 167 mm diameter and lined with 79 mm ID, 90 mm OD, class 12 uPVC casing with 3 mm aperture slotted casing set across the main aquifer zones. Bore locations are shown in Figure 4.

Bores HAMB 001 and HAMB 003 were drilled to investigate possible water supply sources for the proposed mine camp and mining support facilities and bores HAMB 002, and HAMB 004 to 009 were drilled to assess the dewatering requirements of the Brockman deposit.

A summary of the drilling details are shown in Table 2, composite bore diagrams are shown in Figures 5 to 12, and bore completion data are provided in Appendix I. Results of individual bores are discussed below. Field salinity values are reported as milligrams per litre (mg/L) total dissolved solids (TDS) based on electrical conductivity (EC) measurements.

Table 2: Hydrostratigraphic Drilling Results

Holo No	MGA coordinates mE mN		MGA coordinates Collar RL ¹		Cased depth	Slotted interval	Airlift Rate	Salinity	SWL	SWL	A quifor ⁶
			(m AHD ²)	(m)	(m)	(m bgl ³)	(L/s)	(mg/l TDS ⁴)	(m btc ⁵)	(m AHD ²)	Aquilei
HAMB 001	531455	7462155	393.2	132	89	17-23, 29-35, 41-53, 59-65, 71- 77, and 83-89	12	650	19.8	374.1	ММ
HAMB 002	530810	7461870	394.8	179	178.5	58.5-64.5, 76.5-82.5, 94.5-100.5, 148.5-154.5, and 166.5-178.5	10	640	24.6	370.8	DG
HAMB 003	531833	7461516	385.3	20	17	11-17	4	600	12.7	373.3	J
HAMB 004	530628	7462113	398	156	107.8	59.8-107.8	3	775	30.8	371.1	MSS
HAMB 005	530590	7462010	397.9	132	71.5	17.5-23.5, 29.5-35.5	10	610	27.5	370.4	DG
HAMB 006	530081	7461770	431.1	98	73.7	55.7-73.7	-	530	61.9	369.9	DG
HAMB 007	531151	7461878	392.0	132	131.2	35.2-41.2, 113.2-131.2	3	550	21.8	370.6	MSS
HAMB 008	530095	7462000	407.2	145	143	77-83, 89-95, 101-119, 125-143	13	560	38.0	369.9	DG
HAMB 009	529850	7462100	410.8	154	152	98-152	7	450	47.0	364.3	DG

¹Collar RL = estimated from digital terrain model

²AHD = Australian Height Datum ³bgl = below ground level

 ${}^{4}\text{TDS}$ = Total Dissolved Solids; calculated from field electrical conductivity (EC) measurements using the relationship: TDS (mg/L) = $0.5 \text{*EC}(\mu \text{S/cm})$ and corrected to $25 \,^{\circ}\text{C}$ ${}^{5}\text{btc}$ = below top of collar

⁶Aquifers; MM = Marra Mamba; DG = Dales Gorge; MSS = Mt Silvia Shale, J = Jeerinah

3.1.1 HAMB 001

A composite bore diagram for HAMB 001 is shown in Figure 5.

Bore HAMB 001 was drilled to investigate the Marra Mamba Iron Formation as a possible source of groundwater. The bore was drilled to 132 m depth and intersected banded iron formation (BIF), goethite/limonite, and shale of the Marra Mamba Iron Formation. The bore yielded about 12 L/sec of fresh water (650 mg/L TDS) with the majority of the flow from aquifers below 50 m depth.

A blockage in the hole prevented the casing being installed below 89 m depth. The static water level at HAMB 001 was 19.75 m below top of collar (btc) (374.15 m AHD) on 4 June 2010.

3.1.2 HAMB 002

A composite bore diagram for HAMB 002 is shown in Figure 6.

Bore HAMB 002, which was drilled to 179 m depth, produced up to 10 L/s of low salinity groundwater (640 mg/L TDS). About half the supply was obtained from the Brockman Iron Formation, Dales Gorge aquifer and the remainder was from chert/iron beds within the Mount McRae Shale and the Bruno's Band of the Mount Silvia Formation.

HAMB 002 was cased to 178.5 m depth and had a static water level of 24.61 m btc (370.79 m AHD) on 28 June 2010.

3.1.3 HAMB 003

A composite bore diagram for HAMB 003 is shown in Figure 7.

Bore HAMB 003 was drilled to investigate the Jeerinah Formation as a potential groundwater source. The bore had to be terminated at 20 m depth due to collapsing strata and the risk of bogging the drill string. The bore intersected broken chert and dolerite of the Jeerinah Formation and yielded about 4 L/sec of fresh water (600 mg/L TDS).

HAMB 003 was cased to 17 m depth with slotted casing from 11 to 17 m depth. The static water level was 12.70 m btc (373.30 m AHD) on 4 June 2010.

API Hardey Project - Bore Completion Report

Figure 5; Page 10

API Hardey Project - Bore Completion Report

Figure 6; Page 11

Bore Construction Details Airlift Conductivity Lithology (L/s) (uS/cm) Stratigraphy 0 -0 +0.83 - 0.27 m bgs, 156 mm ID, 165 mm OD, Gravel (Otr), Brown Grey, juvenile river sediments Alluvium (Otr) Goethite-Hematite (Mgh), Brown Grey, weathered steel surface casing Cement grout annulus 10 Goethite-Hematite (Mgh), Brown Grey to dark grey 10 `0 - 6 m bgs, Air hammer hole diameter 254 mm Goethite-Hematite (Mhe), Dark grey, weakly lithified minor chert 20 20 7 0 SWL 24.61 m btc Brockman Iron Formation -Dale Gorge Member (Hbd) Goethite-Hematite (Mgh), Mid to dark brown, dark grey, weakly lithified 30 30 Hematite (Mhe), Dark grey, fractured, weakly lithified +0.60 - 178.5 m bgs, 79 mm ID, 90 mm OD, Class 12 uPVC casing, Goethite-Hematite (Mgh), Mid to dark brown, dark grey, weakly lithified 40 40 Class 12 uPVC casing, 3 mm apertures, traverse slotted sections: 58.5 to 64.5 m, 76.5 to 82.5 m, 94.5 to 100.5 m,148.5 to 154.5 m, and 166.5 to 178.5 m Goethite (Mgo), Dark brown, weakly lithified 0 000.00 Goethite-Hematite (Mgh), Mid to dark brown, dark grey, weakly lithified trace 50 50 moist 60 60 Chert/BIF (Siy), Brown, cream, grey, fractured, moderately consolidated ~1 70 70 0,0 1.8 Goethite-Hematite (Mgh), Mid to dark brown, dark grey, partly vuggy, minor BIF, weakly lithified 6 - 179 m bgs, Air hammer hole diameter 167 mm 2.9 80 80 3.3 .0.0.0° 06 Depth (m) 01 00 90 90 Shale (Ssh), Yellow brown, cream, ochre, oxidised, fissile, minor thin beds ironstone, weakly lithified 3.8 100 Mount McRae Shale (Hr) 0 110 Goethite-Hematite (Mgh), Brown, fractured 110 4.9 Shale (Ssh), Yellow brown, cream, pink, oxidised, minor interbedded mineralised iron beds (Mif) 120 120 Chert/BIF (Siy), Grey brown, hard 0.0.0.0 130 +3.2 - 6.4 mm graded gravel pack 130 Shale (Ssh), Pale grey, yellow brown, oxidised, minor thin beds of ironstone, weakly lithified 0 140 140 0 6.9 150 150 Hematite (Mhe), Dark grey well fractured, minor BIF, very hard, well consolidated t Silvia S uno's Ba (Hbb) (B 8.5 160 160 ~9.0 Chert (Sic). Grev brown, well fractured, hard Shale (Ssh), Purple brown, hematitic, weakly lithified 9.3 Shale (Ssh), Yellow brown, fissile, weakly lithified 170 170 Mount Silvia Shale (Hs) 178.5 m bgs, uPVC base cap 10.2 Chert (Sic), Dark grey, weakly cemented Shale (Ssh), Pale grey, dolomitised, hard 9.3 1,280 backfill 180 180 -I:/371-0/Grapher/11-003/Bore Composite Logs/Fig 6 HAMB002 Composite Log.grf Client: API Managment Pty Ltd Hardey Project Dewatering and Water Supply Project: Monitoring Bore HAMB002 Composite Log August 2011 Date: Rockwater Drg. No.: 371-0/11/02-6

3.1.4 HAMB 004

A composite bore diagram for HAMB 004 is shown in Figure 8.

Bore HAMB 004 was drilled to 156 m depth. The bore intersected clay/shale and goethite/hematite of the Dales Gorge Member to 30 m depth and shale of the Mount McRae Shale from 30 to 156 m depth with carbonaceous-pyritic shale from 96-156 m. The bore yielded 3 L/sec primarily from pyrite rich strata below 140 m depth. The water was fresh with a salinity of 775 mg/L TDS.

A blockage in the hole prevented the casing being installed below 108 m depth. The static water level was 30.77 m btc (371.13 m AHD) on 27 June 2010.

3.1.5 HAMB 005

A composite bore diagram for HAMB 005 is shown in Figure 9.

Bore HAMB 005 was drilled to 132 m depth. The bore intersected goethite/hematite and minor chert of the Dale Gorge Member aquifer. During drilling, the bore yielded over 10L/sec of fresh water (615 mg/L TDS) mainly from aquifers below 75 m depth.

A blockage in the hole prevented the casing being installed below 71.5 m depth. The static water level was 28.22 m btc (369.68 m AHD) on 28 June 2010.

3.1.6 HAMB 006

A composite bore diagram for HAMB 006 is shown in Figure 10.

Bore HAMB 006 was drilled to 98 m and intersected very weakly lithified and cavernous BIF of the Brockman Iron Formation Dales Gorge Member. At 80 m depth, circulation was lost and there was no return of air or drill cuttings to the surface; this resulted in the drill rods jamming during their retrieval from the hole. The drill string was eventually freed and then drilling continued to 98 m where circulation was again lost and it was decided to terminate the hole due the high risk of bogging the drill string.

A blockage in the hole prevented the casing being installed below 74 m depth. The bore produced 0.25 L/sec of fresh water (515 mg/L TDS) during development. The static water level was 61.89 m btc (369.81 m AHD) on 27 June 2010.

API Hardey Project - Bore Completion Report

Figure 8; Page 14

Bore Construction Details Airlift Conductivity (L/s) (uS/cm) Stratigraphy Lithology Gravel (Otr), Maroon to yellow, juvenile river gravels, poorly sorted fine sand to gravel, well rounded 0 -0 +1.03 - 0.07 m bgs, 156 mm ID, 165 mm OD, steel surface casing Alluvium (Otr) Cement grout with lockable lid annulus 10 0 - 6 m bgs, Air hammer hole diameter 254 mm 10 Goethite-Hematite (Mgh), Dark yellowish brown and dark grey, broken and occassionally vuggy 20 20 Goethite-Hematite (Mgh), Dark yellowish brown and maroon; silt to medium sand size cuttings 7 SWL 28.22 m btc 30 30 +0.91 - 71.5 m bgs, 79 mm ID, 90 mm OD, Class 12 uPVC casing, Trace 3 mm apertures, traverse slotted sections: 17.5 to 23.5 m, 29.5 to 35.5 m, and 41.5 to 71.5 m 40 40 1,350 6 - 132 m bgs, Air hammer hole diameter 167 mm Brockman Iron Formation - Dales Gorge Member (Hbd) Goethite-Hematite (Mgh), Dark yellowish brown and dark grey, broken and occassionally vuggy 1,361 50 50 +3.2 - 6.4 mm graded gravel pack 0.3 60 60 1.5 70 70 71.5 m bgs, obstruction 1,070 Depth (m) 1.5 1.8 1,145 80 -80 1,070 2 Hematite, Dark grey, occassional goethite 1,100 3 90 90 3.5 100 100 1,158 110 110 8 Hematite, Dark grey, common clear/light grey chert, fresh and hard; occassional maroon/cream shale 10 1,210 120 120 1,225 10 130 130 10 1,233 140 140 F I:/371-0/Grapher/11-003/Bore Composite Logs/Fig 9 HAMB005 Composite Log.grf Client: API Managment Pty Ltd Project: Hardey Project Dewatering and Water Supply Monitoring Bore HAMB005 **Composite Log** August 2011 Date: Rockwater Drg. No.: 371-0/11/02-9

API Hardey Project - Bore Completion Report

Figure 9; Page 15

3.1.7 HAMB 007

A composite bore diagram for HAMB 007 is shown in Figure 11.

HAMB 007 was drilled to 132 m depth to target the Wittenoom Formation; however, it intersected only shale of the Mt Silvia Formation. Water was cut at 36 m depth with a flow of 3 L/sec and a salinity of 550 mg/L TDS. No additional flows were encountered deeper. The bore was cased to 131 m depth and had a static water level of 21.80 m btc (370.3 m AHD) on 27 June 2010.

3.1.8 HAMB 008

A composite bore diagram for HAMB 008 is shown in Figure 12.

Bore HAMB 008 was drilled to 145 m depth within the Brockman Iron Ore Formation. It intersected clay/shale and goethite/hematite of the Mount Whaleback Shale Member to 66 m and goethite/hematite/shale of Dales Gorge Member to 144 m depth. The bore yielded about 13 L/sec with the majority of the water derived from aquifers below 90 m depth. The hole was cased to 143 m depth.

During gravel installation a bridge is thought to have occurred somewhere between 50 and 70 m depth; this was the depth at which obstructions occurred during the casing installation. Attempts to dislodge the gravel by airlifting the bore were unsuccessful and therefore the slotted section of HAMB 008 is unlikely to be gravel-packed. HAMB 008 static water level was 38.18 m btc (369.72 m AHD) on 26 June 2010.

3.1.9 HAMB 009

A composite bore diagram for HAMB 009 is shown in Figure 13.

Bore HAMB 009 was drilled to 154 m depth within the Brockman Iron Ore Formation. It intersected shale/clay and BIF of the Mount Whaleback Shale Member to 70 m depth and BIF, chert, and shale of the Dales Gorge Member from 70 m to 154 m depth. The hole produced an airlift rate of about 7 L/sec, mainly from aquifers below 114 m depth. The water was fresh with a salinity of about 450 mg/L TDS.

Bore HAMB 009 was cased to 152 m depth. The static water level was 46.95 m btc (364.35 m AHD) on 28 June 2010.

