	* SWL Levls in Monitoring Data Sheets are taken to Top of Casing				Date of Survey: Survey Method: Coordinates: Height: Surveyor:	14.03.2012 RTK GNSS/VRS MGA 94 Zone 50 AHD MA	Aur		Date of drilling: 24.01.12 - 27.01.12 Drilling Co: Cape Drilling Drilling Method: Rotary Mud Bore diameter: 50mm Logged By: DB		
** SWL Levis	in Monitoring	Data Sheets are ta	aken to Top of Casing				Drilling Notes		-	-	
HOLE ID	EASTING	NORTHING	OWNER	NOTES	RL Casing	RL Ground	Upstream/Downstream	Screened Depth (BGS)	Top of Screen Depth (RL)	Geological unit (PB 2013)	Aquifer
MB1s	354907.676	6261727.394	Monitoring Bore		118.02	117.44	Up	13.5-19.5	103.94	Mowen aquitard	Leederville
MB1d	354908.731	6261730.660	Monitoring Bore		117.84	117.31	Up	53.5-59.5	63.81	Mowen aquitard	Leederville
MB2	354548.716	6262504.803	Monitoring Bore		74.44	73.92	Up	13.5-19.5	60.42	Mowen aquitard	Leederville
MB3	353409.438	6262871.330	Monitoring Bore		47.88	47.36	Down	13.5-19.5	33.86	Mowen aquitard	Leederville
MB4	354475.979	6263105.529	Monitoring Bore		54.49	53.95	Up	13.5-19.5	40.45	Mowen aquitard	Leederville
MB5	353379.787	6263262.447	Monitoring Bore		40.67	40.09	Down	13.5-19.5	26.59	Mowen aquitard	Leederville
MB6s	354298.028	6263373.182	Monitoring Bore		45.79	45.23	Down	13.5-19.5	31.73	Superficial and Mowen aquitard	Superficial and Leederville
MB6d	354297.972	6263375.772	Monitoring Bore		45.69	45.19	Down	53.5-59.5	-8.31	Mowen aquitard	Leederville
MB7	355397.202	6263978.843	Monitoring Bore		53.61	53.03	Down	13.5-19.5	39.53	Superficial and Mowen aquitard	Superficial and Leederville

	<u>YMB1S</u> AVERAGE	BANGE/MAX	<u>YMB1D</u> AVERAGE	RANGE/MAX	<u>YMB2</u> AVERAGE	BANGE/MAX	<u>YMB3</u> AVERAGE	RANGE/MAX	<u>YMB4</u> AVERAGE	RANGE/MAX	<u>YMB5</u> AVERAGE	RANGE/MAX	<u>YMB6S</u> AVERAGE	BANGE/MAX	<u>YMB6D</u> AVERAGE	RANGE/MAX	<u>YMB7</u> AVERAGE	RANGE/MAX
			ATLIAGE						ATLIAGE				ATLIAGE		ATLIAGE			
SWL (m)	14.01666667	12.31-17.19	43.63	43.59-43.67	13.72		9.276	8.09-10.18	10.54	8.67-11.92	2.642	1.97-3.06	3.82	2.35-4.79	17.91	17.61-18.21	4.8025	2.68-5.92
рН	4.366666667	4.17-4.59	6.235	6.17-6.3	4.86	4.86	5.504	5.24-5.63	5.112	4.45-5.86	6.032	5.39-6.31	4.89	4.36-5.52	6.7	6.55-6.85	5.731666667	5.41-6.05
Temp ©	19.15	19.1-19.2	9.35	18.7	21	. 21	16.84	20.8-22.3	17.1	20.8-22.6	12.2	19.2-21.7	13.51666667	19.9-21.2	10	20	13.08333333	19.5-20.3
Cond (EC)	583.3333333	530-630	565	550-580	410	410	266	230-300	254	240-270	296	250-350	427.6333333	310-660	510	490-530	290	250-330
Salinity	293.3333333	260-320					130	110-140	128	120-140	146	120-170	265	200-310	255	240-270	141.6666667	120-160
AI (filtered)	1.113333333	2.9	0.163333333	0.49	0.025	0.05	0.03718	0.12	0.051	0.15	0.04692	0.17	0.168833333	0.59	0.362666667	0.018-0.59	0.083833333	0.13
Al(Total)	7.51	. 22	1.133333333	3.4	0.55	1.1	0.0756	0.21	0.1166	0.41	0.06156	0.23	0.201333333	0.62	1.06	0.36-2.2	0.274333333	1.1
As	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	< 0.001	-	<0.001	-	<0.001	-	<0.001	-
B	0	-	0	-	0	-	0		0		0		0		0		0	
Cd	0.00026	0.00026	0.00005	0.00015	< 0.0001	-	0	0.00010	0	0.00005	0		0	0.00043	0	0.0050	<0.0001	-
	0	-	0	-	<0.001	-	0.000038	0.00019	0.00013	0.00065	0.000048	-	0.000086	0.00043	0.001966667	0.0059	0	
	0.002	0.002	<0.001	-	0	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-
<u>Co</u>		-	0	-	0	-	0		0		0		0		0		0	
Cu Eo (Filtorod)	0 672666667	10	0	- 25	2 610	-	0 1202	0.24	0 1778	0.46	0 1126	0.26	0 249222222	1 5	7 922222222	11	0	12
Fe (Total)	4.467666667	1.9	0 222222222	23	2.019	J.Z 7 5	0.1302	0.24	0.1778	0.40	0.1120	0.20	0.348333333	1.5	0 533333333	14	2.078333333	12
Ph	4.407000007	13	0.333333333	52			0.1004 0	0.37	0.275	0.5	0.1275	0.55	0.403	1.0	0.00000000	14	0.00	50
Ma	0.025666667	0.051	0 136666667	0.41	0 167	0 33	0.034	0.066	0.013	0.053	0 0067	0.014	0 029166667	0.04	0 233333333	0.36	0 1009	0.55
Mn	0	-	0	-	0.107	-	0.00	0.000	0.019	0.000	0.0007	0.011	0	0.01	0	0.00	0	0.00
Mercury	0	-	0	-	0	-	0		0		0		0		0		0	
Molybdenum	0		0	-	0	-	0		0		0		0		0		0	
Ni	0.005666667	0.012	0.000966667	0.0029	0.3735	0.74	0.00114	0.0017	0.00044	0.0011	0.00094	0.002	0.00355	0.0049	0.008966667	0.0096	0.00205	0.0073
Se	<0.001	<0.001	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-	<0.001	-
U	0	- 1	0	-	0	-	0		0		0		0	•	0		0	
Zn	0.018866667	0.047	0.005333333	0.025	0.003	0.006	0.00938	0.0095	0.0122	0.031	0.0169	0.032	0.015333333	0.031	0.07		0.028	0.073
Flas F	0	-	0	-	0	-	0		0		0		0		0		0	
CaCO3	220	290	25.66666667	180	61	. 71	62.4	100	74.4	100	29.8	53	102	150	58.66666667	70	89.16666667	190
	3.5	4	17.666666667	/6	29.5	55	12.2	18	9.2	1/	15.4	19	8.8333333333	31	47.666666667	57	27.83333333	/1
NH3-N		0.018	0.018333333	0.055	<0.01	- 100	0.0052	0.026	0.007	0.035	0.010> ۱۵ ۹۵	-	0.012666667	0.04	0.396666667	0.95		0.019
FC	131.0000007	580	173 3333333	580	425	480	264	290	274	290	42.0	320	124.3333333 480	540	443 3333333	530	323 3333333	590
02	4.63	5.1	2,2566666667	6.77	5.5	5.6	4,116	5.5	4.238	5.65	5.782	9.5	5.525	8.6	4.64	5.1	5.165	7.8
P	< 0.005	-	< 0.005	-	0.145	0.29	< 0.005	-	< 0.005	-	< 0.005	-	< 0.005	-	< 0.005	-	0.000833333	0.005
pH Lab	4.6333333333	4.8	2.1	6.3	5.7	6.3	5.68	5.8	5.4	5.8	6.06	6.2	5.15	6	6.333333333	6.5	5.866666667	6
Sulphate	12.66666667	<mark>/</mark> 14	3	14	7.5	9	11.2	14	8.2	13	12.2	13	12	. 14	8	11	10.33333333	18
TDS	290	320	100	320	215	250	138	140	134	150	160	180	248.3333333	300	220	270	178.3333333	360
N	4.483333333	12	0.633333333	1.9	2.665	5	2.9	5.1	4.46	12	9.46	9.7	2.033333333	3.6	2.466666667	3.6	0.74	1.4
Phos	0.096666667	0.29	0.019666667	0.063	0.445	0.77	<0.005	0.03	0.007	0.035	0.0024	0.012	0.006166667	0.022	0.205	0.3	0.021333333	0.1
Exceed long-tern	irrigation crite	eria (ANZECC &	ARMCANZ 20	00)														
Exceed 95% trian	er for freshwate	ANZECC & AF	RMCANZ 2000	,														
Metals and nutrie	nts in mg/L																	
Salinity in mg/L	0, -																	
Conductivity in uS	/cm																	

i					Average	Range/Maximum
YMB1		May-12	Aug-12	Nov-12		
Date		29/05/2012	13/08/2012	29/10/2012		
Depth of bore		60.70	60.70	60.70		
SWL (m)			43.59	43.67	43.63	43.59-43.67
m AHD					0	
Purge				204	102	
рН			6.17	6.3	6.235	6.17-6.3
Temp				18.7	9.35	18.7
Cond (EC)			550	580	565	550-580
Salinity						
ΤΤΑ			280	290	285	280-290
Comments					0	
AI (filtered)		0.04	0.49	0.15	0.163333	0.49
Al(Total)		0.11	3.4	0.38	1.133333	3.4
As		<0.001	<0.001	<0.001	<0.001	-
В					0	-
Cd		<0.0001	0.00015	<0.0001	0.00005	0.00015
Са					0	-
Cr		<<0.001	<0.001	<0.0012	<0.001	-
Со					0	-
Cu					0	-
Fe (Filtered)		0.049	25	19	8.333333	25
Fe (Total)		0.32	28	32	9.333333	32
Pb					0	-
Mg		0.051	0.41	0.33	0.136667	0.41
Mn					0	-
Mercury					0	-
Molybdenum					0	-
Ni		0.002	0.0029	0.0022	0.000967	0.0029
Se		<0.001	<0.001	<0.001	<0.001	-
U					0	-
Zn		0.0036	0.016	0.025	0.005333	0.025
FI as F					0	-
CaCO3		180	77	150	25.66667	180
CaCO3		4	53	76	17.66667	76
NH3-N		< 0.010	<0.085	0.055	0.018333	0.055
		140	113	130	37.66667	140
EC		560	520	580	1/3.3333	580
02 D		5.1	6.77	4.8	2.256667	6.//
Г рЦ L ab		<0.005	<0.005	<0.005 6 0	<0.005 n ₁	-
Pri Laŭ Sulphato		4.8	0.5	0.2	2.1	0.3
		14 270	300	220	100	14 220
N		12	1 0	52U 0.42	U 633333 TOO	۶۷U ۱۵
Phos		1.5 20.005	1.5	0.45	0.033333	1.3
1 1105		~U.UUJ	0.055	0.005	0.019007	0.005

Background Quality

Not in data provided by Doral

					Background Quality				
					Average		Range/Ma	ximum	
YMB2		May-12	Nov-13	Dec-13					
Date		29/05/2012	5/11/2013	3/12/2013					
Depth of bore			18.05	18.05					
SWL (m)			10.94	16.5		13.72			
m AHD						0			
Purge			20L						
рН			4.86			4.86	4.86		
Temp			21			21	21		
Cond (EC)			410			410	410		
Salinity									
TTA			200			200	200		
Comments				Dry					
Al (filtered)		<0.005	0.05			0.025	0.05		
Al(Total)		0.12	1.1			0.55	1.1		
As		<0.001	< 0.001		<0.001		-		
В						0	-		
Cd		<0.0001	<0.0001		< 0.0001		-		
Са		<0.001	<0.001		<0.001		-		
Cr						0	-		
Со						0	-		
Cu						0	-		
Fe (Filtered)		5.2	0.038			2.619	5.2		
Fe (Total)		7.5	0.9			4.2	7.5		
Pb						0	-		
Mg		0.33	0.004			0.167	0.33		
Mn						0	-		
Mercury						0	-		
Molybdenum						0	-		
NI		0.007	0.74			0.3735	0.74		
Se		<0.001	<0.001		< 0.001		-		
<u> </u>		0.004				0	-		
Zn Flac F		<0.001	0.006			0.003	0.006		
		71	E 1			0 61	- 71		
		55	51			20 5	71		
NH3-N		<0.010	<0.010		<0.01	29.5	- 55		
		100	100		10.01	100	100		
EC		480	370			425	480		
02		5.6	5.4			5.5	5.6		
Р		<0.005	0.29			0.145	0.29		
pH Lab		6.3	5.1			5.7	6.3		
Sulphate		9	6			7.5	9		
TDS		250	180			215	250		
Ν		0.33	5			2.665	5		
Phos		0.12	0.77			0.445	0.77		
	-								