Figure 11; Page 18

Bore Construction Details

Bore Construction Details Airlift Conductivity (L/s) (uS/cm) Stratigraphy Lithology 0 -0 +0.99 - 0.11 m bgs, 156 mm ID, 165 mm OD, steel surface casing with lockable lid Alluvium (Otr) Gravel (Otr), Maroon, BIF, poorly sorted sand and gravel, common clay Cement grout Shale (Ssh), Yellow brown, clayey annulus Brockman Iron Formation - Mount Whaleback Member (Hbw) Goethite-Hematite (Mhe), Dark yellow brown `0 - 6 m bgs, Air hammer hole diameter 254 mm 10 10 and maroon with common shale 0 +0.70 - 143 m bgs, 79 mm ID, 90 mm OD, Class 12 uPVC casing, 0000 20 20 3 mm apertures, traverse slotted sections: 77 to 83 m, 89 to 95 m, 101 to 119 m, and 125 to 143 m °0° 30 30 SWL 38.18 m btc .∇. Shale (Ssh), Cream, yellow brown, light to medium brown, common goethite and hematite, very broken and vuggy . Q 40 40 50 50 0000 0000000 60 60 6 ° ° ° ° ° ° ° ° 6 - 145 m bgs, Air hammer hole diameter 167 mm 70 70 0 Depth (m) . Brockman Iron Formation - Dale Gorge Member (Hbd) 80 80 ~2.3 3.4 90 90 6 1,126 100 1,119 100 Goethite-Hematite (Mgh), Dark grey and yellow brown, common breaks and vuggy; common chert 112 to 116 m and common 1,125 6.5 +3.2 - 6.4 mm graded gravel pack 110 110 shale 116 to 120 m 1,118 8 10 120 120 1,120 10 130 130 >10 >10 Hematite (Mhe), Very dark grey, hard, occassional shale 143 m bgs, uPVC base cap 140 140 >10 1,115 backfill 150 150 I:/371-0/Grapher/11-003/Bore Composite Logs/Fig 12 HAMB008 Composite Log.grf Client: API Managment Pty Ltd Project: Hardey Project Dewatering and Water Supply Monitoring Bore HAMB008 **Composite Log** August 2011 Date: Drg. No.: 371-0/11/02-12 Rockwater

API Hardey Project - Bore Completion Report

Figure 12; Page 19

Bore Construction Details

Date:

Drg. No.:

August 2011

371-0/11/02-13

			-		Airlift (L/s)	Conductiv (uS/cm)	ity Stratigraph	y Lithology
0	.0		000	+0.88 - 0.22 m bgs, 156 mm ID, 165 mm OD,	-		Alluvium (Otr)	Gravel (Otr), Yellow brown, goethite, BIF, white
	Cement grout	0	ŝ	steel surface casing with lockable lid		-	-	Quartz Intrusion (qz), White, hard, fresh
10 –		°,	, o	0 - 6 m bgs,	-		হ	Shale (Ssh), Yellow brown, soft, common BIF
		0 0		diameter 254 mm			er (Hby	Shale (Ssh), Yellow brown, soft with common BIF and slightly clayey
20	r b v	0_0°0	00000				ack Membe	Shale (Ssh), Yellow brown, soft with common BIF
=		0	0				alebő	Banded Iron Formation (Sif), Dark orange
30-	0	°.	0.00	+0.50 - 152 m bgs,			it Wh	Shale (Ssh), Maroon and yellow brown, soft, with and soft
40	n n n n	6°°°	· • • • • • •	Class 12 uPVC casing, 3 mm apertures, traverse slotted section: 98 to 152 m			ion - Mour	Shale (Ssh) / Chert (Sic), Maroon, soft, with common BIF and chert = 40
		° N ⊽	0		-	-	at u	Banded Iron Formation (Sif), Dark orange
50			• ° ° °	SWL 46.95 m bgs			on Foi	Shale (Ssh) / Chert (Sic), Light to medium brown, weakly lithifiedt 50
		0	° ° °		-		nan Ir	
60	0 0	° ° ,	00				Brockr	Shale (Ssh), Medium to dark orange brown, slightly claye, very weakly lithified
-		0	\$					Clay (cl), Orange brown
	þ;	0. D	ຸິ					Banded Iron Formation (Sif), Reddish brown BIF
70 –	0	0 0	ຶ່	6 - 154 m bgs, Air hammer hole	-			with occassional yellow brown shale Cherty Banded Iron Formation (Siv). Reddish 70
	• •	0	° 0 0	diameter 167 mm				brown BIF with common chert and occassional yellow brown shale and trace magnetic BIF
Ê 80	0 1 1	0	000			-	q	Banded Iron Formation (Sif), Reddish brown BIF with occassional yellow brown shale and magnetic
		°.	, °,		1		e e e	Clay (cl). Dark reddish brown
ept	0	ŝ	°,		-		er	Shale (Ssh), Reddish brown shale with common BIF
□ <u>90</u>	29	0	0		-		q L	and trace magnetic BIF
-		° 0	0		-		Ř	
400	°		0				ge	Chert (Sic) / Banded Iron Formation (Sif) Reddish
100-			0				Ğ	brown and yellow brown, finely laminated chert and
-	ſ	, III	0				e	
110			° °		- ~1	-	Ď	
	6 1		00		~2		, r	Banded Iron Formation (Sif), Very dark grey and
-	0	ĵ I	。 •	+3.2 - 6.4 mm graded gravel pack		1 -	atic	shale, chert and magnetic BIF, common oxidized
120			000	· · · · · · · · · · · · · · · · · · ·	5	940	orm	surfaces 114 to 120 m 120
_	0	, III	°,		5.5	933 _	L L	
400	0	<i>。</i>	0				L L	Banded Iron Formation (Sif) / Hematite (Mhe), Dark grey to black, common magnetic, occassional
130		į	00		5.5	937	a a	lithified
	•		000		6.8	932	rock	
140	þ;		°				n	Chert (Sic), Medium brown grey, broken
1	0	<i>°</i>	ໍ່	152 m bas	7.8	946 -	1	Banded Iron Formation (Sift) Dark grey
450	e		0 0 0	uPVC base cap	7.3	961		to black, common magnetic, occassional shale, increasing banding; well lithified
150	6		X		7.3	953		
	E			backfill	-	-		
160					-			
					-			
:/371-0/Grapher/11-003	3/Bore Composite Logs/Fig	13 HAMBO	009 C	omposite Log.grf				
Project	Hardov De			wataring and Watar Supply				
Tuject.	naidey Plo	ojecti	De	watering and water Suppry			M	onitoring Bore HAMB009

Composite Log

3.2 LARGE DIAMETER PRODUCTION BORES

Three additional large diameter production bores were drilled and constructed to further assess the hydrogeology at the Hardey site. Bores HAWB 003 and HAWB 004 were drilled to asses the Brockman aquifer and the potential dewatering requirements needed for mining below the water table, and are located within about 10 m from monitoring bores HAMB 005, and HAMB 008, respectively. Bore HAWB 005 was drilled to investigate the Marra Mamba Formation as a potential source of water for the proposed mine camp and support facilities, and is located near bore HAMB 001. Bore locations are shown on Figure 4 (page 7), and bore completion data are presented in Appendix II and summarised in Table 3.

Bores HAWB 001 and HAWB 002 were drilled and constructed during a previous drilling programme under the direction and supervision of API personnel to obtain water supplies for mineral resource drilling operations. API data indicate that HAWB 001 was drilled to 96 m depth and intersected dolomite of the Wittenoom Formation. Based on the drilling results and hydraulic testing conducted by Rockwater (Rockwater, 2010b), the yield of the bore was found to be very low. Bore HAWB 002 was completed to a depth of 40 m and intersected diorite of the Jeerinah Formation. Drilling and hydraulic testing results indicate that HAWB 002 intersected highly transmissive strata and the bore was subsequently equipped with a submersible pump and used to obtain water for drilling operations.

3.2.1 HAWB 003

A composite bore diagram for HAWB 003 is shown in Figure 14.

HAWB 003 is located about 7 m east of HAMB 005 and was drilled to target the Brockman Iron Formation Dales Gorge Member aquifer. A 381 mm diameter hole was first drilled to 6 m depth and lined with 314 mm ID, 324 mm OD, steel surface casing. A 308 mm diameter hole was then drilled to 119 m depth using air-hammer methods. It intersected BIF and hematite of the Dales Gorge Member. During drilling, the strata from 100 to 119 m depth were found to be very unstable and the hole continually collapsed after the air supply was shut off. The hole was therefore terminated at 119 m depth and was lined with 203 mm ID, 219 mm OD, schedule 40 steel casing to 100 m depth, with 3 mm aperture slotted casing installed from 58 to 100 m.

Table 3: Large Diameter Test Bore Construction Details

Aquifer ⁷		MIN	J	DG/MSS	DG	MM
Salinity	(mg/L TDS ⁶)	$\mathrm{NA}^{\#}$	758	668	645	818
SWL	(m AHD ³)	372.1	396.6	369.8	370.0	373.9
SWL	(m btc ⁵)	18.8	14.4	27.8	38.3	20.5
Airlift Rate	(L/s)	trace	3	12	11	>12
Slotted interval	(m bgl ⁴)	$NA^{\#}$	$NA^{\#}$	58-100	89.1-101.1 and 107.1-149.1	53.16-77.16, 95.16-113.16, 119.16-131.16
Cased depth	(m bgl ⁴)	$NA^{\#}$	$NA^{\#}$	100.0	150.8	132.6
Depth drilled	(m bgl ⁴)	96	40	119	152.8	138
Collar RL ²	(m AHD ³)	6.068	384.0	397.4	407.5	393.6
ordinates ¹	ШN	7461901	7461479	7462010	7462001	7462158
MGA co	mE	531409	532052	530598	530105	531458
Hole No		HAWB 001*	HAWB 002*	HAWB 003	HAWB 004	HAWB 005

 1 MGA coordinates = Map Grid of Australia; determined from hand held GPS 2 Collar RL = estimated from digital terrain model

³AHD = Australian Height Datum ⁴bgl = below ground level

 5 btc = below top of collar

 6 TDS = Total Dissolved Solids; by gravimetric filtration at 180°C ⁷Aquifers; WIN = Wittenoom; MM = Marra Mamba; DG = Dales Gorge Member; MSS = Mt Silvia Shale, J = Jeerinah

*Drilled under the direction and supervision of API.

#NA = Not available.

Figure 14; Page 23

Bore HAWB 003 was developed by airlifting and produced about 10 to 15 L/s (based on visual estimate) of water with a salinity of 680 mg/L TDS. A static water level of 27.75 m btc (369.85 m AHD) was measured on 26 May 2010.

3.2.2 HAWB 004

A composite bore diagram for HAWB 004 is shown in Figure 15.

Due to collapsing boreholes encountered during the hydrostratigraphic drilling programme and also with HAWB 003, it was decided to drill HAWB 004 using mud-rotary drilling techniques.

HAWB 004 is located about 10 m from HAMB 008 and was drilled to target the Dales Gorge Member aquifer within the Brockman Iron Formation. A 381 mm diameter hole was first drilled to 6 m depth and lined with 314 mm ID, 324 mm OD, steel surface casing. A 194 mm diameter pilot hole was then drilled with a tri-cone roller bit to 150 m depth using mud rotary methods. The hole intersected shale and goethite/hematite.

The 194 mm diameter pilot hole was then reamed to 311 mm diameter to 152.8 m depth using mud-rotary methods and lined with 203 mm ID, 219 mm OD, steel casing to 149.15 m depth with 3 mm aperture slotted sections from 89.15 m to 101.15 m and from 107.15 m to 149.15 m depth.

During development the bore produced more than 11 L/s of water with a salinity of 635 mg/L TDS and had a static water level of 38.27 m btc (370.03 m AHD) on 26 June 2010.

3.2.3 HAWB 005

A composite bore diagram for HAWB 005 is shown in Figure 16.

HAWB 005 is located about 4 m from HAMB 001 and was drilled to target the Marra Mamba aquifer as a potential source of water. A 381 mm diameter hole was first drilled to 6 m depth and lined with 316 mm ID, 314 mm OD, steel surface casing. A 194 mm diameter pilot hole was then drilled to 135 m depth using a mud-rotary roller bit. The hole intersected weathered goethite and BIF with common shale and chert bands.

The pilot hole was then reamed to 311 mm diameter to 138 m depth, and lined with 203 mm ID, 219 mm OD, schedule 40 steel casing with 3 mm aperture slotted sections from 53.16 to 77.16 m, 95.16 m to 113.16 m, and 119.16 m, and 131.16 m depth.

API Hardey Project - Bore Completion Report

Figure 15; Page 25

API Hardey Project - Bore Completion Report

Figure 16; Page 26

During development the bore produced greater than 12 L/sec of water with a salinity of about 820 mg/L TDS and had a static water level of 20.47 m btc (369.85 m AHD) on 26 June 2010.

4 **PUMPING TEST RESULTS**

Pumping tests were conducted on the three test bores, HAWB 003, HAWB 004 and HAWB 005 from 7 July to 18 July 2010. The test pumping equipment was installed and operated by Welldrill and the tests were supervised by a Rockwater hydrogeologist.

A step-rate test was first conducted in the each of the bores. Each test comprised incrementally increasing one-hour steps at rates of 8, 15, 20, and 25 L/sec. They were undertaken to determine a duty pumping rate for a 48-hour constant-rate pumping test and to assess the bore efficiencies. The results of the step-rate tests are presented in Appendix III and results of the constant rate tests are summarised in Table 4.

Water levels were measured manually in the pumping bores and the nine recently constructed monitoring bores during the pumping tests. Pressure transducer/data logger instruments were also used in several of the bores during the tests to measure water levels at ten-minute intervals.

The data logger water level measurements were first corrected for changes in barometric pressure. A transducer/data logger, which was installed in HAMB 007 about 10 m above the water table, measured variations in atmospheric pressure during the test. Barometer-corrected water levels in all bores monitored showed fluctuations in the water level with periods of about 12 hours and amplitudes of about 3 to 4 cm. These changes in water level are attributed to earth tides acting on the aquifer. An example of the water level fluctuations in bore HAMB 007 is shown in Figure 17.

The pumping produced relatively small drawdown cones, and only the closest monitoring bore to each pumping bore (within 10 m) exhibited any observable drawdown. The water level changes that were observed in most of the monitoring bores are attributed to the earth tide effects on water levels, and water level recovery occurring after previous tests, rather than changes due to pumping.

4.1 HAWB 003

The 48-hour constant-rate pumping test was conducted on HAWB 003 at 20 L/sec. The drawdown curves for HAWB 003 and monitoring bore HAMB 005, which is located seven metres from HAWB 003, are shown in Figure 18.

ve Aquifer Hydraulic ivity Thickness Conductivity Comments y) (m) (m/day)		455 73 5.5	398 73 6.2	84 84 1.0 Test affected by aqui boundaries	64 84 0.8 Test affected by aqui boundaries	105 95 1.1 Test affected by aqui boundaries	124 05 1 3 Test affected by aqui
TAUSHISS	(m ² /day	455	398	84	64	105	124
after 48 hours	(m)	11.7	4.0	19.2	9.5	4.6	3.6
Rate	(L/sec)	20	1	20	1	25	-
Pumping Bore	(m)	1	L	1	10	1	4
Type of bore		Pumping	Obs for HAWB 003	Pumping	Obs for HAWB 004	Pumping	Obs for
Hole No		HAWB 003	HAMB 005	HAWB 004	HAMB 008	HAWB 005	HAMB 001

Table 4: Summary of Test Pumping Results

*Effective Transmissivity – estimated transmissivity taking into account aquifer boundary effects observed during 48-hour constant rate pumping test.

The drawdown curve for HAMB 003 shows a relatively steep drop in the water level during about the first 20 minutes of pumping, followed by straight line trend for the remainder of the test. Bore HAMB 005 showed a drawdown curve of similar shape to that for HAWB 003.

The final drawdown at HAWB 003 was 11.74 m and based on the straight line trend of the late time data and calculated transmissivity is about 455 m²/day. The final drawdown in HAMB 005 was 3.98 m, and a transmissivity of 398 m²/day has been estimated.

4.2 HAWB 004

The 48-hour constant rate pumping test was conducted at HAWB 004 at 20 L/sec. The drawdown curve for HAWB 004 and monitoring bore HAMB 008, which is located 10 m from HAWB 004, are shown in Figure 19.

Each bore had a relatively large amount of drawdown due to bore losses during the first minute of pumping: 4 m at HAMB 008 and 15 m at HAWB 004. This was followed by about four metres of drawdown in each of the bores for the remainder of the 48-hour test. This rapid early time drawdown, which was also observed in HAWB 003, is attributed to bore inefficiency.

The drawdown curves for both bores begin to show a slight steepening of the drawdown curve near the end of the test, particularly HAMB 008, indicating limited aquifer extent (i.e. the drawdown cone of depression is starting to reach less permeable strata). Some of the irregularities in the drawdown curve for HAWB 004 are likely the result of small changes in the pumping rate.

A transmissivity of 400 m²/day is calculated using the intermediate time (20 to 180 min) data at HAMB 008. Effective transmissivities for HAWB 004 and HAMB 008 using the late time drawdown curves and accounting for the boundary effects are less at 84 and $64 \text{ m}^2/\text{day}$, respectively.

4.3 HAWB 005

The 48-hour constant rate pumping test at 25 L/sec was conducted at HAWB 005. The drawdown curves for HAWB 005 and monitoring bore HAMB 001, which is located 4 m from HAWB 005, are shown in Figure 20.

HAWB 005 is considerably more efficient then bores HAWB 003 and HAWB 004 as there was only about 2 m of drawdown in HAWB 005 in the first 10 minutes compared to 9 m and 18 m in the other two bores, respectively.

The drawdown curve for HAWB 005 follows a straight-line trend for about the first 100 minutes after which the rate of drawdown begins to increase. The change in the rate of drawdown is attributed to a limited aquifer extent, and more specifically to the extent of cavities and vuggy strata which were encountered during drilling.

The transmissivity calculated for HAWB 005 using the first 100 minutes of data is very high at about 1,000 m²/d; while the effective transmissivity using late time data is less at about 105 m²/day. It is possible that additional barrier boundaries will be intersected by the drawdown cone of depression as the pumping continues, resulting in lower yields.

5 WATER QUALITY

Water samples were collected at the start and end of the 48-hour constant rate pumping tests from the three production bores HAWB 003, 004 and 005, and were sent to ASL laboratories in Perth. A sample was also collected via pumping from the previously constructed bore HAWB 002 which is completed to a depth of 40 m in the Jeerinah Formation and was used as a source of water for the drilling programme.

Water samples were also collected using a bailer from bores HAWB 003 to 005 and analysed for Coliforms and Escherichia coli (E. coli).

The water-chemistry results are presented in Table 5 and plotted as a piper diagram in Figure 21. Laboratory certificates are presented in Appendix IV.

The groundwater from all aquifers tested is neutral to slightly alkaline with pH values ranging from 7.38 to 8.01. The water was fresh with salinity ranging from 645 to 818 mg/L TDS which is less than the 2004 Australian Drinking Water Guideline (ADWG) limit of 1,000 mg/L, but above the recommended aesthetic limit of 500 mg/L (NHMRC, 2004).

The analytical results (Fig. 21) show a mixed chemistry with most data plotted within the centre of each trilinear plot. The groundwater from all aquifers tested at the project, have a bicarbonate rich composition with slightly elevated concentrations of sulphate, chloride and sodium.

Sulphate (SO_4^{2-}) concentrations from all samples were slightly elevated; 86 mg/L in HAWB 002 and 124 to 192 mg/L in bores HAWB 003 to 005. These concentrations are however still well below both the 2004 ADWG limit of 500 mg/L and below the recommended aesthetic limit of 250 mg/L.

All other constituents analysed were below the 2004 ADWG limits. There were no Coliforms or E.Coli detected.

sport	•
R	
pletion	
com	
- Bore	
ject -	,
Pro	
Hardey	
API	

Analyte	Units	LOR#	HAWB 002	HAWB 003	HAWB 003	HAWB 004	HAWB 004	HAWB 005	HAWB 005	2004 A DW/CT *
Hq	pH Unit	0.01	7.91	7.38	7.44	8.01	7.92	7.84	7.8	6.5 to 8.5
Electrical Conductivity @ 25°C	µS/cm	1	1,100	1,330	1,320	1,080	1,090	1,460	1,450	I
Total Dissolved Solids @180°C	mg/L	1	758	602	668	651	645	781	818	1,000(500)*
Total Hardness as CaCO ₃	mg/L	1	480	410	417	357	370	504	528	
Hydroxide Alkalinity as CaCO ₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	
Carbonate Alkalinity as CaCO ₃	mg/L	1	<1	<1	<1	<1	<1	<1	<1	
Bicarbonate Alkalinity as CaCO ₃	mg/L	1	470	233	264	212	210	467	454	
Sulphate as SO4 2-	mg/L	1	86	192	155	152	159	126	124	500 (250)*
Sulphur as S	mg/L	1	29	64	52	51	53	42	41	
Chloride	mg/L	1	73	141	140	157	160	104	111	250
Calcium	mg/L	1	63	62	63	48	50	58	62	
Magnesium	mg/L	1	78	62	63	58	60	28	16	ı
Sodium	mg/L	1	93	110	113	122	126	157	153	180
Potassium	mg/L	1	\sim	7	8	6	6	<1	$\overline{}$	·
Aluminium	mg/L	0.01	0.02	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	ı
Arsenic	mg/L	0.001	0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	0.007
Cadmium	mg/L	0.0001	<0.0001	0.0001	< 0.001	0.0006	0.0003	0.0007	0.0002	0.002
Chromium	mg/L	0.001	<0.001	0.001	<0.001	<0.001	<0.001	< 0.001	< 0.001	0.05
Lead	mg/L	0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	0.01
Manganese	mg/L	0.001	<0.001	0.004	0.002	0.081	0.02	0.013	0.002	$0.5~(0.1)^{*}$
Selenium	mg/L	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	0.01
Zinc	mg/L	0.005	0.006	0.026	0.016	0.038	0.052	0.01	0.007	
Iron	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	ı
Mercury	mg/L	0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	0.001
Reactive Silica	mg/L	0.10	67.3	5.4	19.9	18.2	15.0	64.1	65.8	
Ammonia as N	mg/L	0.01	0.03	0.01	0.02	0.03	0.03	0.02	0.02	
Nitrite as N	mg/L	0.01	<0.01	<0.01	<0.01	0.01	0.02	0.18	0.02	3
Nitrate as N	mg/L	0.01	4.18	0.75	1.01	1.23	1.26	6.19	7.04	50
Nitrite + Nitrate as N	mg/L	0.01	4.18	0.75	1.01	1.25	1.28	6.36	7.06	
Total Kjeldahl Nitrogen as N	mg/L	0.1	0.4	0.3	0.2	0.4	0.1	<0.5	0.6	
Total Nitrogen as N	mg/L	0.1	4.6	1	1.2	1.6	1.4	6.4	L'L	
Total Phosphorus as P	mg/L	0.01	0.06	0.07	0.04	0.04	0.08	<0.05	<0.05	ı
Reactive Phosphorus as P	mg/L	0.01	0.02	0.04	0.03	0.01	0.01	<0.01	<0.01	
Total Anions	meq/L	0.01	13.2	12.6	12.4	11.8	12.0	14.9	14.8	
Total Cations	meq/L	0.01	13.6	13.2	13.5	12.7	13.1	16.9	17.2	
Ionic Balance	%	0.01	1.45	2.04	3.91	3.43	4.38	6.33	7.59	I
* Coliforms	CFU/100ml				<10		<10		<10	
#E. Coli	CFU/100ml				<10		<10		<10	
*2004 ADWGL = 2004 Australian D ₁	rinking Water G	uideline l	imit (aesthetic v	alue in parenth	esis); #Colifc	orms/E.Coli = s	umples collected	l on 30/7/10		

Table 5: Laboratory Water Quality Results

Γ

 Τ

Т

Rockwater Pty Ltd

6 HYDROGEOLOGY

A water level contour map of the deep aquifers is presented in Figure 22; based on the recently-constructed monitoring bores and test bores, and selected existing mineral exploration holes. The water table lies between 363 and 375 m AHD, and it slopes downwards to the northwest, suggesting that recharge is via infiltration below the Hardey River and direct infiltration. Several perched aquifers may exist due to the presence of less permeable clay/shale layers, with the most prominent perched aquifer occurring along a ridgeline in the eastern part of the Brockman deposit (ex. holes HARC 153, 154, 155, 157, 159, 168, and 177) where water levels are between 377 and 378 m AHD, about 7 to 8 m above the regional water table.

Figure 22 also shows a relatively abrupt change in water levels near the centre of the Brockman deposit with water levels at about 364 m to the west and 370 m to the east. This change in water level is interpreted to be the result of a low permeability dolerite dyke that strikes NE-SW and that is impeding groundwater flow to the northwest. The estimated surface expression of the dolerite dyke based on geological mapping is shown on Figure 22.

Results of the drilling programme have shown that the Brockman deposit contains moderate to large supplies of groundwater with the majority of high-permeability material occurring below a depth of about 50 m. Pumping test results from HAWB 003 and HAWB 004 indicate that dewatering bores completed in the Brockman will sustain pumping rates of the order of 20 to 25 L/sec in the short to medium term but as the drawdown cone extends radially and intersects less permeable strata and or faults, the yields may decrease.

Bores HAMB 004 and HAMB 007 intersected lower permeability strata of the Mount McRae Shale and Mount Sylvia Formations, respectively, indicating that the Brockman deposit may be bordered by lower permeability strata. However, the permeability and connection between the Brockman aquifers and the Wittenoom Formation are not known.

Based on the current life of mine plan depicted in Figure 23 and the water level contours shown in Figure 22, the areas where the proposed pit is to be mined below about 370 m RL will need to be dewatered. The 370 m RL of the proposed pit design is shown in Figure 23 providing an estimate of the approximate area that will need to be dewatered. Water levels will need to be drawn down by as much as 90 m to lower the water table to the deepest part of the proposed pit at about 280 m RL. To achieve this scale of dewatering, in-pit bores will be needed. A numerical groundwater model has been prepared to assess the level of dewatering needed and is presented in Section 7 of this report.

7 NUMERICAL MODELLING

7.1 MODEL DESCRIPTION

The numerical modelling utilised Processing Modflow Pro, the industry-standard finitedifference groundwater model designed by the US Geological Survey (McDonald and Harbaugh, 1988). It was set up using aquifer parameters derived from the drilling and testpumping programmes, and calibrated to static water levels and to individual pumping tests.

The model domain is comprised of a 6 x 12 km rectangle aligned in an east-west direction, approximately parallel to the regional groundwater flow direction, and sub-divided into 119 rows and 169 columns. The grid cell size ranges from 5 x 5 m in the area of the Hardey project area to 500 x 500 m at the model periphery. The model domain is shown in Figure 24.

Two horizontal model layers were used. Layer 1 represents the variably-fractured fresh bedrock of the Brockman Iron Formation and the surrounding strata i.e. Mt McRae Shale, Wittenoom Formation, and the adjoining country rocks. Layer 2 represents low permeability fresh bedrock. The model was built with constant-head boundaries to simulate the wider extent of the aquifer. No-flow cells were placed around the model boundary and the initial water levels were assigned constant-heads ranging from 351 to 380 m AHD.

Aquifer parameters were assigned according to six spatial zones defined within each model layer. The zones represented the Brockman Iron Formation, a low-permeability zone associated with a dolerite dyke which crosses the deposit in a northeast-southwest direction, shale and other sedimentary strata of the Mt McRae Shale and Mt Silvia Formations, dolomite of the Wittenoom Formation, and the adjoining country rocks.

Details of the aquifer parameters are presented in Table 6 and the domains of hydraulic conductivity for Layer 1 are shown in Figure 24. The permeability domains reflect the values estimated from test-pumping, the drilling programme, and the static water levels.

Adjustment of these values was required to achieve a satisfactory calibration. It should be noted that the permeability distribution was defined on the basis of limited regional geological information, particularly with respect to the hydrogeological properties of the Wittenoom Formation.

Parameter	Brockman Iron Formation	Brockman Iron Formation adjacent to dolerite dyke	Dolerite Dyke	Mt McRae Shale and Mt Silvia Formation	Wittenoom Formation	Country Rocks
Top Layer 1 Elevation (m AHD)	400	400	400	400	400	400
Top Layer 2 Elevation (m AHD)	250 to 340	250 to 340	250 to 340	340	340	340
Bottom Layer 2 Elevation (m AHD)	100 to 190	100 to 190	100 to 190	190	190	190
Initial Water Level (m AHD)	380	380	380	380	380	380
Kh [*] Layer 1 (m/d)	4.0	1.2	0.005	0.25	2.0	1.0
Kv [#] Layer 1 (m/d)	0.8	0.24	0.001	0.1	0.4	0.2
Kh [*] Layer 2 (m/d)	0.1	0.1	0.005	0.1	1.3	0.1
Kv [#] Layer 2 (m/d)	0.02	0.02	0.001	0.02	0.26	0.02
Specific Yield; Layer 1	0.009	0.0065	0.0005	0.004	0.01	0.005
Specific Storage (1/m); Layer 2	0.00001	0.00001	0.00001	0.00001	0.001	0.00001
Recharge from rainfall (m/d)	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001

Table 6: Model Parameters

* horizontal hydraulic conductivity

vertical hydraulic conductivity

7.2 MODEL CALIBRATION

The model was first calibrated by matching the simulated water levels to static water levels in monitoring and production bores measured in July 2010. This was achieved by varying the values of hydraulic conductivity and the amount of aquifer recharge from rainfall.

A comparison between groundwater levels measured in July 2010 and those calculated by the calibrated model are shown in Figure 25 and a contour map of modeled initial water levels is shown in Figure 26. There is a reasonable agreement between the modeled and measured water levels, which portray a relatively abrupt change in water levels near the centre of the Brockman deposit with water levels at about 364 m to the west and 370 m to the east. This change in water level is interpreted to be the result of a low permeability dolerite dyke that strikes NE-SW, impeding groundwater flow to the northwest.

To replicate the steep water level gradient, a line of low-permeability cells was incorporated into the model.

The modeled water-levels were also calibrated to the water-level drawdowns produced during the 48-hour pumping tests conducted on the three production bores HAWB 003, HAWB 004 and HAWB 005 in July 2010 (test-pumping results were described in Section 4). The calculated water-level drawdowns and measured drawdowns in the monitoring bores are presented in Figures 27 to 29. The calibration results indicate that the simulated water-level drawdowns are similar to the measured drawdowns. Calculated drawdowns at the pumping bores are less than those measured because the latter include the 'well losses' (frictional/turbulence) inside the bores, and because the modelled water levels are averaged for each cell, which have minimum sizes 5 m x 5 m, whereas the bores adjacent to the production bores provide a more accurate representation of the surrounding aquifer than those in the production bores.

7.3 MODELLING RESULTS

The model was run to simulate the rate of dewatering that will be required to maintain dry mining conditions as the pit is deepened to its final elevation of 284 m AHD after 12 years of mining.

Pumping from four production bores was simulated: from the two existing production bores HAWB 003 and HAWB 004 and two additional hypothetical production bores (#1 and #2) each constructed 150 m depth and located about 200 m east from HAWB 004 and 150 m north-east from HAMB 006, respectively. For modelling purposes, bore HAWB 003 has been extended from its current depth of 100 m to 150 m. Locations of the pumping bores are presented in Figure 30.