Not in data provided by Doral

Date 29/05/2012 13/08/2012 29/10/2012 10/12/2012 24/10/2013 3/12/2013 Depth of bore 20.78 20.74 20.78	
Depth of bore 20.78	
SWL (m) 10.18 9.77 9.96 8.09 8.38 9.276 8.09-10. m AHD 40 132 129 152 149 120.4 Purge 40 132 129 152 149 120.4 pH 5.55 5.76 5.63 5.34 5.24 5.504 5.24 Cond (EC) 230 290 240 270 300 16.84 20.8-22. 266 230-300 Salinity 110 140 120 130 150 130 130 130 130 130 130 130 130 130 130 130 130 130 110 140 120 130 10.75 10.75 <	
m AHD 0 0 Purge 40 132 129 152 149 pH 5.55 5.76 5.63 5.34 5.24 Temp 21.3 22.3 20.8 19.8 16.84 20.8-22 Cond (EC) 230 290 240 270 300 16.84 20.8-22 Salinity 110 140 120 130 150 130 110-140 TTA 0.0379 0.006 0.03718 03 Al (filtered) 0.21 0.12 0.013 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td>.18</td>	.18
Purge 40 132 129 152 149 120.4 pH 5.55 5.76 5.63 5.34 5.24 5.504 5.504 5.504 5.24 5.504 5.504 5.24 5.504 5.24 5.504 5.24 5.504 5.24 5.504 5.24 5.504 5.24 5.504 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.604 5.24 5.60 5.63 5.34 19.8 16.84 20.8-22 266 230-300 130 110 140 120 130 130 130 130 110 140 120 130 130 130 130 130 130 130 130 130 110 140 140 140 140 140 140 140 140 140 140 140 140 140	
pH 5.55 5.76 5.63 5.34 5.24 5.504 5.24-5.6 Temp 21.3 22.3 20.8 19.8 19.8 16.84 20.8-22 266 230-300 130 110-140 Cond (EC) 230 290 240 270 300 130 110-140 130 110-140 Salinity 110 140 120 130 150 0.03718 0.3 Al (filtered) 0.039 0.12 0.013 0.0079 0.006 0.03718 0.3 As <0.001	
Temp 21.3 22.3 20.8 19.8 16.84 20.8-22. Cond (EC) 230 290 240 270 300 300 16.84 20.8-22. 266 230-300 130 110-140 Salinity 110 140 120 130 150 130 110-140 130 110-140 TTA Comments Comments Cond (Filtered) 0.039 0.12 0.013 0.0079 0.006 0.03718 0.3 Al (filtered) 0.21 0.12 0.016 0.024 0.008 Condes 0.0756 0.3 As <0.001	53
Cond (EC) 230 290 240 270 300 266 230-300 Salinity 110 140 120 130 150 130 110-140 TTA Comments Comments Comments Common Company Cond (EC) Comments Comments Comments Comments Comments Comments Comments Common Company Cond (Company Comments	.3
Salinity 110 140 120 130 150 130 110-140 TTA Comments Image: Comments	С
TTA Image: Comments	C
Comments Image: Comments </th <td></td>	
Al (filtered) 0.039 0.12 0.013 0.0079 0.006 0.03718 0.03718 0.03718 0.013 Al(Total) 0.21 0.12 0.016 0.024 0.008 0.0756 0.024 0.001 0.001 0.0756 0.011 0.011 0.001 <td></td>	
Al(Total) 0.21 0.12 0.016 0.024 0.008 0.0756 0.7 As <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <td< th=""><td>.12</td></td<>	.12
As <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 -	.21
Cd 0	
Ca <0.0001)19
Cr <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 -	
Co 0	
Cu 0	
Fe (Filtered) 0.24 0.21 0.18 0.011 0.010 0.1302 0.7	.24
Fe (Total) 0.37 0.28 0.22 0.021 0.051 0.1884 0.1	.37
Pb 0	
Mg <0.001 0.066 0.028 0.059 0.017 0.034 0.06)66
Mn 0	
Mercury 0	
Molybdenum 0	
Ni <0.001 0.0017 0.0014 0.0016 0.001 0.00114 0.001)17
Se <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 -	
<u>U</u> 0	
Zn 0.007 0.019 0.0095 0.0064 0.005 0.00938 0.009)95
Flas F 0	
CaCO3 100 58 43 74 37 62.4 10 0 0 0 10 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 1	100
CacO3 18 11 11 11 10 12.2 1 NUO N 10.010 0.025 10.010 0.010 0.010 0.0053 0.0153	18
NH3-N <0.010	126
CI 50 54 60 60 50 54.8 60 EC 270 250 200 260 250 264	00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	290 Г.Г.
O2 5.5 5.44 3.2 2.84 3.6 4.110 5 D <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	5.5
P < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.	ΕO
pricade 3.0 3.7 3.0 3.0 5.7 5.0 5.7 5.00 5.7 5.00 5.7 5.00 5.7 5.00 5.7 5.00 5.00 5.7 5.00 5.7 5.00 5.00 5.7 5.00 5.00 5.7 5.00 5.00 5.7 5.00	J.O
TDS 140 130 140 140 140 112 140	140
N 32 12 28 22 51 20 51	5 1
Diamond Diamond <t< th=""><td>.03</td></t<>	.03

YMB4		Mav-12	Aug-12	Nov-12	Dec-12	Oct-13	Dec-13	Average	Runge/ Wiux
Date		29/05/2012	13/08/2012	29/10/2012	10/12/2012	24/10/2013	3/12/2013		
Depth of bore		20.55	20.55	20.55	20.55	20.55	20.55	1	
SWL (m)			11.92	11.26	11.48	8.67	9.37	10.54	8.67-11.92
m AHD								0	
Purge			40	111	108	143	134	107.2	
Ha			5.86	5.22	5.26	4.77	4.45	5.112	4.45-5.86
Temp				21.1	22.6	21	20.8	17.1	20.8-22.6
Cond (EC)			250	270	270	240	240	254	240-270
Salinity			120	140	140	120	120	128	120-140
TTA								0	
Comments								0	
AI (filtered)		0.005	0.15	0.055	0.024	0.021		0.051	0.15
Al(Total)		0.025	0.41	0.097	0.029	0.022		0.1166	0.41
As		<0.001	<0.001	< 0.001	< 0.001	<0.001		<0.001	-
В								0	
Cd								0	
Са		<0.0001	0.00065	< 0.0001	< 0.0001	<0.0001		0.00013	0.00065
Cr		<0.001	<0.001	< 0.001	< 0.001	<0.001		<0.001	-
Со								0	
Cu								0	
Fe (Filtered)		0.25	0.46	0.12	0.046	0.013		0.1778	0.46
Fe (Total)		0.25	0.9	0.15	0.055	0.04		0.279	0.9
Pb								0	
Mg		0.053	0.007	0.0021	0.0029	<0.001		0.013	0.053
Mn								0	
Mercury								0	
Molybdenum								0	
Ni		0.0011	0.0011	<0.001	<0.001	<0.001		0.00044	0.0011
Se		<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	-
U								0	
Zn		0.0048	0.031	0.017	0.0062	0.002		0.0122	0.031
Fl as F								0	
CaCO3		65	69	71	100	67		74.4	100
CaCO3		12	17	7	5	5		9.2	17
NH3-N		<0.010	0.035	<0.010	<0.010	<0.010		0.007	0.035
		60	57	70	80	30		59.4	80
		290	290	280	280	230		274	290 5.65
<u>02</u>		4.9		3.ŏ ∠0.00⊑	3.14	3./		4.238	5.65
<u>r</u> nHlah		<u>56</u>	<u>ς</u> δ	<u>5</u> 2	<u> </u>	<0.005 5 ο		<0.005 ⊑л	- Ę 0
Sulphate		12	5.0	5.5 7	7	9.2 Q		5.4 g ว	0.0 12
		120	1/10	, 120	, 150	0 120		0.Z 12/	150 150
<u>N</u>		16	27	3.2	2.8	120		1 J 4 1 4 6	12
Phos		<0.005	0.035	<0.005	<0.005	<0.005		0.007	0.035
	1							4	

Background Quality

Average Range/Maximum

	 						Average	hange/iviax
YMB5	May-12	Aug-12	Oct-12	Nov-12	Dec-12	Dec-13		
Date	29/05/2012	14/08/2012	1/10/2012	29/10/2012	10/12/2012	3/12/2013		
Depth of bore	21.38	21.38	21.38	21.38	21.38	21.38	-	
SWL (m)		2.88	2.53	2.77	3.06	1.97	2.642	1.97-3.06
m AHD							0	
Purge		40	226.2	223	219	233	188.24	
рН		6.31	6.05	6.29	6.12	5.39	6.032	5.39-6.31
Temp				20.1	21.7	19.2	12.2	19.2-21.7
Cond (EC)		250	280	320	280	350	296	250-350
Salinity		120	140	160	140	170	146	120-170
TTA							0	
Comments							0	
Al (filtered)	0.014	0.17	0.031	0.012	0.0076		0.04692	0.17
Al(Total)	0.023	0.23	0.033	0.012	0.0098		0.06156	0.23
As	< 0.001	<0.001	<0.001	< 0.001	< 0.001		<0.001	-
В							0	
Cd							0	
Са	< 0.0001	0.00024	<0.0001	< 0.0001	< 0.0001		0.000048	-
Cr	< 0.001	<0.001	<0.001	<0.001	<0.001		<0.001	-
Со							0	
Cu							0	
Fe (Filtered)	0.25	0.26	0.029	0.024	<0.005		0.1126	0.26
Fe (Total)	0.25	0.35	0.0095	0.028	<0.005		0.1275	0.35
Pb							0	
Mg	0.014	0.0094	0.0055	0.0027	0.0019		0.0067	0.014
Mn							0	
Mercury							0	
Molybdenum							0	
Ni	0.001	0.0017	0.002	< 0.001	< 0.001		0.00094	0.002
Se	< 0.001	<0.001	<0.001	<0.001	<0.001		<0.001	-
U							0	
Zn	0.013	0.025	0.032	0.0054	0.0091		0.0169	0.032
Fl as F							0	
CaCO3	53	15	20	29	32		29.8	53
CaCO3	13	12	14	19	19		15.4	19
NH3-N	< 0.010	<0.010	< 0.010	<0.010	<0.010		<0.010	-
	40	34	40	60	40		42.8	60
EC	280	260	260	320	300		284	320
02	4./	/.99	9.5	3.6	3.12		5.782	9.5
<u> </u>	<0.005	< 0.005	< 0.005	< 0.005	<0.005		<0.005	-
	5./	6.2	6.2	6.2	6		6.06	6.2
Sulphate	12	12	12	13	12		12.2	13
	140	150	1/0	160	180		160	180
N Dhao	/.2	9./	9.5	7.9	13		9.46	9.7
rnos	<0.005	0.012	<0.005	<0.005	<0.005		0.0024	0.012

				Backgrou	ind Quality		
				Average		Range/Maxi	mum
YMB6	May-12	Aug-12	Nov-12				
Date	29/05/2012	13/08/2012	29/10/2012				
Depth of bore	63.22	63.22	63.22	-			
SWL (m)		18.21	17.61		17.91	17.61-18.21	
m AHD					0		
Purge		40	547		293.5		
рН		6.85	6.55		6.7	6.55-6.85	
Temp			20		10		20
Cond (EC)		490	530		510	490-530	
Salinity		240	270		255	240-270	
TTA					0		
Comments					0		
AI (filtered)	0.59	0.48	0.018		0.362666667	0.018-0.59	
Al(Total)	0.62	2.2	0.36		1.06	0.36-2.2	
As	<0.001	<0.001	<0.001	<0.001		-	
В					0		
Cd					0		
Са	<0.0001	0.0059	<0.0001		0.001966667	0.0	059
Cr	<0.001	<0.001	<0.001	<0.001		-	
Co					0		
Cu					0		
Fe (Filtered)	1.5	11	11		7.833333333		11
Fe (Total)	1.6	14	13		9.533333333		14
Pb					0		
Mg	0.01	0.33	0.36		0.233333333	(0.36
Mn					0		
Mercury				4	0		
Molybdenum				4	0		
Ni	0.0013	0.016	0.0096	-	0.008966667	0.0	096
Se	< 0.001	<0.001	<0.001	<0.001		-	
U				-	0		
Zn	0.017	0.17	0.023	-	0.07		
Fl as F				-	0		
CaCO3	70	56	50	-	58.66666667		70
	31	57	55	-	47.66666667		57
NH3-N	0.04	0.20	0.95	-	0.396666667	(0.95
	60	110	130	-	100		130
	300	500	530	-	443.3333333		530
D2	5.1		3.9 <0.015		4.64		5.1
nH Lab	۲0.005 ۶	65	65	<u>\0.005</u>	6 333333333	-	65
Sulphate	11	6	7	1	ددددددد. ۶		11
TDS	130	260	, 270	1	220		270
N	3.6	1.5	2.3	1	2.466666667		3.6
Phos	0.015	0.3	0.3	1	0.205		0.3
				4			-

YMB6	May-12	Aug-12	Oct-12	Nov-12	Dec-12	Oct-13	Dec-13		0
Date	29/05/2012	13/08/2012	1/10/2012	29/10/2012	10/12/2012	24/10/2013	3/12/2013		
Depth of bore	20.70	20.70	20.70	20.70	20.70	20.70	20.70	•	
SWL (m)		4.25	3.98	4.38	4.79	2.35	3.17	3.82	2.35-4.79
m AHD								0	
Purge		40	200.64	196	190	220	210	176.1067	
pH		5.52	4.93	4.88	5.11	4.36	4.54	4.89	4.36-5.52
Temp				21.2	20	19.9	20	13.51667	19.9-21.2
Cond (EC)		460	660	550	310	5.8	580	427.6333	310-660
Salinity		230	310	270	200	290	290	265	200-310
TTA								0	
Comments								0	
Al (filtered)	0.59	0.2	0.07	0.049	0.051	0.053		0.168833	0.59
Al(Total)	0.62	0.35	0.083	0.052	0.048	0.055		0.201333	0.62
As	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		<0.001	-
В								0	
Cd								0	
Са	< 0.0001	0.00043	<0.0001	<0.0001	<0.0001	< 0.0001		0.000086	0.00043
Cr	< 0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001		<0.001	-
Со								0	
Cu								0	
Fe (Filtered)	1.5	0.32	0.13	0.085	0.045	0.01		0.348333	1.5
Fe (Total)	1.6	0.61	0.036	0.098	0.045	0.029		0.403	1.6
Pb								0	
Mg	0.01	0.031	0.04	0.038	0.033	0.023		0.029167	0.04
Mn								0	
Mercury								0	
Molybdenum								0	
Ni	0.0013	0.0034	0.0049	0.0034	0.0043	0.004		0.00355	0.0049
Se	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001		<0.001	-
U								0	
Zn	0.017	0.031	0.014	0.014	0.01	0.006		0.015333	0.031
Fl as F								0	
CaCO3	70	70	100	92	150	130		102	150
CaCO3	31	7	5	4	3	3		8.833333	31
NH3-N	0.04	0.036	<0.010	<0.010	<0.010	<0.010		0.012667	0.04
CI	60	116	140	140	140	150		124.3333	150
EC	300	480	520	530	510	540		480	540
02	5.1	6.44	8.6	6.4	3.41	3.2		5.525	8.6
P	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005		<0.005	-
pH Lab	6	5.3	5.1	4.9	4.8	4.8		5.15	6
Sulphate	11	11	12	14	11	13		12	14
	130	240	300	2/0	280	270		248.3333	300
N Dhee	3.6	2	1.6	1./	1./	1.6		2.033333	3.6
FIIOS	0.015	0.022	<0.005	<0.005	<0.005	<0.005	I	0.00010/	0.022