Pumping operations were modelled to commence in year 5 of mining (i.e. at the beginning of the first quarter of the fifth year) and continue for the remaining eight years of the proposed mining schedule. Based on the proposed mining schedule #3a, provided by API in November 2010, the pit floor elevation at Year 6 will be at 372 m AHD, which is approximately the depth in the pit area where saturated ground will be encountered (Figure 23). To ensure that water levels are lowered ahead of mining it will be necessary to commence dewatering operations at least one year before (i.e. year 5 of mining operations).

The results of the modelling scenario are presented in Table 7 and plots of predicted waterlevels after 40 days, 1, 5, and 8 years of pumping are shown in Figures 31 to 34.

During the first 40 days of pumping, the simulated pumping rates range from 25 to 30 L/s for each of the four production bores, and total 115 L/sec (9,940 m^3/d). The modelled water level in production bore HAWB 004 would have drawn-down close to the pump

inlet (about 280 m AHD) after 40 days and therefore the simulated pumping rate was reduced from 25 L/s to about 9 L/s to maintain a constant head. Water level contours after 40 days of pumping are shown in Figure 31. They do not show the water levels in the pumped dewatering bores.

For the next 24 days (i.e. day 64 since the start of pumping), the pumping rates simulated from the four pumping bores range between 9 and 30 L/s, totalling 99 L/s (8,550 m³/d). The water level in hypothetical bore #1 is expected to be drawdown close the pump inlet (about 278 m AHD) and therefore, the pumping rate is reduced from 30 L/s to about 19 L/s to maintain a constant head in the bore.

For the following 10 days (i.e. day 74 since the start of pumping), the pumping rates simulated at the four pumping bores were reduced to a total rate of 85 L/s (7,340 m³/d). The water levels in the production bore HAWB 003 and the second additional production bore (ie bore site 2) would have drawn down close to the pump inlets (about 280 and 275 m AHD, respectively).

For the next eight years of dewatering, the pumping rates were subsequently reduced as the water levels in the aquifer declined. The combined pumping rate ranged from about 50 L/s at the end of year one to about 40 L/s at the end of year eight and the total cumulative volume of pumped water (after eight years of pumping) is approximately 11.5 GL (Table 7). Modelled drawdowns after one year, five years and eight years are presented in Figures 32, 33, and 34 respectively.

A time-series plot of water levels at five locations in the deepest part of the pit is presented in Figure 35, together with the planned minimum elevations of the pit at the end of each mining year. The modelling results indicate that water levels will be kept below the deepest pit floor elevation (i.e. 284 m AHD) if dewatering is undertaken with four bores pumping for a period of eight years (assuming starting dewatering at year 5 of mining operations). Additionally, minor in-pit pumping will be required to allow dry mining conditions.

In summary, the modelling indicates that the total dewatering pumping rate will decline from about 115 L/s (9,940 m³/d), in the early stages of dewatering, to about 40 L/s $(3,450 \text{ m}^3/\text{d})$ after eight years.

The pumping rates and water levels calculated by modelling should be regarded as approximate only, because the aquifers are heterogeneous, and the parameters used in the model are predominantly estimates supported by a small number of measured values.

Results
Modelling
Dewatering
Table 7:

				Year 1			Yea	ır 2	Year 5 ²	Year 8 ²
		Day	40	64	74	360	540	720	1800	2880
	Planned Pit elevation					720		720		Voc
Bore ID	(minimum)					0/0		504		707
	Pumping Rate	L/S	30	30	30	17	16	16	14	13
HAWB 003	Water Level in Cell	m AHD	314.4	287.8	276.7	280	279.8	279.7	279.4	279.3
	Pumping Rate	L/S	25	6	9	4	4	4	4	4
HAWB 004	Water Level in Cell	m AHD	282.0	280.5	278.1	277.8	277.7	277.7	277.6	277.6
	Pumping Rate	L/S	30	30	19	14	13	13	12	12
Bore 1 ¹	Water Level in Cell	m AHD	307.8	278.6	277.3	276.4	276.3	276.2	267.1	276
	Pumping Rate	L/s	30	30	30	16	15	15	14	13
Bore 2 ¹	Water Level in Cell	m AHD	310.6	282.8	273.2	276.6	276.6	276.5	276.3	276.2
HAMB 006	Water Level in Cell	m AHD	322.7	299.3	291.1	286.5	286.1	285.9	285.2	284.7
HAMB 009	Water Level in Cell	m AHD	362.4	361.3	360.7	355.7	353.9	352.7	349.7	348.3
Total Com	oined Pumping Rate	L/s	115	66	85	51	49	47	43	41
Annual	Pumped Volume	GL		1.9	94		1.5	51	1.37	1.30
Cummulati	ive Pumped Volume			1.9	94		3.4	44	7.54	11.45
1 - himothotical hand										

1 = hypothetical bore2 = the same pumping rate has been applied for the preceeding two years

Page 47

8 DEWATERING STATEGY

Mining at Hardey is scheduled to occur over a twelve year period. To ensure that water levels are lowered ahead of mining operations it will be necessary to conduct a dewatering programme for a period of about 8 years commencing prior to the fifth year of mining operations.

Succesful implementation of the dewatering programme will require the construction of at least two additional production bores; (ie hypothetical bores #1 and #2). Their proposed locations are roughly 530250 mE, 7461955 mN for bore #1 and 530200 m E, 7461855 mN for bore #2. The bores would need to be drilled below the base of the Brockman aquifer, to approximately 260 m AHD. Additional bores may also be needed as contingency to allow for standby dewatering capacity if one or more bores are lost to mining.

It is also anticipated that existing bore HAWB 003 will need to be deepened because adverse ground conditions prevented the casing from being installed below 100 m depth and the proposed pit depth at HAWB 003 will be about 150 m. Alternatively, a replacement bore could be constructed near HAWB 003, depending on the initial results of the dewatering programme.

Based on the results of the test pumping and groundwater modelling, it is likely that most of the 1 GL/annum (32 L/sec) water requirements could be provided from the dewatering infrastructure (bores and in-pit sumps). However, as mining progresses, the dewatering bores will produce less, and bore HAWB 005 will probably need to be commissioned or another source of water investigated. HAWB 005 could supply 20 to 25 L/sec for the short to medium term; the yield will likely decrease in the long term because the aquifer has a limited extent as was observed during the test pumping programme.

9 SUMMARY AND CONCLUSIONS

A drilling, bore construction, and test pumping programme was carried out at the Hardey project during May to July 2010 to assess the hydrogeological conditions of the Brockman Iron Formation deposit and adjacent strata for dewatering and water supply purposes. Nine hydrostratigraphic holes were drilled and constructed as monitoring bores and three large diameter test bores were drilled, constructed, and test pumped. A numerical groundwater model was developed based on the results of the drilling and test-pumping programme to assess the dewatering requirements needed to lower the water table ahead of mining operations.

The following conclusions have been drawn from the investigations:

- Groundwater flow in the deep aquifers is generally from east to west across the Brockman deposit with localised, perched aquifers occurring in the eastern part of the deposit due to shale/clay strata impeding the infiltration of groundwater.
- The Dales Gorge Member of the Brockman Iron Formation, where drilled, was found to be moderately to highly permeable. Estimated yields of individual dewatering bores are 20 to 30 L/sec for short to medium term time frames based on test pumping results from HAWB 003 and HAWB 004.
- The Mt. McRae Shale and Mt. Sylvia shale, which border the Brockman deposit, were found to be low yielding and will therefore likely assist in the dewatering of the Brockman deposit as well as reduce the yields of dewatering bores in the long term as cones of depression spread out laterally and intersects the two units.
- The hydrogeology of the Wittenoom Formation and its hydraulic connection with the Brockman and Marra Mamba deposits are currently not well known.
- Bore HAWB 005, which is screened within the Marra Mamba Formation, should be able to produce 20 to 25 L/sec for short to medium time frames although a limited aquifer extent will likely limit its production in the long term.
- It is anticipated that the eastern part of the proposed pit that will be mined below RL 370 m will need to be dewatered. Water levels will need to be lowered by up to 90 m to the ultimate planned pit depth of about 280 m RL. To achieve this scale of dewatering, in-pit bores will be required.
- A steep change in groundwater levels in the central part of the Brockman deposit is interpreted to be the result of a low permeability NE-SW striking dolerite dyke that forms an aquifer boundary and that impedes groundwater flow to the northwest. This dyke could be an important factor in influencing the extent of drawdown and yield of bores during dewatering operations.
- A numerical groundwater model was constructed to estimate the dewatering requirements needed to lower the water table ahead of mining operations. The model indicates that the existing dewatering bores, HAWB 003 and HAWB 004, and two additional production bores would be sufficient for lowering the water levels ahead of mining operations, assuming pumping commences at the start of year 5 of the proposed mining schedule and based on the current understanding of the hydrogeology of the area. It is predicted that the four bores would cumulatively yield about 115 L/sec during the first 40 days of dewatering programme and that

the yield would decrease to about 50 L/sec after one year of continuous pumping, and the long term yield would be about 40 L/sec. At these pumping rates and after eight years of pumping the total cumulative volume of pumped water is approximately 11.5 GL

• Groundwater samples collected from the project area were of good quality with none of the constituents analysed exceeding the current drinking water guidelines; it is fresh with salinity values ranging from 645 to 818 mg/L total dissolved solids. Groundwater from all aquifers tested at the project have a neutral to slightly alkaline pH and have a bicarbonate rich composition with slightly elevated concentrations of sulphate, chloride and sodium. The water is likely to be of suitable quality for mining, processing, and potable uses.

10 RECOMMENDATIONS

Based on the above conclusions and the general requirements for approvals from government regulators, the following actions are recommended:

- Conduct additional hydrostratigraphic drilling to target the Wittenoom Formation.
- Construct a test production bore in the Wittenoom Formation to assess its permeability and hydraulic connection with the Brockman Iron Formation.
- Conduct additional hydrostratigraphic drilling near the deepest part of the proposed pit and where suitable aquifers are encountered; construct at least two additional dewatering bores.
- Undertake long term pumping tests on any newly constructed bores.
- Analyse data and re-run the numerical model and reassess the dewatering strategy.
- Prepare a final void numerical model to assess water quality and water variations after mining and processing ceases.
- Measure water levels regularly from the newly constructed bores and selected mineral holes to develop a baseline of the seasonal/natural variability in groundwater levels prior to the commencement of mining operations.

Finalised: 01 August 2011

Maple

C Kasperkiewicz

Project Hydrogeologist

Rockwater Pty Ltd

1. h Bolton

G L Bolton Principal

Drafted: 10 December 2010

Rockwater Pty Ltd

Marc M Yowan

M McGowan Senior Hydrogeologist

1. h Bolton

G L Bolton Principal

REFERENCES

- McDonald and Harbaugh, 1988, A Modular Three-dimensional Finite-difference Groundwater Flow Model. Techniques of Water Resource Investigations of the U.S. Geological Survey, Reston, VA.
- National Health and Medical Research Council (NHRMC), 2004, Australian National Drinking Water Guidelines 6.
- Nick Lockett and Associates, 2009, Photogeological Interpretation of Pseudo-Stereo Quickbird Imagery. Geological interpretive map prepared for API Management Pty Ltd.
- Rockwater, 2010a, Australian Premium Iron JV Hardey Project, Water Supply and Pit Dewatering Evaluation and Recommended Drilling Programme, Unpublished report for API Management Pty Ltd. (371.0/10/01).
- Rockwater, 2010b, Australian Premium Iron JV Hardey Project, Results of Hydraulic Testing, Unpublished report for API Management Pty Ltd. (371.0/10/02).

APPENDIX I

MONITORING BORE COMPLETION DATA

STATUS:	Monitoring Bore
MGA COORDINATES:	531455 mE 7462155 mN
REDUCED LEVEL OF COLLAR:	393.21m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	30/05/10 to 31 /05/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 132 m, 167 mm air-hammer
SURFACE CASING:	+0.6 to 0.5 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.7 to 89 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 17 to 23 m, 29 to 35 m, 41 to 53 m, 59 to 65 m, 71 to 77 m, and 83 to 89 m.
BASE PLATE:	89 m uPVC base cap
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (4 June 10):	19.75 m below datum (ie top of uPVC casing) 374.15 m above AHD
SALINITY/pH/TEMPERATURE:	690 mg/L TDS/ pH 7.4 /Temperature 29.0°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
42	2.5	1,350	27.8	675	7.4	
48	4	1,361	28.7	680	7.4	
54	6					
66	10	1,370		685	7.4	
108	12+	1,346	29.6	673	7.4	
120	12+	1,379	29.0	689	7.4	
132	12+	1,380		690	7.4	

Depth (m)	Stratigraphy	Lithology	Description
0 to 2	Alluvium (otr)	Gravel (Otr)	Orange brown, poorly sorted, well rounded river sediments; BIF, chert, dolerite
2 to 6		Goethite-Hematite (Mgh)	Orange brown, BIF, goethite, with common shale and clay; moderately to very weathered
6 to 30		Geothite-Hematite (Mgh)	Reddish brown goethite and BIF, with shale and clay; moderately to very weathered and broken.
30 to 42		Clay (Ocl)	Dark yellow brown clay with common goethite-hematite
42 to 102	Marra Mamba Iron Formation	Geothite- Hematite (Mgh) / Shale (Ssh)	Dark yellow brown and very dark grey BIF and goethite, very broken with common vuggy zones; yellow brown weakly lithified shale; quartz vein 98 to 99 m
102 to 132		Shale (Ssh) / Geothite – Hematite (Mgh)	Dark yellow brown and black (carbonaceous) shale with common very dark grey and dark yellow brown BIF and goethite

BORE HAMB 001 LITHOLOGY

STATUS:	Monitoring Bore
MGA COORDINATES:	530810 mE 7461870 mN
REDUCED LEVEL OF COLLAR:	394.84 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	20/05/10 to 21/05/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 179 m, 167 mm air-hammer
SURFACE CASING:	+0.83 to 0.27 m, 154 mm ID, 168 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.60 to 178.5 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 58.5 to 64.5 m, 76.5 to 82.5 m, 94.5 to 100.5 m, 148.5 to 154.5 m, and 166.5 to 178.5 m.
BASE PLATE:	178.5 m uPVC base cap
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (28 June 10):	24.61 m below datum (ie top of uPVC casing) 370.79 m above AHD

SALINITY/pH/TEMPERATURE

820 mg/L TDS/ pH 7.6 /Temperature °C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
48 to 50						moist
54	trace					cut water
66	~1					
72	1.8					
78	2.9					
84	3.3					
96	3.8					
114	4.9					
150	6.9					
156	8.5					
162	~9.0					
168	9.3					
174	10.2					
179	9.3	1,280	18.1	820	7.6	Very clean and clear