Series1

Background Qu	ality
---------------	-------

								Average		Range/Maximum
YMB7	Jun-12	Aug-12	Oct-12	Nov-12	Dec-12	Oct-13	Dec-13			
Date		13/08/2012	1/10/2012	29/10/2012	10/12/2012	24/10/2013	3/12/2013			
Depth of bore	18.71	18.71	18.71	18.71	18.71	18.71	18.71			
SWL (m)		5.79	5.065	5.18	5.92	2.68	4.18		4.8025	2.68-5.92
m AHD									0	
Purge		40	156.42	162	153	192	174		146.2366667	
рН		6.05	5.85	5.82	5.76	5.41	5.5		5.731666667	5.41-6.05
Temp				19.8	20.3	19.5	18.9	1	13.08333333	19.5-20.3
Cond (EC)		250	330	250	270	380	260	1	290	250-330
Salinity		120	160	120	130	190	130	1	141.6666667	120-160
TTA								1	0	
Comments								1	0	
AI (filtered)	0.014	0.12	0.12	0.13	0.11	0.009		1	0.083833333	0.13
Al(Total)	1.1	0.12	0.16	0.11	0.14	0.016		1	0.274333333	1.1
As	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		<0.001		-
B									0	
Cd	0.00019	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	Ũ	-
Ca	0.00015	.0.0001	.0.0001	.0.0001	.0.0001	.0.0001			0	
Cr	<0.001	< 0.001	< 0.001	<0.001	0.0011	<0.001		<0.001	C C	-
Co		101001	101001	.0.001	0.0011	.0.001			0	
Cu								1	0	
Fe (Filtered)	12	0.27	0.45	15	0.75	11		1	2 678333333	12
Fe (Total)	38	0.27	0.15	1.3	13	1.1			7.06	38
Ph		0.5	0.10	1.2	1.5	1.4			0.00	50
Ma	0.55	0.0079	0.0088	0.023	0.0097	0.006			0 1009	0.55
Mn	0.55	0.0075	0.0000	0.025	0.0057	0.000			0.1005	0.55
Mercury									0	
Molybdenum									0	
Ni	0.0073	< 0.001	0.0015	0.002	0.0015	<0.001			0.00205	0.0073
Se	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001		<0.001	0.00200	-
U									0	
Zn	0.073	0.016	0.034	0.023	0.018	0.004			0.028	0.073
Fl as F								1	0	
CaCO3	190	42	61	73	79	90		1	89.16666667	190
CaCO3	71	18	17	22	22	17			27.83333333	71
NH3-N	0.015	0.019	< 0.010	<0.010	< 0.010	<0.010			0.005666667	0.019
CI	120	60	60	60	60	70		1	71.66666667	120
EC	590	260	260	280	270	280		1	323.33333333	590
02	7.8	6.42	5.9	3.4	4.67	2.8		1	5.165	7.8
P	<0.005	<0.005	<0.005	0.005	<0.005	<0.005		1	0.000833333	0.005
pH Lab	6	6	5.9	5.8	5.8	5.7		1	5.866666667	6
Sulphate	18	6	8	11	9	10		1	10.33333333	18
TDS	360	130	140	150	150	140		1	178.3333333	360
N	0.89	0.67	0.25	1.4	1.1	0.13		1	0.74	1.4
Phos	0.1	0.022	< 0.005	0.006	< 0.005	<0.005		1	0.021333333	0.1

YMB8	May-12	Jun-12	Jul-12	Aug-12	Sep-12	Oct-12	Nov-12	Dec-12	Jan-13	Feb-13	Mar-13	Apr-13	May-13	Jun-13	Jul-13	Aug-13	Sep-13	Oct-13	Nov-13	Dec-13
Date																				
Depth of bore																				
SWL (m)																				
m AHD																				
Purge																				
рН																				
Temp																				
Cond (EC)																				
TTA																				
Comments																				
AI (filtered)		0.33																		
Al(Total)		1.1																		
As		<0.001																		
В																				
Cd		<0.0001																		
Са																				
Cr		<0.001																		
Со																				
Cu																				
Fe (Filtered)		0.066																		
Fe (Total)		4.4																		
Pb																				
Mg		0.038																		
Mn																				
Mercury																				
Molybdenum																				
Ni		0.0087																		
Se		<0.001																		
<u>U</u> <u>7</u>		0.010																		
Zn Flee F		0.019																		
		210																		
		210																		
NH3-N		<0.010																		
		140																		
EC		570																		
02		7.3																		
P		< 0.005																		
pH Lab		4.5																		
Sulphate		15																		
TDS		290																		
Ν		0.85																		
Phos		0.039																		

Doral Mineral Sands Pty Ltd

Yoongarillup hydrogeological investigation and groundwater modelling report

24 January 2014

Document information

Client: Doral Mineral Sands Pty Ltd Title: Yoongarillup hydrogeological investigation and groundwater modelling report Document No: 2200516A-RES-RPT-7634 Date: 24 January 2014

Rev	Date	Details
01	20/12/2013	Preliminary Draft submitted to Doral for comments
02	23/01/2014	Draft submitted to Doral
03	24/01/2014	Final

Author, Reviewer and Approver details							
Prepared by:	Sebastian Focke	Date: 20/12/2013	Signature:				
Reviewed by:	Stuart Brown	Date: 20/12/2013	Signature:				
Approved by:	Shane Trott	Date: 23/01/2014	Signature:				

Distribution

Doral Mineral Sands Pty Ltd, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

©Parsons Brinckerhoff Australia Pty Limited2013

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited ABN 80 078 004 798

Level 5 503 Murray Street Perth WA 6000 PO Box 7181 Cloisters Square WA 6850 Australia Tel: +61 8 9489 9700 Fax: +61 8 9489 9777 Email: perth@pb.com.au www.pbworld.com

Certified to ISO 9001, ISO 14001, AS/NZS 4801 A GRI Rating: Sustainability Report 2011

Contents

Page number

Abbr	eviatio	n		iii			
Executive summary							
1.	Introd	uction		1			
2.	Physic	cal Setti	ng	3			
	2.1	Climate		3			
	2.2	Physioar	aphy	3			
		2.2.1 2.2.2	Water Management Areas Private bores	3 3			
	2.3	Geology		5			
	2.4	Hydroge	ology	8			
		2.4.1 2.4.2 2.4.3	Desktop study Site investigation Conceptual model	8 8 10			
3.	Groun	dwater	Modelling	13			
	3.1	Modelling	g objective and background	13			
	3.2	Confiden	nce level	13			
	3.3	Model co	ode selection	13			
	3.4	Model gr	id and extent	14			
	3.5	Model ge	eometry	16			
	3.6	Groundw	vater inflows and outflows	16			
		3.6.1 3.6.2	Rainfall recharge Evapotranspiration	16 18			
	3.7	Boundar	y conditions	18			
	3.8	Adopted	aquifer parameters	18			
		3.8.1 3.8.2	Hydraulic conductivity Storage	18 19			
	3.9	Model ca	alibration	19			
	3.10	Model pr	rediction	23			
		3.10.1 3.10.2 3.10.3 3.10.4 3.10.5 3.10.6	Model prediction set up Predicted pit inflows Predicted drawdowns Drawdown impacts on private bores Potential impacts from the Yarragadee Aquifer abstraction Recovery prediction	23 24 27 32 32 32			

	3.11	Model sensitivity	36
	3.12	Model limitations	36
4.	Concl	usions and recommendations	37
5.	Refer	ences	38

List of tables

Page number

Table 2.1	Generalised regional and local stratigraphic sequence and hydrogeology of the	
	project area (*Davidson, 1995)	7
Table 2.2	Bore completion details	8
Table 2.3	Slug testing results	10
Table 3.1	Groundwater model domain	14
Table 3.2	Calibrated hydraulic properties for model layers	19
Table 3.3	Modelled steady state water balance	23
Table 3.4	Predicted dewatering rates	26

List of figures

Page number

Figure 1.1	Location of Yoongarillup mining area	2
Figure 2.1	Location of private bores	4
Figure 2.2	Structural geology of the region	6
Figure 2.3	Location of new monitoring bores	9
Figure 2.4	Representative cross-section	11
Figure 3.1	Model extent and boundary conditions	15
Figure 3.2	Modelled rainfall recharge distribution	17
Figure 3.3	Modelled aquifer properties	20
Figure 3.4	Modelled steady state water level in mAHD (Superficial aquifer)	21
Figure 3.5	Modelled steady state water level in mAHD (Mowen Member)	22
Figure 3.6	Measured versus modeled water level	23
Figure 3.7	Predicted dewatering rate (m ³ /day)	25
Figure 3.8	Predicted modelled drawdown contours LOM (Layer 1)	28
Figure 3.9	Predicted modelled drawdown contours LOM (Layer 2)	29
Figure 3.10	Predicted modelled drawdown contours LOM (Layer 3)	30
Figure 3.11	Predicted modelled drawdown contours LOM (Layer 4)	31
Figure 3.12	Predicted drawdown at hypothetical observation points	33
Figure 3.13	Predicted drawdown at existing monitoring points and private bores	34
Figure 3.14	Location of predicted water level recovery monitoring bores	35

Abbreviation

BOM	Bureau of Meteorology
d	day
DoW	Department of Water
ET	Evapotranspiration
GDE	Groundwater dependent ecosystem
к	Hydraulic conductivity
kh	Horizontal hydraulic conductivity
kL	Kilo litres
km	kilometre
km ²	Square kilometres
kz	Vertical hydraulic conductivity
L/sec	Litre per second
m	Metre
m ³	Cubic metre
mAHD	m above Australian Height Datum
mbgl	Metre below ground level
ML	Mega litre
mm	Millimetre
RMS	Root mean square
Sy	Specific Yield
S	Storage coefficient
т	Transmissivity
USG	Unstructured grid

Executive summary

Doral Mineral Sands Pty Ltd (Doral) proposes to mine its Yoongarillup mineral sands deposit, located approximately 15 km south-east of Busselton, in Western Australia. The Yoongarillup mineral sands deposit is located within Mining Leases M 7000458 and M 7000459. To enable optimum resource recovery, it is likely mining will occur below the groundwater table and, hence, dewatering of the pits will be required.

Parsons Brinckerhoff Australia Pty Ltd (Parsons Brinckerhoff) was commissioned by Doral to conduct a groundwater investigation to obtain a baseline hydrogeological characterisation of the site and inform the environmental approval process. The focus of the work was to establish a hydrogeological framework to develop a conceptual model and to build a numerical groundwater flow model of the study area incorporating the proposed Yoongarillup mining area. The numerical model was then used to predict the likely drawdown, and pit inflows associated with the proposed mining activities.

In carrying out the groundwater assessment Parsons Brinckerhoff conducted the following:

- Desktop study to establish geological and hydrogeological framework for Yoongarillup and the surrounding area and to make recommendations for new borehole locations to establish a monitoring network;
- Field Investigation comprising aquifer tests at new monitoring bores. Nine boreholes were tested and aquifer properties were determined from these tests;
- Development of a conceptual model and numerical modelling to predict groundwater inflow to the mine pits and groundwater drawdown as a result of dewatering.

The results of the predictive modelling are based on the current mine plan and are summarised as follows:

- Predicted total groundwater inflows for the combined pits over the mine life are approximately 306 ML of which 11.8% are predicted to come from the Leederville Formation. Groundwater inflows are predicted to reach a maximum of approximately 1,500 m³/day. The average monthly predicted inflow is 306 m³/day.
- Predicted drawdown south of the proposed mine is limited in both, the Superficial Aquifer and Mowen Member, such that the 1 m contour does not extend south beyond the pit extents.
- No mining related drawdown in the Vasse Member and Yarragadee Aquifer is predicted.
- A maximum drawdown of 1.3 m is predicted adjacent to the proposed production wells screened in the Yarragadee Aquifer. The 1m drawdown contour may extend up to 90 m radially from the production bores.
- Inflow rates and drawdown effects are greatest when mining is active in the northern pits due to increasing saturated thickness of the Superficial Aquifer towards the north.
- None of the private bores located within the study area, are expected to experience drawdown of more than 1.0 m during the life of the mining operations.
- Groundwater levels will recover after mining ceases such that groundwater levels will have returned to 90% of their pre-mining levels within 36 months of mine closure.

The following recommendations are proposed:

 Preparation of an operating strategy in accordance with the requirements of the Department of Water including a water level monitoring plan and water quality sampling protocol prior to the commencement of mining activities.

- A census of private bores should be carried out to provide a baseline and allow identification of impacts to local groundwater users. Private bores should be included in the monitoring program where possible.
- Installation of five to seven additional bores in the Superficial Aquifer to supplement the existing bores screened within the Mowen Member.

1. Introduction

Doral Mineral Sands Pty Ltd (Doral) proposes to mine its Yoongarillup mineral sands deposit, located approximately 15 km south-east of Busselton (Figure 1.1). The Yoongarillup mineral sands deposit is located within Mining Leases M 7000458 and M 7000459. To enable optimum resource recovery, mining will occur below the groundwater table and, hence, dewatering of the pits will be required. Parsons Brinckerhoff Australia Pty Ltd (Parsons Brinckerhoff) was commissioned by Doral to conduct a groundwater investigation to support the environmental approval processes.

The focus of the work was to establish a hydrogeological framework to develop a conceptual model and to build a numerical groundwater flow model of the study area incorporating the Yoongarillup mining area. The numerical model was then used to predict the likely drawdown, and pit inflows, associated with the proposed mining activities.

The program of works was carried out in four phases:

- Phase 1: Desktop study. The main task was to collate and collect data to establish a geological and hydrogeological framework for Yoongarillup and the surrounding area, and to make recommendations for new borehole locations to comprise a monitoring network;
- Phase 2: *Field Investigation*. Establishment of a groundwater monitoring network. Carry out field investigations to further understand the hydrogeological conditions of the study area, including hydraulic testing of monitoring boreholes to determine hydraulic parameters to characterise hydrogeological conditions at the site and to input to the groundwater flow model;
- Phase 3: Conceptual and numerical groundwater flow model development. Based on the findings from Phase 1 and Phase 2 the conceptualisation of the study area was established. A numerical groundwater flow model was developed based on the hydrogeological conceptualisation and input parameters derived from the field investigation. The model, once calibrated, was used to determine the dewatering volume requirements associated with the proposed mine plan and assess potential drawdown impacts associated with the dewatering;
- **Phase 4:** *Reporting.* Preparation of an integrated final report describing the field investigations, study area conceptualisation, numerical model results and conclusions.

During the desktop study (phase 1), data from numerous sources including published Government and consultants reports were collected and collated to develop initial preliminary appreciation understanding of the hydrogeological conceptualisation of the study area. On the basis of information gathered, and in consultation with the Department of Water (DoW), a groundwater monitoring network was proposed. Nine monitoring bores were subsequently installed during phase 2. Parsons Brinckerhoff hydrogeologists conducted aquifer tests on each of the bores to ascertain aquifer parameters.

Following completion of phase 2, the information obtained from the site investigation was used to update the conceptual model and a numerical groundwater flow model was developed for the study area (phase 3).

This document is a revised and updated version of an earlier report (PB 2012) and comprises the results of the previous phases and the results of the numerical modelling (Phase 4) incorporation a new mine schedule PB received 18 October 2013 from Doral. This report will support the regulatory environmental approvals process for the proposed mining activity at Yoongarillup.

Doral Mineral Sands Pty Lto		GIS_F007_B	.: 2172609A_	Drawing No	© Parsona Brinkenhoff Australia Phy Lbl ("PBT) Copyright in the drawings, information and data recorded in this document ("the information") is the property of PB. This document and the information are adally for the use of the authorised recipient and this document may not be used, oppoint or reproduced in which or the stormet may not be used. Capital or reproduced in which or the stormet may not be used. Capital and the store or the stormet may not be used. Capital or reproduced in which or the stormet may not be used. Capital or reproduced in which or the stormet may not be used. Capital or reproduced in which or the stormet may not be used. Capital the store of the stormet may not be stored as the store of the store	N	Doral
Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposit	19/12/2013	Date:	В	Revision:	part for any pupping other han that which is was suppare by the. 19 makes no representation, undertakes no duty and accepts no separability to any thind party who may use or rely upon this document or her information. NCSI Centilled Quality Systems to ISO 3001 APPROVED FOR AND ON BEHALF OF		Durai
Location of Yoongarillun mining are	oy: SF	Checked by	SH / JV	Drawn By:	NOT REQUIRED	Scale: 1:100,000 at A4	PARSONS
Figure 1-		SLIP (2011)	3: Landgate; S	Data Source	DAT E	Coord. System.: MGA50 GDA94	BRINCKERHOFF

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F007_B.mxd

2. Physical Setting

2.1 Climate

The climate is Mediterranean type (Köppen classification Csb) characterised by hot dry summers and cool wet winters. The average annual rainfall at Bureau of Meteorology (BOM) gauging station 9771 located approximately three kilometre north-east of the proposed mining area is 849 mm/year. Most rainfall occurs from May to September. Annual potential evaporation is about 1400 mm (BOM, 2011).

2.2 Physiography

The study area is located 15 km southeast of Busselton at the foot of the Whicher Scarp. It is located within the southern part of the Perth Basin. The key physiographic features associated with the site are the coastal plain, the Whicher Scarp and the Blackwood Plateau (Schafer et al., 2008). The flat lying plain occupies the northern part of the study area, and most of the plain is bordered to the south by the Whicher Scarp which rises steeply from coastal plains to an elevation of approximately 40-60 mAHD. The southern part of the study area lies within the Blackwood Plateau ranging in elevation between 80 to 180 mAHD (GSWA, 1976).

2.2.1 Water Management Areas

The proposed mineral sands mine is located in the catchment area of the Vasse River Basin which forms part of the Busselton-Capel Groundwater Area (PB, 2011). The Vasse River originates in the Blackwood Plateau. Its only tributary is the Sabina River. The Vasse River has been modified by several stream diversions (PB, 2011). The Vasse Diversion Drain is located in the lower catchment and receives water from 65% of the Sabina River Catchment and 90% of the Vasse River Catchment, diverting it away from the Vasse-Wonnerup Estuary and directly into Geographe Bay west of Busselton (Paper Daisy Environmental Services, 2000). The catchment is dominated by agricultural land; consequently approximately 80% of the catchment has been cleared. The proposed mine lease area falls in the southeast of the Vasse River catchment.

2.2.2 Private bores

A review of the database register indicates there are 48 private landowner bores located within 5 km radius of the proposed Yoongarillup mine site. These are shown in Figure 2-1 and are predominantly located to the north of the proposed mine. Information for these bores is limited; with bore construction and groundwater level data generally unavailable.

Doral	N	© Parsona Brinkerhoff Australia Pty Ltt (*PB*) Copyright in the drawings, information and data recorded in this document (*he information) is the property of PB. This document and the information are solidy for the use of the authorised necipient and this document may not be used, copied or reproduced in whele or this document may not be used, copied or reproduced in whele or	Drawing No.:	2172609A_0	GIS_F026_C		
Dural	► 0 400 800	pert for any purpose other than that which it was supplied by PB. PB makes no expresentation, undertakes no doky and accepts no seponsibility to any third party who may use or rely upon this document on the information. NGEI Certified Quality System to ISD 2001 APPROVED FOR AND ON BEHALF OF	Revision:	С	Date:	20/01/2014	Hyd
PARSONS	Scale: 1:40,000 at A4	NOT REQUIRED	Drawn By:	SH / JV	Checked by:	SF	
BRINCKERHOFF	Coord. System.: MGA50 GDA94		Data Source:	Landgate; S	LIP (2011)		

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F026_C.mxd

Doral Mineral Sands Pty Ltd

Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

> Location of private bores Figure 2-1

2.3 Geology

The Yoongarillup mineral sands deposit is located in the southern part of the Perth Basin (Figure 2.2). The Perth Basin is a deep linear trough containing sedimentary rocks (Jurrasic to Quaternary) extending north-south for some 1,000 km and covers an area of 45,000 km² onshore and 55,000 km² offshore (GSWA 1976). The Perth Basin is essentially a half-graben structure bounded on the east by north-trending Darling Fault, 1000 km long, which separates the Basin from the Archean rocks of the Yilgarn Block (GSWA 1976).

The regional geology associated with the study area is dominated by a sedimentary sequence deposited within the graben in the southern Perth Basin (Schafer et al., 2008). This part of the Basin comprises two main geological structures: the Bunbury trough and the Vasse Shelf. The major north-south trending Busselton Fault subdivides the graben structure into two major structural units: the deep Bunbury Trough to the east and a relatively shallow fault block, known as the Vasse Shelf, to the west (Schafer et al., 2008). The study area is situated on the eastern side of the graben structure, entirely within the Bunbury Trough (Figure 2.2).

The geological setting of the area comprises (from oldest to youngest):

- The Yarragadee Formation
- The Leederville Formation
 - Vasse Member
 - Mowen Member
- The Superficial Deposits
 - Yoganup Formation
 - Guildford Clay
 - Bassendean Sand

The Yarragadee Formation comprises Jurassic aged laterally discontinuous interbedded feldspathicsandstone, siltstone and shale deposits that are up to 2 km in thickness (Varma, 2009). The Yarragadee Formation is sub divided into 4 Units of which unit 3 and 4 are present in the project area with a total thickness of 550 to 800 m (Baddock et al., 2005) underlying the Vasse Member of the Leederville Formation.

The Cretaceous aged Leederville Formation unconformably overlies the Yarragadee Formation and comprises discontinuous interbedded sandstone and shales. The sediments are essentially flat-lying with a gentle slope to the north and have a weathering profile, up to 150 m thick, where outcropping occurs mainly along the Whicher Scarp and the Blackwood Plateau (Schafer et al., 2008). Based on the studies east of the study area, the Leederville Formation has been divided into Vasse and Mowen Members (Schafer et al., 2008). The Vasse Member is the aquifer and the Mowen Member is a confining layer (aquitard) (Schafer et al., 2008).

Doral Mineral Sands Pty Ltd
Hydrogeological investigation and groundwater modelling
for Yoongarillup mineral sands deposits

Structural geology of the Region Figure 2-2

Doral	Ű	-				
Doral	Revision:	В	Date:	24/10/2012	ŀ	
PARSONS	Drawn By:	SH / JV	Checked by:	SF		
BRINCKERHOFF	Data Source:	Baddock et	. al (2005)	NOT TO SCALE		

GIS File: \AUPERF\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F019_B.mxd

The Pliocene-Quaternary aged superficial deposits overlie the Leederville Formation and collectively comprise the Yoganup Formation, Guildford Formation and the Bassendean Sand (Schafer et al., 2008). The maximum thickness of Quaternary deposits in the Perth Basin amounts to about 150 m, but in most areas they are less than 20 m thick (GSWA, 1976).

The superficial deposits form a relatively thin cover over most of the coastal plain. The oldest superficial deposit is the Yoganup Formation, which occurs along the base of the Whicher Scarp. It comprises leached and ferruginous beach sand with localised concentrations of heavy minerals (Schafer et al., 2008) and consists of white coarse sand rich in heavy metals and sandy silt and clay respectively.

The Guildford Clay covers much of the coastal plain and is a composite unit of interfingering alluvial clay and sand. The Bassendean Sand consists of quartz-rich dunal sand that generally overlies or abuts the Guildford Clay.

The Yoganup Formation dominates the study area, whilst the Guildford Clay is observed mainly towards the northern boundaries. In these superficial deposits, a lateritic hardpan has developed due to water table fluctuation in many areas (Schafer et al., 2008). The Superficial Aquifer pinches out some 50 to 200 m south of the mine area.

A generalised lithostratigraphical and hydrostratigraphical description of the study area is presented in Table 2.1 below.

Age	Stratigraphy	Maximum thickness (m)	Lithology	Aquifer system
Quaternary–late Tertiary	Superficial Formation			
	Bassendean Sand	80*	Fine to medium sub-rounded quartz sand	Superficial aquifer
	Guildford Formation	35*	Brown to dark grey clays with isolated lenses of silt and sand towards the base.	Local aquitard
	Yoganup Formation	10*	White to yellowish-brown unconsolidated, poorly sorted sand, gravel and pebbles with local subordinate clay, ferruginised grains and heavy minerals	Superficial aquifer
Cretaceous	Leederville Formation	600*	Interbedded units of partly consolidated sand and shales. Generally divided in to upper, predominantly shaly section (Mowen Member) and lower sandy section. (Vasse Member)	Leederville aquifer including the Mowen aquitard
Mid to late Jurassic	Yarragadee Formation	2,000*	Weakly consolidated sandstone, siltstone and shales.	Yarragadee aquifer
Early Jurassic	Cockleshell Gully Formation		Angular to sub angular, weakly cemented quartz sandstone containing accessory pyrite and garnet, and weakly consolidated siltstone and shale	Yarragadee aquifer

Table 2.1Generalised regional and local stratigraphic sequence and hydrogeology of the project
area (*Davidson, 1995)

2.4 Hydrogeology

2.4.1 Desktop study

Parsons Brinckerhoff carried out a Department of Water (DoW) database search of all recorded bores in the vicinity of the study area. Locations of selected bores identified as being in the vicinity of the mine area were validated in January 2014 by using a hand held GPS. The findings of this search were utilised to collate water level data while relating it to geology and to gain an understanding of the hydrogeological system associated with the proposed mine site. The search also identified other groundwater users who may be potentially impacted by the proposed mining activities. Based on this search, in consultation with Doral and the DoW, Parsons Brinckerhoff proposed the construction of nine new piezometers to comprise a mine specific groundwater monitoring network.

2.4.2 Site investigation

In 2012, Doral implemented phase 1 of the hydrogeological assessment and coordinated the construction of nine boreholes. The drilling was supervised by Aurora Environmental and the program comprised nine exploration holes which were completed as monitoring bores at seven different locations. The detailed logs are shown in Appendix A. A summary of the borehole completion details are presented in Table 2.2 and the locations of these monitoring bores are shown in Figure 2.3.