Depth (m)	Stratigraphy	Lithology	Description
0 to 3	Alluvium (otr)	Gravel (Otr)	Brown grey, very poorly sorted, juvenile river sediments, fine grained sand to large pebbles
3 to 8		Goethite-Hematite (Mgh)	Brown grey, weathered, weakly fractured.
8 to 10		Hematite (Mhe)	Dark grey, minor chert, moderately consolidated.
10 to 12		Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, weakly lithified.
12 to 14		Hematite (Mhe)	Dark grey, minor chert, moderately consolidated.
14 to 18		Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, weakly lithified.
18 to 24		Hematite (Mhe)	Dark grey, weakly lithified.
24 to 31	Brockman Iron Formation – Dales Gorge	Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, weakly lithified.
31 to 36	Brockman Iron Formation –	Hematite (Mhe)	Dark grey, fractured, weakly lithified.
36 to 40	Dales Gorge Member (Hbd)	Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, weakly lithified.
40 to 43		Goethite (Mgo)	Dark brown, weakly lithified.
43 to 52		Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, weakly lithified.
52 to 54		Shale (Ssh)	Red brown, hematitic, fissile, weakly lithified.
54 to 56		Chert/BIF (Siy)	Brown, cream, grey, fractured.
56 to 58		Goethite (Ssh)	Red brown, argillaceous, very weakly lithified.
58 to 72		Chert/BIF (Siy)	Brown, cream, grey, fractured, moderately consolidated.
72 to 81		Goethite-Hematite (Mgh)	Mid to dark brown, dark grey, partly vuggy, minor BIF, weakly lithified.
81 to 108		Shale (Ssh)	Yellow brown, cream, ochre, oxidised, fissile, minor thin beds ironstone, weakly lithified.
108 to 112		Goethite-Hematite (Mgh)	Brown, dark grey, minor vughs, fractured, weakly lithified.
112 to 120	Mount McRae	Shale (Ssh)	Yellow brown, cream, pink, oxidised, minor interbedded mineralised iron beds (Mif).
120 to 128	Shale (Hr)	Chert/BIF (Siy)	Grey brown, hard.
128 to 148		Shale (Ssh)	Pale grey, yellow brown, oxidised, fissile, minor thin beds ironstone, weakly lithified.
148 to 150		Shale (Ssh)	Purple brown, hematitic, fissile, weakly lithified.
150 to 158	Mount Silvia	Hematite (Mhe)	Dark grey well fractured, minor BIF, very hard, well consolidated.
158 to 160	Shale (Bruno's Band) (Hbb)	Shale (Ssh)	Purple brown, hematitic, fissile, weakly lithified.
160 to 163	2410) (1100)	Chert (Sic)	Grey brown, well fractured, hard.
163 to 167		Shale (Ssh)	Purple brown, hematitic, fissile, weakly lithified.
167 to 172	Mount Silvia	Shale (Ssh)	Yellow brown, grey, fissile, weakly lithified.
172 to 176	Shale (Hs)	Chert (Sic)	Dark grey, hard minor shale, weakly cemented.
176 to 179		Shale (Ssh)	Pale grey, dolomitised, hard

BORE HAMB 002 LITHOLOGY

STATUS:	Monitoring Bore
MGA COORDINATES:	531833 mE 741516 mN
REDUCED LEVEL OF COLLAR:	385.3 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	1/06/10 to 1/06/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 20 m, 167 mm air-hammer
SURFACE CASING:	+0.6 to 0.5 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.7 to 17 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 11 to 7 m.
BASE PLATE:	17 m uPVC base cap
GRAVEL PACK:	drill cuttings
STATIC WATER LEVEL (4 June 10):	12.70 m below datum (ie top of uPVC casing)373.3 m above AHD

SALINITY/pH/TEMPERATURE:

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
12	cut water					
20	3-4	1186	28.4	590	8.0	

590 mg/L TDS/ pH 8.0 /Temperature 28.4 $^\circ C$

BORE HAMB 003 LITHOLOGY

Depth (m)	Stratigraphy	Lithology	Description
0 to 4	Alluvium	Alluvium (Oal)	Reddish brown, poorly sorted, sand to gravel size, well rounded BIF, dolerite, shale
4 to 6	Alluvium?	Calcrete?	Light yellow brown and cream, calcareous (very strong reaction to acid), soft
6 to 20	Jeerinah Formation	Chert (Sic) / Dolerite (Bdl)	Medium yellow brown, bluish green, and medium grey, slightly clayey, very broken, rubbly

Monitoring Bore
530628 mE 7462113 mN
397.99 m AHD
Welldrill
Fraste FS-500 Rig
1/06/10 to 3/06/10
0 to 6 m, 254 mm air-hammer 6 to 156 m, 167 mm air-hammer
+0.98 to 0.12 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
+0.87 to 107.8 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 59.8 to 107.8 m.
107.8 m uPVC base cap
none
30.77 m below datum (ie top of uPVC casing) 371.13 m above AHD

SALINITY/pH/TEMPERATURE:

775 mg/L TDS/ pH 7.4/ Temperature 30.1°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
114	cut water					very muddy
120	~1					very muddy
126	~1					very muddy
132	~1					very muddy
138	~2	1,460	29.0	700	7.1	
150	~3	1,485	29.3	710	7.1	
156	~3	1,620	30.1	775	7.4	

Depth (m)	Stratigraphy	Lithology	Description	
0 to 2	Alluvium	Alluvium (Oal)	Reddish brown, poorly sorted sand and gravel; BIF, chert, and shale	
2 to 14	Brockman Iron	Banded Iron Formation (Sif)	Reddish brown BIF, slightly clayey; weakly lithified	
14 to 20	Formation – Dales Gorge Member	Shale (Ssh)	Yellow brown, very weathered	
20 to 30	(Hbd)	Goethite-Hematite (Mgh)	Reddish brown and medium yellow brown, weakly lithified	
30 to 36		Shale (Ssh)	Purple, reddish brown shale with common BIF	
36 to 96	Mount McRae Shale (Hr)	Shale (Ssh)	Yellow brown, light grey, reddish brown shale with minor BIF	
96 to 120	Shale (III)	Shale (Ssh)	Black carbonaceous shale, very weakly lithified	
120 to 156		Shale (Ssh)	Black carbonaceous shale, very weakly lithified, with abundant pyrite nodules	

BORE HAMB 004 LITHOLOGY
COMPLETION DATA BORE HAMB 005

STATUS:	Monitoring Bore
MGA COORDINATES:	530590 mE 7462010 mN
REDUCED LEVEL OF COLLAR:	397 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	22/05/10 to 24 /05/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 132 m, 167 mm air-hammer
SURFACE CASING:	+1.03 to 0.07 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.91 to 71.5 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 17.5 to 23.5 m, 29.5 to 35.5 m, and 41.5 to 71.5 m.
BASE PLATE:	71.5 m uPVC base cap
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (28 June 10):	28.22 m below datum (ie top of uPVC casing) 369.68 m above AHD

SALINITY/pH/TEMPERATURE:

575 mg/L TDS/ pH 7.4 /Temperature 30.3°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
36	Trace					
60	0.3					
66	1.5					
72	1.5	1,070	26.3		7.4	
78	1.8	1,145	29.3		7.4	
84	2	1,070	28.6		7.4	
90	3	1,100	28.9		7.4	
96	3.5					
102						
108	6	1,158	29.8		7.4	
114	8					
120	10	1,210	30.2		7.4	
126	10	1,225	29.9		7.4	
132	10	1,233	30.3		7.4	

Depth (m)	Stratigraphy	Lithology	Description
0 to 2	Alluvium (otr)	Gravel (Otr)	Maroon and yellow brown, juvenile river gravels, poorly sorted fine sand to gravel, well rounded
2 to 20	Brockman Iron Formation – Dales Gorge Member (Hbd)	Goethite-Hematite (Mgh)	Dark yellowish brown and dark grey, broken and occasionally vuggy
20 to 28		Goethite-Hematite (Mgh)	Dark yellowish brown and maroon; silt to medium sand size cuttings
28 to 66		Goethite-Hematite (Mgh)	Dark yellowish brown and dark grey, broken and occasionally vuggy
66 to 114		Hematite (Mhe)	Dark grey, occasional goethite
114 to 132		Hematite (Mhe)	Dark grey, common clear/light grey chert, fresh and hard; occasional maroon/cream shale

BORE HAMB 005 LITHOLOGY

COMPLETION DATA BORE HAMB 006

STATUS:	Monitoring Bore
MGA COORDINATES:	530081 mE 7461770 mN
REDUCED LEVEL OF COLLAR:	431.09 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	4/06/10 to 6/06/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 98 m, 167 mm air-hammer
SURFACE CASING:	+0.65 to 0.45 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.6 to 73.7 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 55.7 to 73.7 m.
BASE PLATE:	73.7 m uPVC base cap
GRAVEL PACK:	none
STATIC WATER LEVEL (27 June 10):	61.89 m below datum (ie top of uPVC casing) 369.81 m above AHD
SALINITY/pH/TEMPERATURE:	515 mg/L TDS/ pH 7.1/ Temperature 25.9°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
64	cut water					
72 to 98	lost circulation, poor return to surface, only trace mud					

Depth (m)	Stratigraphy	Lithology	Description
0 to 6		Banded Iron Formation (Sif)	Reddish brown and dark grey, hematite with minor goethite and shale
6 to 18		Goethite-Hematite (Mgh)	Maroon and grey hematite, weakly lithified
18 to 32	Brockman Iron	Goethite (Mgo)	Orange brown, weakly lithified, minor shale
32 to 42	Formation – Dales Gorge Member	Goethite-Hematite (Mgh)	Maroon and grey hematite with orange brown goethite, weakly lithified
42 to 54	(Hbd)	Goethite-Hematite (Mgh)	Maroon and grey hematite with orange brown goethite and minor red shale, weakly lithified
54 to 98		Goethite-Hematite (Mgh)	Maroon and grey hematite with orange brown goethite and minor red shale, vuggy and very broken

BORE HAMB 006 LITHOLOGY

COMPLETION DATA BORE HAMB 007

STATUS:	Monitoring Bore
MGA COORDINATES:	531151 mE 7461878 mN
REDUCED LEVEL OF COLLAR:	392 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	6/06/10 to 7/06/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 132 m, 167 mm air-hammer
SURFACE CASING:	+0.6 to 0.5 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.4 to 131.2 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 35.2 to 41.2 and 113.2 to 131.2 m.
BASE PLATE:	131.2 m uPVC base cap
GRAVEL PACK:	none
STATIC WATER LEVEL (27 June 10):	21.8 m below datum (ie top of uPVC casing) 370.6 m above AHD

SALINITY/pH/TEMPERATURE: 575 mg/L TDS/ pH 7.1/ Temperature 29.4°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
36	2	1,760	29.3	880	7.1	
42	2					
48	2					
54	2.5	1,378	29.0	689	7.1	
60	2.5					
66	2.5	1,306	28.9	653	7.1	
72	3	1,261	29.0	630	7.1	
78	3					
84	3	1,150	29.1	575	7.1	
90	3	1,215	28.5	607	7.1	
96	3					
114	3	1,130	29.2	565	7.1	
120	3					
126	3					
132	3	1,137	29.6	568	7.1	

Т

Depth (m)	Stratigraphy	Lithology	Description
0 to 4		Alluvium	Orange brown, poorly sorted, clay to gravel size, BIF, shale
4 to 16		Shale (Ssh)	Cream and light grey, weakly lithified.
16 to 34		Shale (Ssh)	Very dark grey to black, carbonaceous, weakly lithified.
34 to 48	Mount Sylvia	Shale (Ssh)	Dark reddish brown and very dark grey, moderately to well lithified, occasional white and light grey quartz - dyke?
48 to 64	Formation (FIS)	Shale (Ssh)	Light greenish grey, weakly lithified, common pyrite from 62-64 m.
64 to 90		Shale (Ssh)	Very dark grey to black, carbonaceous, weakly lithified, common pyrite at 70-72 and 76-78 m
90 to 111		Shale (Ssh)	Light greenish grey, weakly lithified.
111 to 132		Shale (Ssh)	Very dark grey to black, carbonaceous, weakly lithified.

BORE HAMB 007 LITHOLOGY

COMPLETION DATA BORE HAMB 008

STATUS:	Monitoring Bore
MGA COORDINATES:	530095 mE 7462000 mN
REDUCED LEVEL OF COLLAR:	407.21 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	27/05/10 to 29 /05/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 145 m, 167 mm air-hammer
SURFACE CASING:	+0.99 to 0.11 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.7 to 143 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 77 to 83 m, 89 to 95 m, 101 to 119 m, and 125 to 143 m.
BASE PLATE:	143 m uPVC base cap
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (26 June 10):	38.18 m below datum (ie top of uPVC casing) 369.72 m above AHD
SALINITY/pH/TEMPERATURE:	557 mg/L TDS/ pH 6.8 /Temperature 29.2°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
84	~2-3					
90	3.4					
96	6	1,126	27.2	563	6.8	
102	6	1,119	27.7	559	6.8	
108	6.5	1,125	28.0	562	6.8	
114	8	1,118	28.1	559	6.8	
120	10					
126	10	1,120	28.2	560	6.8	
132	10+					
138	10+					
144	10+	1,115	29.2	557	6.8	

Depth (m)	Stratigraphy	Lithology	Description
0 to 2	Alluvium (otr)	Gravel (Otr)	Maroon, BIF, poorly sorted sand to gravel, common clay
2 to 4		Shale (Ssh)	Yellow brown, clayey
4 to 12	Brockman Iron Formation – Mount	Goethite-Hematite (Mgh)	Dark yellow brown and maroon with common shale
12 to 66	(Hbw)	Shale (Ssh)	Cream, yellow brown, light to medium brown, common goethite and hematite, very broken and vuggy
66 to 132	Brockman Iron Formation – Dales	Goethite-Hematite (Mgh)	Dark grey and yellow brown, common breaks and vuggy; common chert 112-116 m and common shale 116 to 120 m.
132 to 145	Gorge Member (Hbd)	Hematite (Mhe)	Very dark grey, hard, occasional shale

BORE HAMB 008 LITHOLOGY

COMPLETION DATA BORE HAMB 009

STATUS:	Monitoring Bore
MGA COORDINATES:	529850 mE 7462100 mN
REDUCED LEVEL OF COLLAR:	410.79 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	25/05/10 to 27 /05/10
DRILLING DETAILS:	0 to 6 m, 254 mm air-hammer 6 to 154 m, 167 mm air-hammer
SURFACE CASING:	+0.88 to 0.22 m, 156 mm ID, 165 mm OD, galvanised steel standpipe with lockable lid.
CASING:	+0.5 to 152 m, 79 mm ID, 90 mm OD, class 12 uPVC, 3 mm aperture, transverse slotted sections: 98 to 152 m.
BASE PLATE:	152 m uPVC base cap
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (28 June 10):	46.95 m below datum (ie top of uPVC casing) 364.35 m above AHD

SALINITY/pH/TEMPERATURE:

475 mg/L TDS/ pH 7.1 /Temperature 29.3°C

HYDROGEOLOGICAL DATA

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
108	~1					
114	~2					
120	5	940	28.0	470	7.1	
126	5.5	933	27.4	466	7.1	
132	5.5	937	27.8	468	7.1	
138	6.8	932	30.3	466	7.1	
144	7.8	946	29.6	473	7.1	
150	7.3	961	29.1	480	7.1	
154	7.3	953	29.3	476	7.1	