Bore	Date of Commencement	Date of completion	Casing diameter (mm)	Drilled depth (m)	Screened Interval (mbgl – mbgl)	Likely screened unit*	
MB1S	24/01/2012	24/01/2012	50	20	14 - 20	Mowen Member	
MB1D	24/01/2012	24/01/2012	50	60	54 – 60	Mowen Member/Vasse Member	
MB2	24/01/2012	24/01/2012	50	20	14 - 20	Mowen Member	
MB3	27/01/2012	27/01/2012	50	20	14 - 20	Mowen Member	
MB4	27/01/2012	27/01/2012	50	20	14 - 20	Mowen Member	
MB5	27/01/2012	27/01/2012	50	20	14 - 20	Mowen Member	
MB6S	25/01/2012	25/01/2012	50	20	14 - 20	Superficial and Mowen Member	
MB6D	24/01/2012	24/01/2012	50	60	54 - 60	Mowen aquitard	
MB7	27/01/2012	27/01/2012	50	20	14 - 20	Superficial and Mowen Member	

Table 2.2 Bore completion details

*based on the geological model and screened depth

Doral	0 250 500	C Phasene Bristentoff Austabia Pry LE (PE) Conditivity, Normation and data and exoded in this document of the second of the s
PARSONS BRINCKERHOFF	Scale: 1:25,000 at A4 Coord. System.: MGA50 GDA94	NOT REQUIRED

Ltd (PBT) Copyright in the field in this document (Phi This document and her final document and the document of the second second document of the second second second second sec	Drawing No.: 2172609A_GIS_F025_B							
	Revision:	В	Date:	19/12/2013				
	Drawn By:	SH / JV	Checked by:	SF				
	Data Source: Landgate; SLIP (2011)							

Doral Mineral Sands Pty Ltd Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

> Location of new monitoring borewells Figure 2-3

GIS File: \\Apperfil01\projtD\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F025_B.mxd

In 2012, Parsons Brinckerhoff carried out hydraulic testing on these monitoring bores using rising and/or falling head tests ("slug tests"). A slug test is an in-situ method for estimating aquifer permeability, which typically involves monitoring the groundwater response after the instantaneous displacement of water in a bore. Testing was completed on eight of the nine monitoring bores as the monitoring bore MB2 was dry during the site visit. The slug testing data were evaluated and an appropriate solution (KGS model, Hyder et al (1994) or Cooper et al (1967)) was adopted to derive hydraulic conductivity (K) values. Reliable hydraulic conductivity values were obtained from seven of eight monitoring bores with the exception of MB1D where the groundwater response was slow. Slug testing details are summarised in Table 2.3 and individual plots are shown in Appendix B.

Bore	Likely screened unit	Type of test	Solution	K (m/day)
MB1S	Mowen Member	Rising	KGS	0.02
MB3	Mowen Member	Rising	KGS	0.66
MB3	Mowen Member	Falling	KGS	0.37
MB4	Mowen Member	Rising	KGS	0.25
MB5	Mowen Member	Injection	KGS	0.01
MB6S	Superficial aquifer and Mowen Member	Rising	KGS	1.34
MB6S	Mowen Member	Falling	KGS	0.97
MB6S	Mowen Member	Injection	KGS	0.71
MB6D	Mowen Member	Falling	Cooper	0.03
MB6D	Mowen Member	Injection	Cooper	0.04
MB7	Superficial aquifer and Mowen Member	Falling	KGS	0.02

Table 2.3Slug testing results

2.4.3 Conceptual model

The conceptual hydrogeological model represents the understanding of the hydraulic behaviour and dynamics of the aquifer systems and provides the technical foundation for the numerical model design and framework.

Figure 2.4 presents a north-south cross-section through the mine area. The conceptual hydrogeology compliments the stratigraphy and hence three aquifers are recognised locally:

- the Superficial Aquifer;
- the Leederville Aquifer (incorporating the Mowen Member aquitard), and
- the underlying Yarragadee Aquifer.

The Superficial Aquifer is an unconfined aquifer and comprises the Bassendean Sand towards the top and the Yoganup Sand towards the base. The Guildford Clay is locally present between the two aquifers. The hydraulic conductivity of the Superficial Aquifer is likely to be variable.

PARSONS BRINCKERHOFF

The Leederville Aquifer is a multi-layered aquifer system comprising discontinuous interbedded sequences of sandstone and clay. The horizontal hydraulic conductivity of sandstone beds in the Leederville aquifer, derived from pumping tests is about 10 m/d, and that of the siltstone and shale beds is assumed to be about 1×10^{-6} m/d (Davidson W A, 1995). If the interbedded sandstones, siltstones and shales are laterally extensive, the average horizontal hydraulic conductivity of the aquifer will approach 5 m/d (as the sandstones constitute approximately half the aquifer thickness). Sandy beds that comprise the Vasse Member constitute the main aquifer.

The sandy beds underlie the Mowen Member which comprises an aquitard. The Mowen Member is assumed to be present in the entire modelled area.

The Leederville Aquifer becomes more consolidated with depth resulting in permeability decrease with depth. The Leederville Aquifer extensively outcrops throughout the Blackwood Plateau (Schafer et al., 2008). The Yarragadee Aquifer is composed primarily of non-marine fluvial feldspathic, poorly sorted sandstones which are porous and poorly cemented and, hence, allow for considerable groundwater reserves. It grades from a shale-siltstone dominated base to a cleaner sandstone in the upper portions of the Formation, probably representing increased subsidence or filling of the basin during the late Jurassic (Varma, 2009).

The Yarragadee Formation is divided into 4 Units. Unit 3, which underlays the Vasse Member in the project area, is reported to be the most transmissive unit (Baddock et al., 2005). The average horizontal hydraulic conductivity is 14 m/d, however, isotopic dating of groundwater indicates an average hydraulic conductivity of 8 m/day (Baddock et al., 2005).

2.4.3.1 Groundwater flow

The direction of groundwater flow within the Superficial Aquifer is generally controlled by the topography, drainage and surface geology. The flow direction is generally north to north-west from the elevated Blackwood Plateau which is located immediately to the south of the study area, and moves in a north-westerly direction away from the Millbrook State Forest. Groundwater elevation contours for the Superficial Aquifer essentially follow the land surface from the Whicher Scarp to the Vasse River and Vasse Diversion Drain.

The groundwater flow direction in the Leederville and Yarragadee Aquifers is similar, generally to the north-west i.e., from Blackwood Plateau towards the coast (Schafer et al., 2008).

2.4.3.2 Aquifer recharge

The primary source of recharge to the Superficial Aquifer is through direct infiltration of rainfall. During winter season, the Superficial Aquifer is often fully saturated and leads to ponding of water in some areas. The surface water drainage network across the plain captures and diverts this excess water towards the ocean. The primary drainage features in the area (Vasse River, Sabrina River and Vasse River Diversion Drain) flow in a northerly and westerly direction respectively, before discharging into the Ocean. The recharge estimates for Perth Basin based on different land use and climatic conditions varies between 5% and 40% of the rainfall depending upon location and land use (Davidson, 1995). Surface water yield estimates indicate that the Vasse River sub-catchment, where the proposed pit is to be located, has an annual runoff yield of approximately 1.78 GL/yr (PB, 2011).

The Leederville and Yarragadee Aquifers are recharged directly by rainfall infiltration on the Blackwood Plateau in areas of downward potentiometric head. Recharge into the Leederville Aquifer from the overlying Superficial Aquifer may occur where confining beds are largely absent beneath the plain, and where there is a downward hydraulic gradient. The Leederville Aquifer overlies the Yarragadee Aquifer throughout the study area.

3. Groundwater Modelling

3.1 Modelling objective and background

The objective of the numerical groundwater flow model was to provide an assessment of dewatering requirements and groundwater drawdown associated with the development of the Yoongarillup mineral sands project. The key features of the model are discussed in the following sections.

The main water balance components are summarised as follows:

- Direct recharge to groundwater from rainfall;
- Groundwater evapotranspiration from the shallow water table;
- Groundwater inflows and outflows based on the available information where the aquifer crosses the model boundaries;
- Dewatering of below water table mineral sands deposit proposed for the mining activity
- Groundwater abstraction bores for mine water supply.

3.2 Confidence level

The Australian Modelling Guidelines (Barrett et al., 2012) recommends that the target confidence level of the model should be established and classified according to a set of semi-quantitative criteria. The confidence level relates to the degree of confidence with which the models predictions can be used and relied upon.

The confidence level classification comprises three classes; Class 1, Class 2 and Class 3, in order of increasing confidence level. The level of confidence typically depends on the available data, calibration procedures, consistency between the calibration conditions and predictive analysis scenario, and the level or severity of stresses being simulated. The confidence level classification is often constrained by the available data, budget and/or time. Typically in impact assessments for mining projects, the paucity of time series and spatial data for calibration compared with the proposed development timeframe is such that a Class 2 confidence level is the highest feasible.

In this context the numerical groundwater model developed as part of this work is defined as a Class 2 model. Such models are intended to reflect the fundamental purpose of the modelling objectives, in this instance the projection of groundwater drawdown in response to stresses imposed by mining. With this approach in mind, where understanding or data have been limited, conservative model input parameters (e.g. hydraulic conductivity, recharge) have been adopted (within realistic ranges) in order to simulate the potential impacts to the aquifer. Note that the model is not suitable for predicting the response of a system to arbitrary changes in hydrogeological conditions beyond the purpose for which it is intended.

3.3 Model code selection

The model was created using the Groundwater Vistas (GWV) graphical user interface (Version 6.55). MODFLOW was used in conjunction with MODFLOW-USG (Panday et al., 2013). MODFLOW-USG (unstructured grid) is a recently developed code based on the control volume finite difference method (CVFD). It has many advantages over the original finite difference codes (MODFLOW, Surfact) in that it can operate with unstructured and irregular grids, can pinch out layers that outcrop or sub-crop, and has

the capability to approximate unsaturated conditions that can develop in mining situations. MODFLOW and its related programs are well documented and widely used in the groundwater field and are accepted by most regulators as industry standard.

3.4 Model grid and extent

The model domain is shown in Figure 3.1. Coordinates of the four corners of the model domain are presented in Table 3.1. The model domain is approximately 20 km x 15.5 km, with uniform cell sizes of 50 m x 50 m. This results in a total of 310 rows and 390 columns. A nested grid (Modflow USG) was included around the mining area dividing each cell into 4 daughter cells resulting in a finer grid of 25 x 25 m. The entire model domain consists of 510,600 cells over the four model layers of which 315,000 are active flow cells.

Table 3.1 Groundwater model domain

Grid Position	Easting (MGA 94)	Northing (MGA 94)		
North East	365,000	6,271,500		
North West	345,000	6,271,500		
South West	345,000	6,256,000		
South East	365,000	6,256,000		

Doral	N	© Parsons Briekenhoff Australia Pty Lbl ("PB") Copyright in the drawings, information and data recorded in this document ("the information") is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, oppide or reproduced in whole or	Drawing No.: 2172609A_GIS_F008_B				Doral Mineral Sands Pty
Durai		per tor any pupped after year that lances is used appaue by Pe. PB makes no representation, used values on day and accepts no document or the information NCSI Certified Caulity System to 150 2001 APP ROYED FOR AND ON BEHALF OF Branes Behaves	Revision:	В	Date:	18/12/2013	Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits
PARSONS	Scale: 1:100,000 at A4		Drawn By:	SH / JV	Checked by:	SF	Model extent and boundary conditions
BRINCKERHOFF	Coord. System.: MGA50 GDA94	DATE	Data Source	: Landgate; S	LIP (2011)		Figure 3-1

GIS File: \\Apperfil01\proj\D\Doral_Mineral_industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F008_B.mxd

3.5 Model geometry

The model configuration includes four layers consistent with the hydrogeological conceptualisation (paragraph 2.4.3). Each layer comprises one or more hydrogeological units. The model layers can be summarised as follows:

- Layer 1 represents the Superficial Aquifer including the Bassendean Sands, Guildford Clay and Yoganup Sands. Groundwater within the Superficial Aquifer is unconfined across the model domain.
- The Leederville Aquifer was represented as two layers.
 - The upper layer (model Layer 2) represent the Mowen Member.
 - The lower layer (model Layer 3) represents the Vasse Member which is the main aquifer within the Leederville Formation.
- The Leederville Aquifer (Layers 2 and 3) comprise the model top at the Blackwood Plateau where it outcrops. It underlies the Superficial deposits across the coastal plain and the Whicher Scarp. The Mowen Member is modelled as unconfined layer and the Vasse Member as a confined layer.
- Layer 4 represents the Yarragadee Aquifer, a confined layer.

The elevation of the top of layer 1 (ground level) was interpolated from the Landgate contours (5 m contour interval) and spot height elevation database. The elevation for the bottom of Layer 1 was assigned consistent with information derived from exploration drilling and data provided by Doral. As a result, the thickness of the aquifer is irregular, reaching its maximum of 20m below the northern pit boundaries. The bottom of Layer 2 was set at varying thickness of 8 to 38 m and bottom of layer 3 was set at a uniform thickness of 32 m consistent with available literature (Schafer et al., 2008). Based on Baddock et al (2005), the thickness of unit 3 of the Yarragadee aquifer at the project location is between 250 and 300m. The thickness of layer 4 is a uniform 100m, but was parameterised to reflect the total transmissivity of the aquifer.

3.6 Groundwater inflows and outflows

3.6.1 Rainfall recharge

Inflow to the groundwater system is provided via rainfall recharge as a proportion of the rainfall. The average annual rainfall recorded for the region is around 849 mm per year. The percentage of rainfall recharge assigned as a proportion of recorded rainfall was adjusted during model calibration. Modelled rainfall recharge is assigned at a rate of 84.9 mm/year and 38.25 mm/year over the Superficial and Leederville Aquifers respectively (i.e. 10% and 4.5% of the average annual rainfall recharge). Groundwater levels imply higher recharge (20%) in the area east and south of the mine likely deriving from the increased runoff infiltration. The distribution of modelled rainfall recharge is shown in Figure 3.2.

Doral	N A	G Parsons Briskerhoff Australia Pty Ltl (*PB*) Copyright in the drawings, information and data recorded in this document (*the information') is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or the document may not be used, copied or reproduced in whole or	Drawing No.: 2172609A_GIS_F018_B			
Dural		part for any purpoise other than that which it was supplied by PB. PB makes no representation, undertakes no dday and acapters no responsibility to any that party who may use or rely upon this document of its information to ISO 3031 NCCI Centified Quality System to ISO 3031 APPROVED FOR AND ON BENALF OF	Revision:	В	Date:	19/12/2013
PARSONS	Scale: 1:100,000 at A4		Drawn By:	SH / JV	Checked by:	SF
BRINCKERHOFF	Coord. System.: MGA50 GDA94	DATE	Data Source: Landgate; SLIP (2011)		LIP (2011)	

Doral Mineral Sands Pty Ltd Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

> Modelled rainfall recharge distribution Figure 3-2

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F018_B.mxd
3.6.2 Evapotranspiration

Evapotranspiration is a potential discharge mechanism that is active in those regions where the water table is found at relatively shallow depths. Evaporation from the shallow water table across the model domain is modelled using the Evapotranspiration package in Modflow such a way that if aquifer water levels are at or above a specified depth ET occurs at maximum specified rate. If the aquifer water levels drop below the specified level (depth), the ET rate decreases linearly to zero as the predicted water level reaches an elevation equal to the ET surface minus the extinction depth. The ET rate is also set to zero wherever the aquifer water level is below the elevation equal to the ET surface minus the extinction depth.