Depth (m)	Stratigraphy	Lithology	Description
0 to 6	Alluvium (otr)	Gravel (Otr)	Yellow brown, goethite, BIF, white quartz, shale; poorly sorted juvenile river gravels
6 to 8		Quartz intrusion (qz)	White, hard and fresh
8 to 10		Shale (Ssh)	Yellow brown, soft, with common BIF
10 to 12		Clay (cl)	Maroon, sticky
12 to 16		Shale (Ssh)	Yellow brown, soft, with common BIF and slightly clayey
16 to 26		Shale (Ssh)	Yellow brown, soft, with common BIF and white quartz at 24 to 26 m.
26 to 28	Brockman Iron	Banded Iron Formation (Sif)	Dark orange brown, weakly lithified
28 to 34	Formation – Mount Whaleback	Shale (Ssh)	Marron and yellow brown, soft, with common BIF
34 to 44	Member (Hbw)	Shale (Ssh) / Chert (Sic)	Marron, soft, with common BIF and chert
44 to 46		Banded Iron Formation (Sif)	Dark orange brown, weakly lithified
46 to 52		Chert (Sic) / Shale (Ssh)	Light to medium orange brown, weakly lithified
52 to 62		Shale (Ssh)	Medium to dark orange brown, slightly clayey, very weakly lithified
62 to 64		Clay (cl)	Orange brown
64 to 66		Shale (Ssh)	Medium to dark orange brown, slightly clayey, very weakly lithified
66 to 70		Banded Iron Formation (Sif)	Reddish brown BIF with occasional yellow brown shale
70 to 76		Cherty Banded Iron Formation (Siy)	Reddish brown BIF with common chert and occasional yellow brown shale and trace magnetic BIF
76 to 84		Banded Iron Formation (Sif)	Reddish brown BIF with occasional yellow brown shale and magnetic BIF
84 to 86		Clay (cl)	Dark reddish brown
86 to 92		Shale (Ssh)	Reddish brown shale with common BIF and trace magnetic BIF
92 to 110	Droalman Iron	Chert (Sic) / Banded Iron Formation (Sif)	Reddish brown and yellow brown, finely laminated chert and BIF, occasional shale
110 to 120	Brockman Iron Formation – Dales Gorge	Banded Iron Formation (Sif)	Very dark grey and reddish brown with common white quartz and trace shale, chert, and magnetic BIF, common oxidized surfaces 114-120
120 to 138	Member (1100)	Banded Iron Formation (Sif) / Hematite (Mhe)	Dark grey to black, common magnetic, occasional shale, increasing magnetic 130 to 138 m; well lithified
138 to 140		Chert (Sic)	Medium brownish grey, broken, oxidized surfaces
140 to 148		Banded Iron Formation (Sif)	Dark grey to black, common magnetic, occasional shale, increasing banding (marron and dark grey); well lithified
148 to 149		Shale (Ssh) / Chert	Yellow brown and orange brown, banded
149 to 154		Banded Iron Formation (Sif)	Dark grey to black, common magnetic, occasional shale, increasing banding (marron and dark grey); well lithified

BORE HAMB 009 LITHOLOGY

APPENDIX II

LARGE-DIAMETER TEST BORE COMPLETION DATA

COMPLETION DATA BORE HAWB 003

STATUS:	Test Production Bore
MGA COORDINATES:	530598 mE 7462010 mN
REDUCED LEVEL OF COLLAR:	397.37 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	08/06/10 to 14 /06/10
DRILLING DETAILS:	0 to 6 m, 380 mm air-hammer 6 to 119 m, 308 mm air-hammer
SURFACE CASING:	0 to 6 m, 316 mm ID, 324 mm OD, steel
CASING:	+0.3 to 58 m, 203 mm ID, 219 mm OD, blank steel casing, 58 m to 100 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, open end
GRAVEL PACK:	Not gravel packed
STATIC WATER LEVEL (26 May 10):	27.75 m below datum (ie top of steel casing) 369.85 m above AHD
SALINITY/pH/TEMPERATURE:	681 mg/L TDS/ pH 6.8 /Temperature 30.8°C

Depth (m)	Airlift Rate (L/s)	Electrical Conductivity (µS/cm)	Temperature (°C)	Total Dissolved Solids (from EC/Temp) (mg/L)	рН	Comments
39	2					
45	1					
51	1.2	1053	23.7		6.8	Foam
57	3	1077	23.8		7.1	Foam
63	5.6	1113	24.6		7.1	Foam
69	6.9	1099	24.9		6.8	Foam
75	4.4	990	26.8		6.8	Foam
81	8.5	1026	27.2		6.8	Foam
87	8	1108	29.6		6.8	Foam
93	~15	-	-		-	No more v-
	_				-	notch, foam
99	~7	1122	29.3		6.8	Foam
105	~8	-	-		-	Foam
111	~10	-	-		-	Foam
117	~11	1237	26.5		7.4	Foam

HYDROGEOLOGICAL DATA

Depth (m)	Stratigraphy	Lithology	Description
0 to 2	Alluvium (otr)	Gravel (Otr)	Maroon and yellow brown, juvenile river gravels, poorly sorted fine sand to gravel, well rounded
2 to 18		Goethite-Hematite (Mgh)	Dark brown and yellowish brown, majority hematite, occasionally vuggy
18 to 20		Goethite-Hematite (Mgh), Clay (Ocy)	Dark brown and yellowish brown, majority hematite, occasionally vuggy, 30% clay, soft
20 to 34		Goethite-Hematite (Mgh)	Dark brown and yellowish brown, majority hematite, occasionally vuggy
34 to 50	Brockman Iron Formation –	Goethite-Hematite (Mgh)	Dark brown and yellowish brown, majority hematite, occasionally vuggy, broken ground, larger chips
50 to 58	Dales Gorge Member (Hbd)	Goethite-Hematite (Mgh)	Dark brown and yellowish brown, majority hematite, occasionally vuggy, ground less broken smaller sized chips
58 to 60		Goethite-Hematite (Mgh)	Dark brown and yellowish brown, majority hematite, occasionally vuggy, broken ground, larger chips
60 to 119		Hematite (Mhe)	Brownish black, with some soft shale bands, very coarse to medium sand sized cutting, finer powdery cuttings from 100 m

BORE HAWB 003 LITHOLOGY

COMPLETION DATA BORE HAWB 004

STATUS:	Test Production Bore
MGA COORDINATES:	530105 mE 7462001 mN
REDUCED LEVEL OF COLLAR:	407.52 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	14/06/10 to 25/06/10
DRILLING DETAILS:	0 to 6 m, 380 mm air-hammer 6 to 150 m, 194 mm mud-rotary roller bit, reamed out to 152.8 m with 311 mm with mud-rotary roller bit
SURFACE CASING:	+0.16 m to 5.84 m, 316 mm ID, 324 mm OD, steel
CASING:	+0.86 m to 89.14 m, 203 mm ID, 219 mm OD, blank steel casing, 89.14 m to 101.14 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, 101.14 m to 107.14 m, 203 mm ID, 219 mm OD, blank steel casing, 107.14 m to 149.14 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, 149.14 m to 150.84 m, cement plug
GRAVEL PACK:	+3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (26 June 10):	38.27 m below datum (ie top of steel casing) 370.03 m above AHD
SALINITY/nH/TEMPERATURE	632.25 mg/L TDS/ pH 7.2 /Temperature 30.6°C

Depth (m)	Stratigraphy	Lithology	Description
0 to 2	Alluvium (Otr)	Gravel (Otr)	Maroon, BIF, poorly sorted sand to gravel, common clay
2 to 4		Sif	Brownish yellow, highly weathered, ironstone and clay
4 to 8		Goethite-Hematite (Mgh)	Maroon, highly weathered, Sif and clay, very broken
8 to 12	Brockman Iron	Goethite-Hematite (Mgh)	Brown, Sif and clay, hematite, goethite, weathered, broken
12 to 20	Gorge Member	Clay (Ocy) and Goethite- Hematite (Mgh)	Yellow and cream, mostly clay with hematite, goethite, weathered, some shale
20 to 72	(1100)	Goethite-Hematite (Mgh)	Brown, hematite with some goethite, clay, and some shale, broken, increased clay at 42-48 m, 54-56 m
132 to 152.8		Hematite (Mhe)	Very dark brown/grey, fractured surfaces, broken ground, small amount clay/shale

BORE HAWB 004 LITHOLOGY

COMPLETION DATA BORE HAWB 005

STATUS:	Test Production Bore
MGA COORDINATES:	531458 mE 7462158 mN
REDUCED LEVEL OF COLLAR:	393.57 m AHD
DRILLING CONTRACTOR:	Welldrill
DRILLING RIG:	Fraste FS-500 Rig
DATE CONSTRUCTED:	26/06/10 to 09/07/10
DRILLING DETAILS:	0 to 6 m, 380 mm roller bit 6 to 135 m, 194 mm mud-rotary roller bit, reamed out to 138 m with 311 mm with mud-rotary roller bit
SURFACE CASING:	0.0 m to 6.0 m, 316 mm ID, 324 mm OD, steel
CASING:	+0.84 m to 53.16 m, 203 mm ID, 219 mm OD, blank steel casing, 53.16 m to 77.16 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, 77.16 m to 95.16 m, 203 mm ID, 219 mm OD, blank steel casing, 95.16 m to 113.16 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, 113.16 m to 119.16 m, 203 mm ID, 219 mm OD, blank steel casing, 119.16 m to 131.16 m, 203 mm ID, 219 mm OD, 3 mm aperture, slotted steel casing, 131.16 m to 132.66 m, cement plug
GRAVEL PACK:	6 m to 138 m, +3.2 -6.4 mm diameter, graded quartz
STATIC WATER LEVEL (26 May 10):	20.47 m below datum (ie top of steel casing) 373.93 m above AHD

SALINITY/pH/TEMPERATURE: 1435 uS/cm /pH 7.1 /Temperature 29.9°C

DOKEII			
Depth (m)	Stratigraphy	Lithology	Description
0 to 3	Alluvium (otr)	Gravel (Otr)	Orange brown to blue grey, poorly sorted, rounded to angular, juvenile gravels, river deposit, cherty BIF with minor clay
3 to 8		Geothite-Hematite (Mgh)	Dark grey to orange brown, slightly weathered goethite and hematite, cherty BIF with minor clay and quartz
8 to 26		Geothite-Hematite (Mgh)	Orange brown, mod-weathered, goethite and hematite BIF with clay and shale, occasional quartz, some vugs
26 to 82	Marra Mamba	Geothite-Hematite (Mgh)	Orange brown, mod-weathered, goethite and hematite BIF with clay and some shale, some vugs
82 to 120	I on Pormation	Geothite-Hematite (Mgh)	Dark brown/grey, Goethite and Hematite, broken, chert and shale bands, some quartz, quartz vein at 100 m, common vugs
120 to 136		Shale (Ssh) / Geothite	Dark grey/brown soft shale with some laminations,
EOH		– Hematite (Mgh)	occasional SIF bands

BORE HAWB 005 LITHOLOGY

APPENDIX III

STEP-RATE PUMPING TEST PLOTS

APPENDIX IV

WATER QAULITY LABORATORY CERTIFICATES

Environm					S
		CERTIFICA	TE OF ANALYSIS		
Work Order	: EP1003809		Page	: 1 of 5	
Client	ROCKWATER PTY LTD		Laboratory	: Environmental Divi	ision Perth
Contact Address	: CONSULT : 1ST FLOOR, 76 JERSEY WEMBLEY WA, AUSTRAI	ST LIA 6014	Contact Address	: Scott James : 10 Hod Way Malag	ga WA Australia 6090
E-mail	: consult@rockwater.com.a	п	E-mail	: perth.enviro.service	es@alsglobal.com
Telephone Facsimile	: +61 08 9284 0222 : +61 9284 1785		Telephone Facsimile	: +61-8-9209 7655 : +61-8-9209 7600	0
Project	HARDEY PROJECT 371 (QC Level	NFPM 1999 Sche	dule B(3) and ALS OCS3 requirement
Order number)			
C-O-C number			Date Samples Received	: 01-JUL-2010	
Sampler	: M.P		Issue Date	: 09-JUL-2010	
Site	I			7	
Quote number	: EP-001-09		No. of samples analysed		
This report sup release. This Certificate o e General Analytic	ersedes any previous report(s) win f Analysis contains the following inform Comments al Results	th this reference. Results apply tr ation:	o the sample(s) as submitted.	All pages of this I	report have been checked and ap
NATA	NATA Accredited Laboratory 825 This document is issued in accordance with NATA	Signatories This document has been elec carried out in compliance with proci Signatories	ctronically signed by the auth- edures specified in 21 CFR Part 11 Position	orized signatories in	ndicated below. Electronic signing Accreditation Category
	accreditation requirements.				
	Accredited for compliance with ISO/IEC 17025.	Andrea Vaughan-Taylor Ankit Joshi Canhuang Ke ChasTucker Cicelia Bartels	Non-Metallic Instrumer Inorganic Chemist Metals Instrument Che Non-metallic Instrumer Metals Instrument Che	it Chemist mist ti Chemist mist	Perth Inorganics Inorganics Perth Inorganics Perth Inorganics Perth Inorganics

A Campbell Brothers Limited Company

Environmental Division Perth Part of the ALS Laboratory Group 10 Hod Way Malaga WA Australia 6090 Tal.+61-8-209 7665 Fax.+61-8-9209 7600 www.alsglobal.com

: 3 of 5 : EP1003809	: ROCKWATER PTY LTD	HARDEY PROJECT 371 0	
Page Work Order	Client	Project	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :

This result is computed from individual analyte detections at or above the level of reporting

• EG0035F: Poor matrix spike recovery for Hg due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

•

LCS recovery for Ammonia fall outside ALS dynamic control limits. However, they are within the acceptance criteria based on ALS DQO. No further action is required.

Analytical Results								
Sub-Matrix: GROUNDWATER		Clie	nt sample ID	API-HAWB02	-		-	
	Clie	ent samplin	g date / time	28-JUN-2010 12:10	-		-	
Compound	CAS Number	LOR	Unit	EP1003809-001	ł	ł	I	ł
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.91				
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	1100			1	
EA015: Total Dissolved Solids								
A Total Dissolved Solids @180°C	GIS-210-010	-	mg/L	758	1		ł	
EA065: Total Hardness as CaCO3								
A Total Hardness as CaCO3		1	mg/L	480			-	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	~				
Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	<u>۲</u>			H	
Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	470			ł	
Total Alkalinity as CaCO3		-	mg/L	470			-	
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	-	mg/L	86	1		I	
^ Sulfur as S	63705-05-5	-	mg/L	29			I	
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	-	mg/L	73			1	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	-	mg/L	63				
Magnesium	7439-95-4	-	mg/L	78				
Sodium	7440-23-5	-	mg/L	93				
Potassium	7440-09-7	-	mg/L	~			-	
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	ł		ł	
Arsenic	7440-38-2	0.001	mg/L	0.001				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	<0.001				
Lead	7439-92-1	0.001	mg/L	<0.001				
Manganese	7439-96-5	0.001	mg/L	<0.001	1			
Selenium	7782-49-2	0.01	mg/L	<0.01				
Zinc	7440-66-6	0.005	mg/L	0.006				
Iron	7439-89-6	0.05	mg/L	<0.05	1		I	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001			1	
EG052G: Silica by Discete Analyser								
Reactive Silica		0.10	mg/L	67.3				