The average annual evaporation in the area is approximately 1400 mm. The modelled maximum evapotranspiration rate is set somewhat lower than the average annual evaporation i.e., 70% of average annual evaporation in order to provide a better approximation to actual plant water uptake and evaporation from subsurface. The evapotranspiration extinction depth is set at 3 m below the ground surface. The modelled maximum ET rate is uniform across the model domain.

3.7 Boundary conditions

The general direction of groundwater flow through the modelled area is from south to north from the southernmost model boundary towards the ocean. The southern, eastern and western boundaries of the model were set to be consistent with the surface water catchment divide. As groundwater flow follows surface topography, these model boundaries were assigned as no flow boundaries. The northern boundary is located approximately 10 km north of the Yoongarillup site. The groundwater outflow along northern boundary is simulated as a constant head boundary and is set to be consistent with groundwater levels in the area at an elevation of 18 mAHD. A constant head was assigned in the south east of the model and set to likely groundwater levels in that area. The location of model boundaries is shown in Figure 3-1.

3.8 Adopted aquifer parameters

3.8.1 Hydraulic conductivity

Calibrated hydraulic parameters for the Superficial, Leederville and Yarragadee Aquifers and aquitards are shown in Table 3.2 below. The calibration process is described in section 3.9. For the parsimony of modelling, only one layer was included in the model for Superficial deposits. Slug testing indicated a varying hydraulic conductivity for the Mowen Member. However, given the Mowen Member acts as an aquitard regionally, the lower range value was adopted (0.03 m/day). The hydraulic conductivity of Vasse Member is consistent with similar hydrogeological environments (Schafer et al., 2009). The distribution of aquifer parameters in layer 1 is shown in Figure 3.3. The value of 1.4 m/day reflects a bulk hydraulic conductivity considering interfingered clay lenses as well as the results of the slug testing in bores screened across both, the Superficial Aquifer and Mowen Member.

The Yarragadee aquifer of which Unit 3 and 4 are present in the project area has a reported hydraulic conductivity of 8 m/day (Baddock et al. 2005). In order to maintain a realistic transmissivity of the aquifer, the permeability was multiplied by 3 to account for the layer thickness in the model as k = T/b where k is the hydraulic conductivity, T is transmissivity and b the aquifer thickness.

The vertical hydraulic conductivity for all layers was assumed to be 10% of the horizontal permeability to account for stratification.

Model layer	Equivalent geological unit(s)	Kh (m/d)	Kz (m/d)	Sy (no units)	S (no units)
1	Bassendean Sands*				
	Guildford Clay*	1.4	0.14	0.15	10 ⁻⁴
	Yoganup Formation*				
1, 2	Mowen Member**	0.03	0.003	0.05	10 ⁻⁴
3	Vasse Member**	1.5	0.15	N/A	10 ⁻⁴
4	Yarragadee Unit 3	24	24	N/A	10 ⁻⁴

Table 3.2	Calibrated h	ydraulic pro	operties for	model layers
-----------	--------------	--------------	--------------	--------------

Kh = horizontal hydraulic conductivity; Kz = vertical hydraulic conductivity; Sy = specific yield (for unconfined conditions) Storativity (for confined conditions); *= superficial aquifer; **= Leederville aquifer;

3.8.2 Storage

Adopted storage parameters (both unconfined and confined) were consistent with similar hydrogeological environments (Schafer et al., 2009). Table 3.2 shows the assumed storage values adopted for the modelled layers.

3.9 Model calibration

Model calibration is the process by which the independent variables of a model are adjusted within a realistic reasonable limit, to produce the best match between the simulated and observed data. The calibration process includes refining the initially selected aquifer properties, boundary conditions and percentage of recharge infiltration to improve agreement between observed and simulated data.

The model has been calibrated to steady state (long term average water levels), from a total of 74 boreholes throughout the region within the Superficial Aquifer and 7 bores screened within the Mowen Member. The location of these boreholes and difference in modelled and observed head (residuals) are shown in Figure 3.4. It is expected that groundwater fluctuates seasonally, in response to seasonal rainfall. However, sufficient data is currently not available to allow transient or time varying calibration. Calibrated water levels contours for the Superficial Aquifer and Mowen Member are shown in Figure 3.4 and Figure 3.5.

Figure 3.6 presents a scatter plot of the observed versus modelled water level data. The scaled RMS error, as a proportion of measured range of heads is 3.0%. This value is considered low indicating an acceptable calibration. To calculate the RMS and residuals, the newly installed monitoring bores had a lower weighting applied as these bores may be screened across both the Superficial Aquifer and Mowen Member. The model calibration in the vicinity of the mine area is considered very good as shown in Figure 3.4. The modelled water balance for the calibrated steady state model is presented in Table 3.3.

ſ	Doral	Ň	© Passona Brinkenhoff Australia Pty Ltd ("PB") Copyright in the drawings, information and data recorded in this document ("he information") is the property of PB. This document and the information are solving for the use of the authorited recipient and this document may not be used, oppled or reproduced to whole or the other solving the sound oppled or reproduced to whole or the other solving the sound oppled on the other or the other sound oppled on the other of the sound oppled of the other other other other other other other of the other ot	Drawing No.	: 2172609A_	GIS_F020_B		Doral Mineral Sands Pty Ltd
	Durai		per tor any puppose other than that which is was supplied by Po. PB makes no sepresentation, undertakes no day and accepts no separability to any hitspanty who may use or rely upon this dominant that the second second second second second NGI Centified Quality System to 150 5951 APPROVED FOR AND ON BEHALF OF	Revision:	В	Date:	19/12/2013	Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits
	PARSONS	Scale: 1:100,000 at A4		Drawn By:	SH / JV	Checked by:	AN	Modelled aquifer properties (Laver 1)
	BRINCKERHOFF	Coord. System.: MGA50 GDA94	DATE	Data Source	: Landgate; S	SLIP (2011)		Figure 3-3

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F020_B.mxd

Data Source: Landgate; SLIP (2011)

м	odelled steady state water level in mAHE	(Superficial aquifer)
		Figure 3-4

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Indus	tries\2172609a_YOONGARILLUP_	_GROUNDWATER_MODE\10	_GIS\Projects\Drawing	gs_Figures_Sketches\2172609	A_GIS_F029_A.mxd

Coord. System .: MGA50 GDA94

19/12/2013

SF

Revision:

Drawn By:

System to ISO 9001 FOR AND ON BEHALF OF

NOT REQUIRED

А

SH / JV

Data Source: Landgate; SLIP (2011)

Date:

Checked by:

Doral Mineral Sands Pty Ltd

Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

Modelled steady state water level in mAHD (Mowen Member) Figure 3-5

GIS File: \\Apperfil01\projiD\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F030_A.mxd

500 Meters

250

Scale: 1:25,000 at A4

Coord. System .: MGA50 GDA94

Doral

Figure 3.6 Measured versus modeled water level

Table 3.3 Modelled steady state water balar

	In (kL/d)	Out (kL/d)
Groundwater Inflow	145,970	-
Groundwater Outflow	-	108,114
Recharge	32,770	-
Evapotranspiration	-	70,626
Total	178,740	178,740

3.10 Model prediction

3.10.1 Model prediction set up

The calibrated groundwater model was used to predict the dewatering required to draw water levels to the proposed base of mining. The adopted mine schedule is summarised in Appendix C (received on 18 October 2013 from Doral). The scheduled mine life for Yoongarillup is about 33 months. Details of the model setup for the predictive simulations are summarised as follows:

- The prediction was run using 58 monthly time increments (or stress periods) to predict variations in groundwater inflows during mining, and included 24 stress periods to simulate recovery of groundwater levels after mining ceases.
- Rainfall recharge and evaporation assigned as per the steady state mode.

- The model assumes that the mine pits are developed as per the mine schedule and that groundwater levels are drawn to just below the base of mining pit at the start of each monthly stress period.
- Drain cells (Modflow boundary condition) with a high conductance value (938 m²/d) were used to simulate dewatering. The elevation of each drain cell was set at the proposed pit bottom elevation (received as dxf file 19 November 2013). Drain cells were made inactive immediately once the pits were mined out, allowing groundwater levels to recover.
- Two water supply bores were included in the model with a total abstraction rate of 50 L/sec throughout mining activities to assess potential drawdown effects due to water abstraction from the Yarragadee Aquifer. The modelled pumping rate reflects a 1.6 GL/year groundwater abstraction license which Doral is in the process of applying for.

3.10.2 Predicted pit inflows

Predicted average monthly groundwater inflow rates from the Superficial and Leederville Aquifers over the life of mine are presented in Table 3.4 and are shown graphically in Figure 3.7. In order to determine the contribution from the Mowen Member to the pit inflows, the reported upward flow to Layer 1 from the steady state model was subtracted from the upward flow from the transient model for each stress period and associated active drain cells. The total inflows for the combined pits over the mine life are approximately 306 ML. Groundwater inflow rates are predicted to reach approximately 1,600 m³/day in February 2017 (month 20) followed by another peak of approximately 1000 m³/day in June 2017 (month 24). The average monthly predicted inflow is 306 m³/day. It should be noted that the actual dewatering rates (pumping rates) are likely to be somewhat lower than the predicted amount due to direct evaporation from the pit walls and floor.

Figure 3.7 Predicted dewatering rate (m³/day)

The predicted contribution from the Leederville Aquifer to total pit inflows varies between 0 and 20% with an average of 11.8%.

Table 3.4	Predicted	dewatering	rates
-----------	-----------	------------	-------

	Superficial		Leederville			
Month	Dewatering rate (m³/d)	Dewatering rate (L/s)	Dewatering rate (m³/d)	Dewatering rate (L/s)	Total outflow (m³/day)	Cumulative dewatering volume (ML)
Jul-15	364	4.2	14	0.16	377	12
Aug-15	97	1.1	14	0.16	110	15
Sep-15	223	2.6	17	0.19	239	22
Oct-15	134	1.5	15	0.17	148	27
Nov-15	112	1.3	14	0.16	125	31
Dec-15	80	0.9	4	0.04	84	33
Jan-16	197	2.3	9	0.10	206	40
Feb-16	29	0.3	5	0.06	34	41
Mar-16	22	0.3	4	0.00	26	41
Apr-16	20	0.2	3	0.04	23	42
May-16	18	0.2	3	0.03	21	43
Jun-16	16	0.2	3	0.03	19	43
Jul-16	16	0.2	3	0.03	18	44
Aug-16	15	0.2	2	0.03	17	44
Sep-16	14	0.2	2	0.03	16	45
Oct-16	14	0.2	2	0.03	16	45
Nov-16	13	0.1	2	0.02	15	46
Dec-16	400	4.6	11	0.12	410	58
Jan-17	627	7.3	29	0.34	656	79
Feb-17	1,495	17.3	81	0.93	1,575	123
Mar-17	687	7.9	80	0.92	766	147
Apr-17	390	4.5	61	0.71	451	160
May-17	730	8.4	58	0.67	788	185
Jun-17	932	10.8	86	1.00	1,018	215
Jul-17	582	6.7	84	0.97	666	236
Aug-17	455	5.3	89	1.03	544	253
Sep-17	464	5.4	58	0.67	522	268
Oct-17	307	3.6	58	0.67	365	280
Nov-17	284	3.3	45	0.52	328	289
Dec-17	268	3.1	45	0.52	312	299
Jan-18	103	1.2	16	0.19	119	303
Feb-18	68	0.8	3	0.03	70	305
Mar-18	23	0.3	3	0.03	25	306

3.10.3 Predicted drawdowns

Predicted drawdown contours for the life of mine (LOM) are shown in Figure 3.8 to Figure 3.11. The LOM drawdown contours represent the maximum drawdown at any time throughout mining activities. These predicted drawdown contour maps indicate that drawdown will be limited to mostly within and immediately surrounding the mine pits. Given the uncertainties of the model and seasonal natural fluctuations, the minimum drawdown contour plotted is the 1m contour. The predicted extent of groundwater drawdown is described below:

- The LOM predicted 1 m drawdown contour is expected to extend to approximately 0.35 km from pit boundary in a northerly direction;
- The 1 m drawdown contour is expected to extend to approximately. 0.2 km from pit boundary for the Mowen Member in a northerly direction;
- Predicted drawdown in both the Superficial Aquifer and Mowen Member to the south of the mine is limited such that the 1 m drawdown contour is not expected to extend beyond the mine pit boundary.
- No mining related drawdown is predicted in the Vasse Member and Yarragadee Aquifer.
- Abstraction from the proposed Yarragadee water supply wells will cause localised groundwater drawdown in both the Yarragadee Aquifer and the Vasse Member. A maximum drawdown of some 1.3 m adjacent to the production wells is predicted with the 1m drawdown contour extending up to 90 m from the production bores in the Yarragadee Aquifer and up to 80 m in the Vasse Member.