VIC

Analytical Results							
Sub-Matrix: GROUNDWATER		Client	t sample ID	API-HAWB02			
	Client	sampling	date / time	28-JUN-2010 12:10	-		
Compound CAS Nur	mber L	OR	Unit	EP1003809-001			
EG055G: Ammonia as N by Discrete Analyser							
Ammonia as N 7664-	-41-7 0	0.01	mg/L	0.03		1	
EK057G: Nitrite as N by Discrete Analyser							
Nitrite as N	0	0.01	mg/L	<0.01		-	
EK058G: Nitrate as N by Discrete Analyser							
^ Nitrate as N 14797-	-55-8 0	0.01	mg/L	4.18	-	1	
EK059G: NOX as N by Discrete Analyser							
Nitrite + Nitrate as N	0	.01	mg/L	4.18		-	
EK061G: Total Kjeldahl Nitrogen By Discrete Analys	ser						
Total Kjeldahl Nitrogen as N)	0.1	mg/L	0.4		-	
EK062: Total Nitrogen as N (TKN + NOx)							
A Total Nitrogen as N		0.1	mg/L	4.6		1	
EK067G: Total Phosphorus as P by Discrete Analys	ser						
Total Phosphorus as P	0	.01	mg/L	0.06		-	
EK071G: Reactive Phosphorus as P by discrete ana	alyser						
Reactive Phosphorus as P	0	.01	mg/L	0.02		-	
EN055: Ionic Balance							
A Total Anions	0	.01	meq/L	13.2			
A Total Cations	0	.01	meq/L	13.6			
^A Ionic Balance	0	.01	%	1.45			

Environme					S
		CERTIFICATE	OF ANALYSIS		
Work Order	: EP1004189		Page	: 1 of 5	
Client Contact Address	: ROCKWATER PTY LTD : DANAE RONEY : 1ST FLOOR, 76 JERSEY WEMBLEY WA. AUSTRAI	ST 1A 6014	Laboratory Contact Address	Environmental Div Scott James 10 Hod Way Mala	vision Perth iga WA Australia 6090
E-mail Telephone Facsimile	: droney@rockwater.com.au : +61 08 9284 0222 :	_	E-mail Telephone Facsimile	: perth.enviro.servi : +61-8-9209 7655 : +61-8-9209 7600	ces@alsglobal.com
Project	: 371-0 HARDEY S RANGE	API	QC Level	: NEPM 1999 Sch	edule B(3) and ALS QCS3 requirement
C-O-C number Sampler	Q		Date Samples Received Issue Date	: 19-JUL-2010 : 23-JUL-2010	
Site Quote number			No. of samples received No. of samples analysed	N N	
This report supe release. This Certificate of <i>i</i> • General C	rsedes any previous report(s) wit Analysis contains the following inform comments Results	h this reference. Results apply to the ation:	sample(s) as submitted.	All pages of this	report have been checked and appr
VATA	NATA Accredited Laboratory 825 This document is issued in accordance with NATA	Signatories This document has been electronics carried out in compliance with procedures Signatories	ally signed by the auth s specified in 21 CFR Part 11 <i>Position</i>	orized signatories	indicated below. Electronic signing ha Accreditation Category
WORLD RECOGNISED ACCREDITATION	accreditation requirements. Accredited for compliance with ISO/IEC 17025.	Canhuang Ke ChasTucker Cicelia Bartels Hillary Kyio	Metals Instrument Che Non-metallic Instrumer Metals Instrument Che Intrument Operator	mist it Chemist mist	Perth Inorganics Perth Inorganics Perth Inorganics Perth Inorganics

A Campbell Brothers Limited Company

Environmental Division Perth Part of the ALS Laboratory Group 10 Hod Way Malaga WA Australia 6090 Tal.+61-8-209 7665 Fax.+61-8-9209 7600 www.alsglobal.com

: 3 of 5	EP1004189	: ROCKWATER PTY LTD	371-0 HARDEY S RANGE API
Page	Work Order	Client	Project

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :

A = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

VIS

Sub-Matrix: WATER		Clie	ent sample ID	HAWB003S	HAWB003F	-		
	Ğ	ient samplii	ng date / time	16-JUL-2010 08:00	18-JUL-2010 06:00		-	
Compound	CAS Number	LOR	Unit	EP1004189-001	EP1004189-002			
EA005P: pH by PC Titrator								
pH Value	-	0.01	pH Unit	7.38	7.44		ł	
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	1330	1320		1	
EA015: Total Dissolved Solids								
A Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	709	668			
EA065: Total Hardness as CaCO3								
A Total Hardness as CaCO3		-	mg/L	410	417		-	
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	₽	Ŷ		1	
Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	2	4		-	
Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	233	264			
Total Alkalinity as CaCO3		٢	mg/L	233	264		-	
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	۲	mg/L	192	155		-	
^ Sulfur as S	63705-05-5	-	mg/L	64	52		-	
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	-	mg/L	141	140		ł	
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	۲	mg/L	62	63			
Magnesium	7439-95-4	÷	mg/L	62	63		1	
Sodium	7440-23-5	-	mg/L	110	113		-	
Potassium	7440-09-7	-	mg/L	7	8			
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01		1	
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001		-	
Cadmium	7440-43-9	0.0001	mg/L	0.0001	<0.0001		-	
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	1	1	
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.004	0.002			
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01		H	
Zinc	7440-66-6	0.005	mg/L	0.026	0.016			
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05		-	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001		-	
EG052G: Silica by Discete Analyser								
Reactive Silica		0.10	mg/L	5.40	19.9			

A Campbell Brothers Limited Company

Analytical Results						
Sub-Matrix: WATER	U	Client sample ID	HAWB003S	HAWB003F		
	Client sam	pling date / time	16-JUL-2010 08:00	18-JUL-2010 06:00		
Compound CAS Numb	er LOR	Unit	EP1004189-001	EP1004189-002		
EG055G: Ammonia as N by Discrete Analyser						
Ammonia as N 7664-41	-7 0.01	mg/L	0.01	0.02		
EK057G: Nitrite as N by Discrete Analyser						
Nitrite as N	0.01	mg/L	<0.01	<0.01		
EK058G: Nitrate as N by Discrete Analyser						
A Nitrate as N 14797-55	.8 0.01	mg/L	0.75	1.01	ł	
EK059G: NOX as N by Discrete Analyser						
Nitrite + Nitrate as N	0.01	mg/L	0.75	1.01		
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse						
Total Kjeldahl Nitrogen as N	0.1	mg/L	0.3	0.2		
EK062: Total Nitrogen as N (TKN + NOx)						
A Total Nitrogen as N	0.1	mg/L	1.0	1.2	-	
EK067G: Total Phosphorus as P by Discrete Analyser						
Total Phosphorus as P	0.01	mg/L	0.07	0.04		 1
EK071G: Reactive Phosphorus as P by discrete analy	ser					
Reactive Phosphorus as P	0.01	mg/L	0.04	0.03		 -
EN055: Ionic Balance						
 Total Anions 	0.01	meq/L	12.6	12.4		
A Total Cations	0.01	meq/L	13.2	13.5		
Ionic Balance	0.01	%	2.04	3.91		

		CERTIFICATE O	F ANALYSIS		
Work Order	: EP1004159		Page	: 1 of 5	
Client Contact Address	: ROCKWATER PTY LTD : DANAE RONEY : 1ST FLOOR, 76 JERSEY WFMBI FY WA AUSTRAI	ST 5114	_aboratory Contact Address	Environmental Division Perth Scott James 10 Hod Way Malaga WA Austral	a 6090
E-mail Telephone Facsimile	droney@rockwater.com.au +61 08 9284 0222		E-mail Telephone Facsimile	: perth.enviro.services@alsglobal. : +61-8-9209 7655 : +61-8-9209 7600	щq
Project Order number	: 371-0 API HARDEYS RAN	IGE	QC Level	: NEPM 1999 Schedule B(3) and	ALS QCS3 requirement
C-O-C number Sampler Site			Date Samples Received issue Date	: 16-JUL-2010 : 22-JUL-2010	
Quote number	. ===- : EP-001-09		No. of samples received No. of samples analysed	2 2	
This report supe release. This Certificate of , General C Analytical	rsedes any previous report(s) with Analysis contains the following informa comments Results	h this reference. Results apply to the sa ation:	mple(s) as submitted.	All pages of this report have	been checked and approved
NATA	NATA Accredited Laboratory 825 This document is issued in accordance with NATA	Signatories This document has been electronically carried out in compliance with procedures spi <i>Signatories</i>	signed by the autho ecified in 21 CFR Part 11. <i>Position</i>	rized signatories indicated belc Accreditatio	v. Electronic signing has b <i>Category</i>
WORLD RECOGNISED ACCREDITATION	accreditation requirements. Accredited for compliance with ISO/IEC 17025.	Canhuang Ke ChasTucker Cicelia Bartels Sarah Millington	Metals Instrument Cher Non-metallic Instrument Metals Instrument Cher Senior Inorganic Chemi	nist Perth Inorg Chemist Perth Inorg nist Perth Inorg st Inorganics	nics nics inics

A Campbell Brothers Limited Company

Environmental Division Perth Part of the ALS Laboratory Group 10 Hod Way Malaga WA Australia 6090 Tal.+61-8-209 7665 Fax.+61-8-9209 7600 www.alsglobal.com

: 3 of 5	EP1004159	: ROCKWATER PTY LTD	371-0 API HARDEYS RANGE	
Page	Work Order	Client	Project	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :

A = This result is computed from individual analyte detections at or above the level of reporting

EK061/67G: LOR for samples raised due to the high amount of NOx present.

VIS

Analytical Results								
Sub-Matrix: WATER		Clie	nt sample ID	HAWB005S A+B+C	HAWB005F A+B+C	-	1	1
	Cli	ent samplir	ng date ∕ time	12-JUL-2010 08:00	14-JUL-2010 06:00		1	
Compound	CAS Number	LOR	Unit	EP1004159-001	EP1004159-002	1	1	1
EA005P: pH by PC Titrator								
pH Value	-	0.01	pH Unit	7.84	7.80	I	I	I
EA010: Conductivity						-		
Electrical Conductivity @ 25°C		1	µS/cm	1460	1450		-	ł
EA015: Total Dissolved Solids								
A Total Dissolved Solids @180°C	GIS-210-010	-	mg/L	781	818	-	I	ł
EA065: Total Hardness as CaCO3								
A Total Hardness as CaCO3		1	mg/L	504	528		1	I
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	٦	mg/L	4	4			
Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	₽	₽			-
Bicarbonate Alkalinity as CaCO3	71-52-3	-	mg/L	467	454			
Total Alkalinity as CaCO3		۲	mg/L	467	454			ł
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	-	mg/L	126	124		-	
^ Sulfur as S	63705-05-5	-	mg/L	42	41			
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	-	mg/L	104	111			-
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	٦	mg/L	58	62			
Magnesium	7439-95-4	-	mg/L	87	9			ł
Sodium	7440-23-5	-	mg/L	157	153			
Potassium	7440-09-7	-	mg/L	4	ŕ			
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.02	<0.01			1
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	0.0007	0.0002			
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.013	0.002			
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01			
Zinc	7440-66-6	0.005	mg/L	0.010	0.007			
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05			-
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001		-	
EG052G: Silica by Discete Analyser								
Reactive Silica	-	0.10	mg/L	64.1	65.8			

ALS

			Discrete Analyzer	ECOFFC: Amonio co N bu
EP10041	Unit	LOR	CAS Number	Compound
12-JUL-20	ng date / time	ent samplir	Cli	
HAWB005	ent sample ID	Clie		Sub-Matrix: WATER
				Analytical Results

Sub-Matrix: WATER		Clien	t sample ID	HAWB005S A+B+C	HAWB005F A+B+C	-	-	
	Clien	t sampling	1 date / time	12-JUL-2010 08:00	14-JUL-2010 06:00			
Compound CAS	Number	LOR	Unit	EP1004159-001	EP1004159-002			
EG055G: Ammonia as N by Discrete Analyser								
Ammonia as N 76	64-41-7	0.01	mg/L	0.02	0.02			
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N	-	0.01	mg/L	0.18	0.02			
EK058G: Nitrate as N by Discrete Analyser								
^ Nitrate as N	97-55-8	0.01	mg/L	6.19	7.04			
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N	1	0.01	mg/L	6.36	7.06		-	
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	lyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.5	0.6			
EK062: Total Nitrogen as N (TKN + NOx)								
A Total Nitrogen as N		0.1	mg/L	6.4	7.7		1	
EK067G: Total Phosphorus as P by Discrete Ana	lyser							
Total Phosphorus as P		0.01	mg/L	<0.05	<0.05		-	
EK071G: Reactive Phosphorus as P by discrete a	inalyser							
Reactive Phosphorus as P		0.01	mg/L	<0.01	<0.01		1	
EN055: Ionic Balance								
A Total Anions	-	0.01	meq/L	14.9	14.8		-	
A Total Cations		0.01	meq/L	16.9	17.2		-	
A lonic Balance		0.01	%	6.33	7.59			

TO:

Scott James ALS Environmental 10 Hod Way Malaga, WA 6090

SILLIKER AUSTRALIA PERTH LABORATORY

181 Claisebrook Road Perth, WA 6000 08-9227-6499 Fax 08-9227-6455

CERTIFICATE OF ANALYSIS

COA No:	PER-50227429-0
Supersedes:	None
COA Date:	02/08/2010
Page 1 of 1	

Received From:	Malaga, WA			
Received Date:	30/07/2010			
P.O.#:	290330			
Location of Test: (except where noted)				
Perth, WA				

Analytical Results							
Desc. 1:	Work Order: EP1004475			Sample Number:	450941483		
Desc. 2:	Sample No: 1			Condition Rec'd:	NORMAL		
Desc. 3:	Sample ID: HAWB003	Temp Rec'd (°C):		6.0			
Desc. 4:	Sample Date: 29/07/10			Date Started:	30/07/2010		
Analyte	Result	<u>Units</u>	Method Referenc	e Result Date	Loc.		
Coliforms	<10	CFU/100mL	M12.1	31/07/2010			
E.coli	<10	CFU/100mL	M12.2	31/07/2010			
Desc. 1:	Work Order: EP1004475			Sample Number:	450941485		
Desc. 2:	Sample No: 2			Condition Rec'd:	NORMAL		
Desc. 3:	Sample ID: HAWB004			Temp Rec'd (°C):	6.0		
Desc. 4:	Sample Date: 29/07/10			Date Started:	30/07/2010		
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Method Referenc	e Result Date	Loc.		
Coliforms	<10	CFU/100mL	M12.1	01/08/2010			
E.coli	<10	CFU/100mL	M12.2	31/07/2010			
Desc. 1:	Work Order: EP1004475			Sample Number:	450941487		
Desc. 2:	Sample No: 3			Condition Rec'd:	NORMAL		
Desc. 3:	Sample ID: HAWB005			Temp Rec'd (°C):	6.0		
Desc. 4:	Sample Date: 29/07/10			Date Started:	30/07/2010		
Analyte	<u>Result</u>	<u>Units</u>	Method Referenc	e Result Date	Loc.		
Coliforms	<10	CFU/100mL	M12.1	31/07/2010			
The presence of high numbers of non-coliform bacteria may have caused an underestimation in the count of coliform bacteria							
E.coli	<10	CFU/100mL	M12.2	31/07/2010			
The presence of high numbers of non-coliform bacteria may have caused an underestimation in the count of E.coli							

Viarosta

MARJANA SILJANOSKA LABORATORY MANAGER, MICROBIOLOGY

NATA Corporate Accreditation Number: 2020 Site Microbiology No: 10653. Site Chemistry No: 5081 This laboratory is accredited by the National Association of Testing Authorities,

Australia. This document is issued in accordance with NATA's requirements for compliance with ISO / IEC 17025. The test(s) reported herein have been performed in accordance with its scope of accreditation. This document shall not be reproduced except in full.