20/01/2014

SF

Revision:

Drawn By:

Data Source:

NOT REQUIRED

В

SH / JV

Date:

Landgate; SLIP (2011)

Checked by:

Doral Mineral Sands Pty Ltd Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

> Predicted modelled drawdown contours LOM (Layer 1) Figure 3-8

GIS File: \\Apperfil01\proj\D\Doral_Mineral_industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F033_B.mxd

500 Meters

250

Scale: 1:25,000 at A4

Coord. System .: MGA50 GDA94

Doral

в

Data Source: Landgate;

SH / JV

Revision:

Drawn By:

System to ISO 9001 FOR AND ON BEHALF OF

NOT REQUIRED

0	GIS_F034_B		Doral Mineral Sands Pty Ltd
	Date:	20/01/2014	Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits
	Checked by:	SF	Predicted modelled drawdown contours I OM (Laver 2)
s	LIP (2011)		Figure 3-9

GIS File: \\Apperfil01\projD\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F034_B.mxd

500 Meters

250

Scale: 1:25,000 at A4 Coord. System .: MGA50 GDA94

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F035_B.mxd

500 Meters

250

Scale: 1:25,000 at A4

Coord. System .: MGA50 GDA94

Revision:

Drawn By:

Data Source:

NOT REQUIRED

В

SH / JV

Date:

Landgate; SLIP (2011)

Checked by:

Doral

20/01/2014

SF

Revision:

Drawn By:

Data Source:

NOT REQUIRED

В

SH / JV

Date:

Landgate; SLIP (2011)

Checked by:

Doral Mineral Sands Pty Ltd Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

Predicted modelled drawdown contours LOM (Layer 4) Figure 3-11

GIS File: \\Apperfil01\projiD\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F036_B.mxd

500 Meters

250

Scale: 1:25,000 at A4

Coord. System .: MGA50 GDA94

Doral

3.10.4 Drawdown impacts on private bores

Privately owned groundwater bores identified in the project area (PB 2011) are shown in Figure 3.8 along with contours of maximum predicted drawdown for the life of mine in the Superficial Aquifer. The results suggest that none of the identified private bores will experience drawdown of more than 1 m during the life of the mine relating to impacts associated with the proposed mine (Figure 3.13). Three bores (20005669, 20005670 and 20005671) are located proximal to the predicted 1.0 m contour line and may therefore experience some drawdown up to 1.0 m. The impact of groundwater drawdown on water supply bores will likely be a temporary decrease in yield, and slight increase in pumping costs. Bore owners may also need to lower the pump in the well to maintain yields and prevent cavitation.

3.10.5 Potential impacts from the Yarragadee Aquifer abstraction

Abstraction from the proposed Yarragadee water supply wells will cause localised groundwater drawdown in both the Yarragadee Aquifer and the Vasse Member. A maximum drawdown of some 1.3 m adjacent to the production wells is predicted with the 1 m drawdown contour extending radially up to 90 m from the production bores in the Yarragadee Aquifer and up to 80 m in the Vasse Member. Leakage is limited by the Mowen Member (Aquitard) such that no pumping related drawdown greater than 1 m is predicted for the Mowen Member and Superficial Aquifer. As there are no known production bores within that area screened in the Yarragadee Aquifer, it is unlikely that other beneficial users will be impacted by mining related water abstraction.

3.10.6 Recovery prediction

Once mining is complete at Yoongarillup, dewatering will cease and groundwater levels will recover. Groundwater levels will continue to increase until a steady state or equilibrium water level is resumed. Groundwater inflows to the mine voids are driven by water level gradients between the mine voids and the surrounding areas. As groundwater levels within the mine pits increase and gradient decrease, groundwater inflow will also decrease.

In order to illustrate the mine related drawdown and recovery of groundwater levels within the mine lease, eight imaginary observation bores (Bore OB1 to Bore OB8), were inserted into the model to allow hypothetical hydrographs to be generated at each location (Figure 3.14). These hydrographs are shown in Figure 3.12. Simulated bore hydrographs for the existing monitoring bores are also shown in Figure 3.13. The results suggest that 90% recovery is expected to occur within 36 months of mine closure.

PARSONS BRINCKERHOFF

YOONGARILLUP DEPOSITS DORAL MINERAL SANDS PTY LTD

PARSONS BRINCKERHOFF

YOONGARILLUP DEPOSITS DORAL MINERAL SANDS PTY LTD

20/01/2014

SF

Revision:

Drawn By:

Data Source:

NOT REQUIRED

В

SH / JV

Date:

Landgate; SLIP (2011)

Checked by:

Doral Mineral Sands Pty Ltd

Hydrogeological investigation and groundwater modelling for Yoongarillup mineral sands deposits

Location of hypothetical production and observation bores Figure 3-14

GIS File: \\Apperfil01\projiD\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F037_B.mxd

500 Meters

250

Scale: 1:25,000 at A4

Coord. System .: MGA50 GDA94

Doral

3.11 Model sensitivity

Uncertainty in the adopted model parameters was assessed by undertaking a model sensitivity analysis. This was conducted on the model predictions to assess the potential uncertainty in predictions of dewatering volumes. The analysis involved running the model consecutively with the key model parameters varied within a plausible range of values. The details of the sensitivity runs are discussed below:

- Sensitivity run 1: doubling the hydraulic conductivity of Superficial Aquifer with respect to calibrated model.
- Sensitivity run 2: halving the hydraulic conductivity of Superficial Aquifer with respect to calibrated model.
- Sensitivity run 3: doubling the specific yield of Superficial Aquifer with respect to calibrated model.
- Sensitivity run 4: halving the specific yield of Superficial Aquifer with respect to calibrated model.

The model sensitivity run results (Appendix D) indicate that:

- maximum predicted inflows are 47 % (on average) higher in scenarios where hydraulic conductivity
 is double compared to calibrated model parameters (base case) and maximum predicted inflows are
 34 % (on average) lower in scenarios where hydraulic conductivity is half compared to the calibrated
 model parameters.
- maximum predicted inflows are 11 % (on average) higher in scenarios where specific yield is double compared to calibrated model parameters and maximum predicted inflows are 5 % (on average) lower in scenarios where specific yield is half compared to the calibrated model parameters.

3.12 Model limitations

As with all groundwater flow models, there are limitations associated with the data availability, conceptualisation and representation of dynamic flow processes. The model is calibrated to the available data and is fit for the purpose of predicting the dewatering requirements and assessing groundwater drawdown associated with the proposed mine.

The numerical model is a simplification of the hydrogeological processes. It was developed based on a number of assumptions:

- The model was calibrated to steady state condition to the available water level data. To date, insufficient long term groundwater monitoring data are available to calibrate the model to transient or seasonally varying groundwater conditions.
- Currently the model does not include any additional stress outside the study area i.e. groundwater abstraction on nearby farming properties, agricultural drain influences etc;
- No perched aquifers were included in the numerical groundwater flow model. Perched groundwater may develop in some areas seasonally.
- Groundwater abstraction other than pit inflow is limited to two production wells screened in the Yarragadee and is constant throughout the life of mine (50 l/sec based on a 1.6 GL/year abstraction license)
- For the purpose of this modelling exercise the base and walls of the evaporation ponds and process
 water ponds are assumed to be effectively impermeable due to accumulation of fines and slimes
 and the stored water does not influence the groundwater flow and level

4. Conclusions and recommendations

As part of the groundwater assessment for the proposed Yoongarillup mineral sands deposits, Parsons Brinckerhoff has undertaken the following works:

- Desktop study to establish geological and hydrogeological framework for Yoongarillup and the surrounding area, and the establishment of a groundwater monitoring network;
- Field Investigation comprising aquifer tests to the aforementioned monitoring bores;
- Development of a conceptual and numerical model.

The results of the groundwater modelling are summarised as follows:

- Due to decreasing saturated thickness of the Superficial Aquifer south of the mine, drawdown effects and pit inflows are limited in this area.
- Inflow rates and drawdown effects are highest when mining the northern pits due to increasing saturated thickness of the Superficial Aquifer towards the north.
- None of the private bores located within the study area, are expected to experience drawdown of greater than 1.0 m during the life of the mining operations.
- Three bores (20005669, 20005670 and 20005671) are located proximal to the 1.0 m drawdown contour and are likely to show a minor drawdown during the LOM.
- Recovery after mining ceases is slowest in the eastern part of the mine. It is possible that the
 recovery in that area is quicker in reality as the model may underestimate the recharge in that area.

Despite the uncertainties, the model is considered to provide reasonable estimates of groundwater pit inflow and drawdown. Sensitivity analysis whereby the model was re-run with a range of plausible parameter values suggests that uncertainty in the predictions may be in the order of \pm 40%.

The following recommendations are proposed:

- Preparation of an operating strategy in accordance with the requirements of the Department of Water including a water level monitoring plan and water quality sampling protocol prior to the commencement of mining activities.
- A census of private bores should be carried out to provide a baseline and allow identification of impacts to local groundwater users. Private bores should be included in the monitoring program where possible.
- Installation of five to seven additional bores in the Superficial Aquifer to supplement the existing bores screened within the Mowen Member.

5. References

Baddock L, Vine J, Leathersich M 2005, South West Yarragadee hydrogeological investigations and Evaluation southern Perth Basin

Bureau of Meteorology, Climatic Atlas of Australia Evaporation and Evapotranspiration

Davidson W A, 1995. Hydrogeology and groundwater resources of the Perth region, Western Australia, Bulletin 142.

DoW, 2009. Busselton-Capel groundwater area, Plan companion for the South West groundwater areas allocation plan, Department of water.

Hydrogeologic, Inc 1996. Modflow-Surfact (Version 3.0) Overview: Installation, Registration and Running Procedures 1996

Murray Darling Basin Commission (MDBC) (2001), Groundwater flow modelling guideline.

National Water Commission (NWC) (2012), Australian groundwater modelling guidelines.

Panday, S., Langevin, C.D., Niswonger, R.G., Ibaraki, M., Hughes, J.D. (2013), 'MODFLOW–USG Version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation'. Techniques and Methods, Book 6, Chapter A45. U.S. Geological Survey 66 pp.

Paper Daisy Environmental Services in conjunction with Acacia Springs Environmental – Landscape Ecologists and Banksia Environmental Mapping 2000, Vasse River Action Plan,

Parsons Brinckerhoff 2011, Surface water assessment for the proposed Yoongarillup pits, Doral Mineral Sands Pty Ltd

Parsons Brinckerhoff 2012, Yoongarillup hydrogeological investigations and groundwater modelling report, Revision 00, Original

Rumbaugh D and Rumbaugh J. 1996-2011. Groundwater Vistas Version 6.55. Environmental Simulations Inc.

Schafer, DB, Johnson, SL, and Kern, AM, 2008, Hydrogeology of the Leederville aquifer in the western Busselton-Capel Groundwater Area, Department of Water, Hydrogeological Record Series, HG31.

Schafer, DB and Johnson, SL, 2009, Groundwater resources assessment of the Western Busselton-Capel Groundwater Area, Department of Water, Hydrogeological Record Series, HG38.

Varma, S, 2009, Southern Perth basin groundwater-resource assessment: Application of the SWAMS and ESCP models, Department of Water, Government of Western Australia, Hydrogeological record series, Report no. HG26.

Appendix A

Bore logs

Lithology	Co	onstruction
Sand	00000000	cuttings
Clayey Sand		bentonite
Silty Sand	र्ट्ट्र्ट्ट्र्ट्ट्ट्र्ट्ट्ट्ट् र्ट्ट्र्ट्ट्र्ट्ट्ट्ट	gravel
Gravelly Sand		screen
Clay		casing
Sandy Clay		concrete/grout
Silty Clay		
Gravelly Clay		
 Gravel		
Sandy Gravel		
Clayey Gravel		
Silt		

Borehole Log								
	Borel	hole No:						
l '	enviro	nmental					/B1s	
	CLIENT:	Doral Minera	l Sands		DATE COMMENCED:	24/01/2012	2	
	PROJECT:	Yoongarillup			DATE COMPLETED:	24/01/2012	2	
	LOCATION:	Yoongarillup	1		LOGGED BY:	D Bourke		
	Drilling Co:	Cape Drilling	Drilling Method:	Rotary Mud	Surface RL:	Easting:	354902	
	Driller:	Phil Williams	Weather:	Fine	Datum:	Northing:	6261720	
	Class 18 PVC		Total Depth of Hole:	20.0m	Top of Casing RL:			
	Bore diameter:	50mm	Static Water Level:		Water Strike:	1		
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	AL DESCRIPTION		WELL CO	NSTRUCTION	
0.5								
1.0		Pale yellowish brown	clay, with trace of medi	um grained, sub ang	ular, poorly sorted sand and	1998 64	199899	
1.5		gravel.				193393	1336331	
2.5							REEDE	
3.0		Moderate brown gra				183889	88888	
3.5			veny ciay.			. 398 39	BIBBBB	
4.0						1993 99	8888.4	
4.5						36666		
5.5						808019	88888	
6.0		Moderate brown san	dy clay, medium grained	, sub angular, poorly	sorted sand, with some grave	803-66	888666	
6.5						888.0	888688	
7.0							88888	
7.5						- 83883	88868	
8.0						8888	88888	
9.0						83383	88868	
9.5		Grey/nink clay, with a	some gravel and medium	grained sub rounds	ad moderately sorted sand	8838	88888	
10.0		drey/plink cidy, with s	some graver and medium	Brained, sub rounde	ed, moderately sorted sand		88888	
10.5						10000	888884	
11.0							888884	
12.0	<i>IIIIIIII</i>					8887888	55555555	
12.5								
13.0						8315555	383333	
13.5		Grey/pink sandy clay,	, fine grained, sub rounde	ed to sub angular, m	oderately sorted sand with	3388 <u> </u>		
14.0		some black angular si	nale pieces to 2mm.					
14.5	()))))))						21 - C - C - C - C - C - C - C - C - C -	
15.5						. 🕅 📰		
16.0								
16.5								
17.0								
18.0		Dark grey silty clay, w	ith some medium graine	d, sub angular, mod	erately sorted sand.			
18.5		E and a since on a sin		-,,,				
19.0								
19.5								
20.0	Annun annun ann an a					1 3 1 2	11111	

	02.015	J.	Borehole	e Log			
	enviro			-		В	orehole No: MB1d
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Minera Yoongarillup Yoongarillup DMS/2011/0	l Sands 01		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	24/01/: 24/01/: D Bourke GMA	2012 2012
	Drilling Co: Driller: Class 18 PVC Bore diameter:	Cape Drilling Phil Williams 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 60.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	354902 6261720
Depth (mBGL)	GRAPHICAL LOG		LITHOGI	CAL DESCRIPTION		WEL	LCONSTRUCTION
0.5 1.0 1.5 2.0 2.5		Pale yellowish brown gravel.	n clay, with trace of medi	um grained, sub ang	ular, poorly sorted sand and		
3.0 3.5		Moderate brown gra	ivelly clay.				
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5		Moderate brown sar	ndy clay, medium grainec	l, sub angular, poorly	sorted sand, with some gra	vel.	
8.0 8.5 9.0 9.5 10.0 10.5 11.0		Grey/pink clay, with	some gravel and mediun	n grained, sub rounde	ed sand.		
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0		Grey/pink sandy clay some black angular s	r, fine grained, sub round hale to 2mm.	ed to sub angular, m	oderately sorted sand with		
13.3 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0		Dark grey silty clay, w	vith some medium graine	ed, sub angular, mod	erately sorted sand.		