The data pertains solely to the analytical and sampling procedure(s) used and the condition and homogeneity of the sample(s) as received. The data therefore may not be representative of the lot or batch or other samples. Consequently the data may not be represented in the commodenent of a lot or batch, a product recall or support legal proceedings. It is the responsibility of the client to provide all information relevant to the analysis requested. The report does not imply that Silliker Australia has been engaged to consult upon the consequences of the analysis and for any action that should be taken as a result of the analysis. This report shall not be reproduced except in full, without the written approval of the laboratory.
					1
		CERTIFIC	CATE OF ANALYSIS		
Work Order	: EP1004026		Page	: 1 of 5	
Client	ROCKWATER PTY LTD		Laboratory	: Environmental Divi	vision Perth
Contact	: DANAE RONEY		Contact	: Scott James	
Address	: 1ST FLOOR, 76 JERSEY WEMBLEY WA, AUSTRA	' ST LIA 6014	Address	: 10 Hod Way Mala	iga WA Australia 6090
E-mail	: droney@rockwater.com.a	n	E-mail	: perth.enviro.servic	ces@alsglobal.com
Telephone	+61 08 9284 0222		Telephone	: +61-8-9209 7655	1
Facsimile			Facsimile	: +61-8-9209 7600	
Project	: 371-0		QC Level	: NEPM 1999 Sche	edule B(3) and ALS QCS3 requirement
Order number	:				•
C-O-C number			Date Samples Received	: 12-JUL-2010	
Sampler			Issue Date	: 19-JUL-2010	
Site	: HARDEYS RANGE				
			No. of samples received		
Quote number	: EP-001-09		No. of samples analysed	2	
This report supe release. This Certificate of • General C	ersedes any previous report(s) wi Analysis contains the following inform Comments	ith this reference. Results apply lation:	r to the sample(s) as submitted.	All pages of this	report have been checked and ap
	NATA Accredited Laboratory 825	Signatories This document has been	slectronically signed by the authc	rized signatories ir	ndicated below. Electronic signing
NATA	This document is issued in	carried out in compliance with β	rocedures specified in 21 CFR Part 11		
	accordance with NATA	Signatories	Position		Accreditation Category
	accreditation requirements.	Canhuang Ke	Metals Instrument Chei	mist	Perth Inorganics
	Accredited for compliance with	ChasTucker	Non-metallic Instrumen	It Chemist	Perth Inorganics
WORLD RECOGNISED	ISO/IEC 17025.	Cicelia Bartels	Metals Instrument Chei	mist	Perth Inorganics
		Daniel Fisher	Inorganics Analyst		Perth Inorganics
		Sarah Millington	Senior Inorganic Chem	ist	Inorganics
			5	5	

A Campbell Brothers Limited Company

Environmental Division Perth Part of the ALS Laboratory Group 10 Hod Way Malaga WA Australia 6090 Tal.+61-8-209 7665 Fax.+61-8-9209 7600 www.alsglobal.com

: 3 of 5	Order : EP1004026	ROCKWATER PTY LTD	ct : 371-0	
Page	Work Orde	Client	Project	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insuffient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for processing purposes. If the sampling time is displayed as 0:00 the information was not provided by client.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting Key :

A = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

•			l					
Sub-Matrix: WATER		Clie	nt sample ID	HAWB004SA	HAWB004FA		-	1
	Clie	nt samplir	ig date / time	08-JUL-2010 15:00	10-JUL-2010 07:00			
Compound	CAS Number	LOR	Unit	EP1004026-001	EP1004026-002	ł	1	ł
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.01	7.92			-
EA010: Conductivity								
Electrical Conductivity @ 25°C		٦	µS/cm	1080	1090			
EA015: Total Dissolved Solids								
A Total Dissolved Solids @180°C	GIS-210-010	٢	mg/L	651	645			
EA065: Total Hardness as CaCO3								
A Total Hardness as CaCO3		-	mg/L	357	370			-
ED037P: Alkalinity by PC Titrator								
Hydroxide Alkalinity as CaCO3	DMO-210-001	-	mg/L	۲	₹		ł	ł
Carbonate Alkalinity as CaCO3	3812-32-6	-	mg/L	×1	₽			-
Bicarbonate Alkalinity as CaCO3	71-52-3	~	mg/L	212	210		I	I
Total Alkalinity as CaCO3		۲	mg/L	212	210		-	
ED040F: Dissolved Major Anions								
Sulfate as SO4 2-	14808-79-8	-	mg/L	152	159		I	I
^ Sulfur as S	63705-05-5	-	mg/L	51	53			
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	-	mg/L	157	160			
ED093F: Dissolved Major Cations								
Calcium	7440-70-2	-	mg/L	48	50			
Magnesium	7439-95-4	-	mg/L	58	60			
Sodium	7440-23-5	-	mg/L	122	126	-		
Potassium	7440-09-7	-	mg/L	6	6			
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01		-	ł
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001			
Cadmium	7440-43-9	0.0001	mg/L	0.006	0.0003			
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001			
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001			
Manganese	7439-96-5	0.001	mg/L	0.081	0.020			
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01		-	I
Zinc	7440-66-6	0.005	mg/L	0.038	0.052			I
Iron	7439-89-6	0.05	mg/L	<0.05	<0.05		H	ł
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001			-
EG052G: Silica by Discete Analyser								
Reactive Silica		0.10	mg/L	18.2	15.0			-

Analytical Results

ū

Sub-Matrix: WATER		Client sample ID	HAWB004SA	HAWB004FA	-			
	Client sa	mpling date / time	08-JUL-2010 15:00	10-JUL-2010 07:00				
Compound CAS Num	nber LOI	R Unit	EP1004026-001	EP1004026-002	ł	ł	ł	
EG055G: Ammonia as N by Discrete Analyser								
Ammonia as N 7664-4	11-7 0.0	1 mg/L	0.03	0.03				
EK057G: Nitrite as N by Discrete Analyser								
Nitrite as N	0.0	1 mg/L	0.01	0.02			ł	
EK058G: Nitrate as N by Discrete Analyser								
A Nitrate as N 14797-5	55-8 0.0	1 mg/L	1.23	1.26	H			
EK059G: NOX as N by Discrete Analyser								
Nitrite + Nitrate as N	0:0	1 mg/L	1.25	1.28				
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	er							
Total Kjeldahl Nitrogen as N	0.1	mg/L	0.4	0.1				
EK062: Total Nitrogen as N (TKN + NOx)								
A Total Nitrogen as N	0.1	mg/L	1.6	1.4			-	
EK067G: Total Phosphorus as P by Discrete Analyse	er							
Total Phosphorus as P	0.0	1 mg/L	0.04	0.08			1	
EK071G: Reactive Phosphorus as P by discrete analy	lyser							
Reactive Phosphorus as P	0.0	1 mg/L	0.01	0.01				
EN055: Ionic Balance								
A Total Anions		1 meq/L	11.8	12.0				
A Total Cations		1 meq/L	12.7	13.1				
Ionic Balance	0.0	1 %	3.43	4.38				

APPENDIX V

GLOSSARY OF HYDROGEOLOGICAL TERMS

Term	Meaning
AHD	Australian Height Datum
Airlifting	The process of abstracting water from a bore using a submerged high pressure air-line
Alluvium	Stream deposits consisting of sand, silt, clay and gravel
Analytical Groundwater Model	A mathematical representation of an aquifer system which can be solved using analytical methods. Analytical models are highly dependent upon simplifying assumptions
Aquifer	A geological formation or group of formations able to receive, store and transmit significant quantities of water
Aquifer Boundary Effects	Changes in the rate of drawdown created as the pumping cone of depression reaches the lateral extents of an aquifer and intersects strata with different permeability
Aquitard	A saturated unit of low hydraulic conductivity that can store and slowly transmit groundwater either upward or downward depending on the vertical hydraulic gradient
Barrier Boundary	Boundaries that inhibit groundwater flow. Examples are faults, bedrock, dykes, or thinning of an aquifer unit
Bedrock	Solid rock exposed at the surface or overlain by palaeodrainage deposits or alluvium
bgl	Below ground level
Bore	Drilled small diameter well usually lined with steel or plastic casing for the purpose of obtaining or monitoring groundwater
Bore Losses	Amount of drawdown produced in a pumping bore due to inefficiencies in transmitting water from an aquifer to a bore
Boundary conditions	The physical conditions at the boundaries of a groundwater system. Examples in a groundwater model are no-flow boundaries at the lateral aquifer terminus, fixed flux boundaries representing a fixed inflow or outflow of water across that boundary cell, and fixed head boundaries representing potentiometric head that is held constant by some external force such as a river or lake
Brackish Water	Water containing between 1,000 and 5,000 mg/L of total dissolved solids, tasting slightly salty
Calcrete	A form of limestone deposited in lakes and along river systems interbedded with and replacing alluvium
Cone of Depression	The shape of the water table in the area immediately surrounding a pumping bore. The water draws down in a radial cone-shape around the pumping bore, with the deepest drawdown immediately at the well, tapering off with distance from the pumping bore
Confined Aquifer	An aquifer which is overlain by a confining bed of significantly lower hydraulic conductivity which retards the vertical movement of water
Drawdown	The change in potentiometric head caused by the pumping of groundwater
Dyke	A tabular intrusive igneous rock that is discordant or cut across existing rocks
Electrical Conductivity (EC)	The measure of a solution's ability to conduct electricity. EC units are used to express salinity levels in water. When salt is dissolved in water the conductivity increases, so the more salt, the higher the EC value
Falling-head Test	An aquifer permeability test in which a slug, typically a volume of water, is instantaneously placed below the static water level in a bore, displacing the water upward. Measurements of the falling water levels back to the static level are recorded over time. In a falling-head test groundwater is entering the formation from the bore
Ferricrete	A residual ferruginous deposit, commonly sandy or silty, cemented with iron oxides

Term	Meaning
Fresh Water	Water containing less than 1 000 mg/L of total dissolved solids, and generally
	suitable for drinking
Groundwater	Water occurring below the land surface in pores or fissures, generally in
	motion and part of the hydrological cycle
Groundwater Model	The discretized model domain. The model grid is the physical model area
Grid	normally overlain by a rectangular grid which defines the model houndaries
Gilu	and model cells
Groundwater Well	A licence issued by the Department of water giving permission to undertake
Licence	fixed period with stated quantity of water and usually with attached
	conditions
TT 4	
Heterogeneous	A porous medium which has different physical characteristics in different
	locations
Homogeneous	A porous medium which has uniform physical characteristics everywhere
Tomogeneous	Ti porous modium vinen nus uniform physical enalacteristics every where
Hydraulic Conductivity	The capacity of a porous medium to transmit water through a unit cross-
	sectional area. Hydraulic conductivity is dependent upon the physical
	properties of the porous medium and the viscosity of the water and is
	expressed in units of length/time, typically m/d
Hydrograph	A graph showing changes in flow or stage of a stream, river or lake over time
Hypersaline	Water of salinity substantially greater than sea water (35,000 mg/L Total
	Dissolved Solids)
L/sec	Litres per second
Laterite	A residual ferruginous deposit within clay alluvium
Leakage	Vertical flow of groundwater from one aquifer to another, generally through a
	less permeable layer
m/d	Metres per day
<u>m²/d</u>	Square metres per day
m ⁻	Cubic metre of water; equal to 1,000 litres
m /d	Cubic metres per day
mg/L mg/L TDS	Milligrams per litre of total dissolved solids
m_{J}^{2}/m_{J}^{2}	Cubic metres per veer
mm/yr	Millimetres per year
iiiiii/yi	winniedes per year
Model Calibration	The process of adjusting estimates of aquifer characteristics used in numerical
	ground water models. The calibration usually attempts to minimize
	differences between simulated and measured characteristics such as aquifer
MODFLOW	A numerical ground water flow model code developed by the U.S. Geological
	Survey. The code has been widely applied to aquifers throughout the world
Numerical Modelling	A discretized representation of aquifers and their contained groundwater
	which is solved iteratively using a computer
Observation Bore	A bore located some distance from a numping bore which is used to measure
Observation Dore	changes in water levels during an applied aquifer stress
рп	interasure of the acidity of basicity of an aqueous solution; pure water is said to be neutral, with a pH close to 7.0 at a temperature of 25 $^{\circ}$ C. Solutions with a
	nH less than 7 are said to be acidic and solutions with a pH greater than 7 are
	basic or alkaline
Perched Water	A localized zone of water which sits on top of an aquitard. A perched zone is
	system Uncontined and at a higher elevation than the regional aquifer
	system. Onsaturated conditions exist below a perched unit

Term	Meaning
Permeability	The ability of a porous medium to transmit water under a given gradient
Piper Diagram	A graphical representation of the chemistry of a water sample or samples.
	The cations and anions are shown by separate ternary plots. The apexes of the cation plot are calcium, magnesium and sodium plus potassium cations. The apexes of the anion plot are sulphate, chloride and carbonate plus hydrogen carbonate anions. The two ternary plots are then projected onto a diamond. The diamond is a matrix transformation of a graph of the anions (sulfate + chloride/ total anions) and cations (sodium + potassium/total cations).
Porosity	A measure of the void or pore space within rocks and sediments (the ratio of the volume of void spaces to the total volume)
Potentiometric Surface	The two-dimensional surface which describes the elevation of the water table. In an unconfined aquifer, the potentiometric surface is at the top of the water level. In a confined aquifer, the potentiometric surface is above the top of the water level because the water is under confining pressure
Production Bore	A bore used for removal of water from an aquifer
Recharge	Mechanisms of inflow to the aquifer. Typical sources of recharge are precipitation, applied irrigation water, underflow from tributary basins and seepage from surface water bodies
Rising-head Test	An aquifer permeability test in which a slug, typically a volume of water, is instantaneously extracted from the bore, displacing the static water level downward. Measurements of the rising water levels back to the static level are recorded over time. In a rising-head test groundwater is entering the bore from the formation.
Runoff	Overland flow in channels or as sheet flow originating from rainfall
Saline Water	Water containing more than 5,000 mg/L of dissolved salts
Saturated Thickness (b)	The saturated depth of an aquifer. For a confined aquifer, the saturated thickness at any point in the aquifer is equal to the aquifer thickness. For an unconfined aquifer, the saturated thickness at any point is the distance from the top of the water table to the bottom of the aquifer
Specific Storage (Ss)	The volume of water that will yield due to compression of the mineral skeleton and decompression of water in a confined aquifer
Specific Yield (Sy)	The ratio of the volume of water which will drain from a porous medium by gravity to the volume of the porous medium
Steady State Model	A numerical groundwater model in which model stresses do not vary over time. A steady state model is run until the modelled area is in equilibrium and no more changes in potentiometric head are calculated
Stress Period	An increment of time in a transient simulation during which aquifer recharges and discharges are held constant
Storativity (S)	The volume of water an aquifer releases from an aquifer per unit surface area of the aquifer and per unit change in head
Total Dissolved Solids (TDS)	The total amount of mobile charged ions, including minerals, salts or metals dissolved in a given volume of water, typically expressed in units of milligrams per litre of water (mg/L)
Transient Model	A numerical model in which the model stresses (inflows and outflows) and aquifer heads vary over time

Term	Meaning
Transmissivity (T)	The rate of flow of water through a vertical strip of aquifer which is one unit wide and which extends the full saturated depth of the aquifer. Transmissivity is related to Hydraulic Conductivity by the relationship:
	T = Kb
	where T = Transmissivity,
	K = Hydraulic Conductivity and
	b = the saturated thickness of the aquifer.
	Transmissivity is expressed in units of length ² /time, typically m^2/d .
Unconfined Aquifer	An aquifer whose upper surface is at atmospheric pressure
Water Table	The elevation of the water in an unconfined aquifer