1	Auro	Dra &	Borehole	Log		Вс	orehole No: MB1d
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Minera Yoongarillup Yoongarillup DMS/2011/00	l Sands D1		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	24/01/20 24/01/20 D Bourke	012 012
	Drilling Co: Driller: Class 18 PVC	Cape Drilling Phil Williams	Drilling Method: Weather: Total Depth of Hole:	Rotary Mud Fine 60.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	354902 6261720
Depth	GRAPHICAL LOG	30mm	LITHOGIC	AL DESCRIPTION		WELL	CONSTRUCTION
20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 23.5 24.0 25.5 26.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0		Dark grey/black silty Dark grey/black silty	clay, with trace of fine gr	ained, sub angular, n gular shale pieces to	noderately sorted sand. 2mm		
30.0 30.5 31.0 31.5		Dark grey/black stiff	clay.				
32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.0		Dark grey/black silty	clay, with trace coarse gr	ained, sub angular, r	noderately sorted sand.		
336.0 36.5 37.0 37.5 38.0 38.5		Dark grey silty clay.					
39.0 39.5 40.0		Dark grey silty clay, v black angular pieces	with some coarse grained of shale to 2mm.	, sub angular, moder	rately sorted sand and some		

		A	Borehole	Log			
	Auro	ora 🛠		-		Bore	ehole No:
1	enviro	nmental					MB1d
	CLIENT: PROJECT: LOCATION:	Doral Minera Yoongarillup Yoongarillup	al Sands		DATE COMMENCED: DATE COMPLETED: LOGGED BY:	24/01/201 24/01/201 D Bourke	2 2
	JOB NUMBER:	DMS/2011/0	001	Determined	CHECKED BY:	Faction:	25 4002
	Driller: Class 18 PVC Bore diameter:	Phil Williams	Weather: Total Depth of Hole: Static Water Level:	Fine 60.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Northing:	6261720
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	CAL DESCRIPTION		WELL CO	ONSTRUCTION
40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 45.5 46.0 45.5 46.0 45.5 46.0 45.5 50.0 50.5 51.0 50.5 51.0 51.5 52.0 53.5 53.0 53.5 53.0 53.5 53.0 53.5 55.0 55.5 55.5 5		Dark grey silty clay, v	with some black angular p	ieces of shale to 2m	m.		

	to the second	Borehole	e Log			
AUI	onmental				Borehol MB	e No: 2
CLIENT: PROJECT: LOCATION: JOB NUMBE	Doral Miner Yoongarillur Yoongarillur R: DMS/2011/0	al Sands)))01		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	24/01/2011 24/01/2011 D Bourke GMA	
Drilling Co: Driller: Class 18 PVC Bore diamete	Cape Drilling Phil Williams : 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 20.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	354553 6262509
Depth (mBGL) GRAPHICAL LO	oG	LITHOGIC	CAL DESCRIPTION		WELL CONST	RUCTION
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.5	Pale yellowish brow sorted sand. Light grey clayey gra Moderate red silt, w Light grey/pink silt,	n clayey gravel, with trace avel. with some coarse grained, with trace of medium grai	e of medium grained, sub angular, poorly s ned, sub angular, mo ined, sub angular, mo	, sub rounded, moderately sorted sand and gravel. oderately sorted sand-		
12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0	Moderate brown sil	ty clay, with some gravel.				
17.0 17.5 18.0 18.5 19.0 19.5 20.0	Dark grey stiff clay, v	with trace of coarse graine	d, sub angular, mod	erately sorted sand and grave	 el.	

		A	Borehole	e Log			
	Auro	ora 🖗		•		Borehold	è No:
	enviro	nmental				Borehole No: MB3	
						ļ	
	CLIENT:	Doral Minera	I Sands		DATE COMMENCED:	27/01/2011	
	PROJECT:	Yoongarillup			DATE COMPLETED:	27/01/2011	
	LOCATION:	Yoongariiiup	٦1		LOGGED BY:	D BOURKE	
	Drilling Co:	Cape Drilling	Drilling Method:	Rotary Mud	Surface RL:	Easting:	353420
	Driller:	Phil Williams	Weather:	Fine	Datum:	Northing:	6262874
	Class 18 PVC		Total Depth of Hole:	20.0m	Top of Casing RL:		
	Bore diameter:	50mm	Static Water Level:		Water Strike:		
Depth (mBGL)	GRAPHICAL LOG		LITHOGI	CAL DESCRIPTION		WELL CONST	RUCTION
0.5		Yellowish brown san	d fine to medium graine	d sub-rounded to su	ib-angular, moderately sorted		
1.0		sand.	a) fille to filed the grant grant		a angerer, mee,	88388	朝田道
1.5						123233	1999.34
2.5						86888	1838 133
3.0		Vellowish brown/ligh	t grov stiff clay, with har	d lateritic laver from	4.0-5.0m	633383	1939-3
3.5		Tellowish brownyngn	t grey suit clay, with har	a lateritic layer from	4.0-5.011.	88888	HIN H
4.0						88888	1939.48
4.5					••••••	- 86686	
5.0						86888	XXXXXX
6.0		Light grev/pink stiff c	lav.			8888	80338
6.5		-6 - 6 - 77				8.89989	80000
7.0							88888
7.5		Light grev/yellowish	brown stiff clay, with sor	ne lateritic gravel, tra	ace of coarse grained, sub	6.666	89999
8.0		angular, moderately	sorted sand.	10 leterne (l. 21 2.),	, ou of 11111 0,,	100000	88888
8.5						- (11)(11)	818888
9.0		Light grey/yellowish	brown/red gravelly clay.			1212121	
10.0				******	*******************************	~ 133113	849993
10.5	1					111111	REAR
11.0	1					193993	RIGHT
11.5						11208	RHRRR
12.0						68866	XXXXX
12.5		No cample (loss of dr	ill fluid and sample retur	n in formation - noss	-ible void)	CONTRACTOR OF	TRACTOR
13.5	NU sample	NO sample (1055 of al	III fiulu anu sample retur	n in iornauon - poss	ible voluj.	000000	anana
14.0							
14.5	1						
15.0	1						
15.5	1						
16.0						-	
16.5							
17.5							
18.0							
18.5		Dark grey stiff clay					
19.0							
19.5							
20.0						2.2.1.2	1.5.5.2.2.1

F	CLIENT: Doral Mi			-		Borehole MB4	e No: 1
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Miner Yoongarillu Yoongarillu DMS/2011/0	al Sands o o 001		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	27/01/2011 27/01/2011 D Bourke GMA	
	Drilling Co: Driller: Class 18 PVC Bore diameter:	Cape Drilling Phil Williams 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 20.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	354 6263
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	AL DESCRIPTION		WELL CONST	RUCTION
0.5 1.0 1.5 2.0 2.5		Reddish brown grav	velly sand, moderate to co	arse grained, sub an	gular, moderately sorted sand.		
3.0 3.5 4.0 4.5 5.0 5.5 6.0		Pale yellowish brow	vn stiff clay.				
6.5 7.0 7.5 8.0 8.5							
9.0 9.5 10.0 10.5 11.0							
11.5 12.0 12.5 13.0 13.5		Lightg grey/pink stif	ff clay.			8888	
14.5 15.0 15.5 16.0							
16.5 17.0 17.5 18.0 18.5							
19.0 19.5 20.0							

/	uro		Borehole	e Log		Boreho MB	le No: 15
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Minera Yoongarillup Yoongarillup DMS/2011/00	l Sands D1		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	27/01/2011 27/01/2011 D Bourke GMA	
	Drilling Co: Driller: Class 18 PVC Bore diameter:	Cape Drilling Phil Williams 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 20.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	353382 6263250
Depth (mBGL)	GRAPHICAL LOG		LITHOGI	CAL DESCRIPTION		WELL CONS	TRUCTION
0.5 1.0 1.5 2.0 2.5 3.0 3.5		Grey sand, fine grain Brown sandy lateritic Hard lateritic layer al Reddish brown claye	ed, sub rounded, well so gravel, medium grained 2 2m. y gravel.	rted. I, sub angular, moder	ately sorted.		
4.0 4.5 5.0 5.5 6.0 6.5		Light grey gravelly cla	эу.				
7.0 7.5 8.0		Light grey/moderate	reddish brown gravelly o	clay.			
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5		Yellowish brown stiff	clay with some gravel.				
13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5		Yellowish brown stiff	clay with trace of coarse	e grained, sub rounde	ed, moderately sorted sand.		
18.0 18.5 19.0 19.5 20.0		Dark grey stiff clay.					

		A	Borehole	Log			
	Auro	ora 🔆		-		Boreho	ole No:
	enviro	nmental				ME	36s
	CLIENT:	Doral Minera	al Sands		DATE COMMENCED:	25/01/2011	
	PROJECT:	Yoongarillup	1		DATE COMPLETED:	25/01/2011	
	LOCATION:	Yoongarillup	147.J		LOGGED BY:	D Bourke	
	JOB NUMBER:	DMS/2011/0	01		CHECKED BY:	GMA	254200
	Drilling Co:	Cape Drilling	Drilling Method:	Rotary Mud	Surface RL:	Easting:	354298
	Class 18 PVC	Phil Williams	Total Depth of Hole:	20.0m	Top of Casing RL:	MOLTIME:	0205577
	Bore diameter:	50mm	Static Water Level:	2010111	Water Strike:		
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	AL DESCRIPTION		WELL CONS	STRUCTION
0.5	14111111111111						
1.0						1999999	DOODO
1.5						88888	100000
2.0		Grey silty sand.				39868	196888
2.5						REAL REAL	100806
3.0						88888	123333
<u> </u>		*************			**********************		HEADER
4.5						88888	66666
5.0						38889	BRARE
5.5						89999	66666
6.0		Grey/brown silty sar	nd.			188166	6666
6.5						88989	86866
7.0						989.69	8888
8.0						199999	86888
8.5							88388
9.0						999996	
9.5						88888	66666
10.0							88388
11.0						88968	88888
11.5		Light grey/pink sand	y clay, fine to medium gra	ined, sub rounded,	moderately sorted sand.	1882.08	
12.0						88868	
12.5	01111110					00000	KINNINI KARAGAI
13.0						000000	minini
14.0	01111111						1.655
14.5		Madamta	alou modium anti-art	h rounded to sub	mular modorataly costs		
15.0		ivioderate red sandy	ciay, medium grained, su	n rounded to sub an	igular, moderately sorted sa		
15.5							
16.0							
10.5							
17.5		Yellow sandy clay, co	parse grained, sub angular	, moderately sorted	sand.		
18.0							
18.5							
19.0							
19.5		Dark grey stiff clay					
20.0							22212

F	enviro					Borehole MB6	e No: id
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Miner Yoongarillu Yoongarillu DMS/2011/0	al Sands o o 001		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	25/01/2012 25/01/2012 D Bourke	
	Drilling Co: Driller: Class 18 PVC Bore diameter:	Cape Drilling Phil Williams 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 60.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	35429 626337
Depth (mBGL)	GRAPHICAL LOG		LITHOGI	CAL DESCRIPTION		WELL CONST	RUCTION
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	-	Grey silty sand.					
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5		Grey/brown silty sa	nd.				
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5		Light grey/pink sand	dy clay, fine to medium gra	ained, sub rounded, i	moderately sorted sand.		
14.0 14.5 15.0 15.5		Moderate red sand	y clay, medium grained, su	ib rounded to sub an	gular, moderately sorted san	d.	
16.0 16.5 17.0 17.5 18.0 18.5		Yellow sandy clay, c	oarse grained, sub angula	r, moderately sorted	sand.		
19.0 19.5		Dark grey stiff clay.					

4	UIC enviro		Borehole	Log			Borehole MB6	e No: 5d
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Minera Yoongarillup Yoongarillup DMS/2011/0	el Sands 01		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	24, 24, D Bou	/01/2012 /01/2012 ırke	
	Drilling Co: Driller: Class 18 PVC Bore diameter:	Cape Drilling Phil Williams 50mm	Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 60.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Eastin North	g: ing:	354902 6261720
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	CAL DESCRIPTION			WELL CONST	RUCTION
20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5		Dark grey stiff clay. Dark grey stiff clay, v	vith some medium to coa	rse grained, sub angu	ılar, moderately sorted sand			
27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5		Dark grey stiff clay.						
31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5		Brown/grey sandy cl	ay, medium to coarse grai	ined, sub angular, mo	oderately sorted sand.			
36.0 36.5 37.0 37.5		Moderate yellowish	brown clayey gravel.					
38.0 38.5 39.0 39.5 40.0		Dark grey stiff clay.						

		L	Borehole	Log			
F	enviro			-		Boreho Mi	ole No: 36d
	CLIENT: PROJECT: LOCATION: JOB NUMBER: Drilling Co: Driller: Class 18 PVC Bore diameter:	Doral Miner Yoongarillup Yoongarillup DMS/2011/C Cape Drilling Phil Williams 50mm	al Sands 01 Drilling Method: Weather: Total Depth of Hole: Static Water Level:	Rotary Mud Fine 60.0m	DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY: Surface RL: Datum: Top of Casing RL: Water Strike:	24/01/2012 24/01/2012 D Bourke GMA Easting: Northing:	354902 6261720
Depth (mBGL)	GRAPHICAL LOG		LITHOGIC	AL DESCRIPTION		WELL CON	STRUCTION
40.5 41.0 41.5		Grey stiff clay.					
42.0 42.5 43.0 43.5		Grey silty clay.					
44.0 44.5 45.0 45.5 46.0 46.5		Dark grey stiff clay.				222 	
47.0 47.5 48.0 48.5 49.0		Grey stiff clay with t Grey stiff clay.	race of fine to medium gra	iined, sub angular, r	noderately sorted sand.		
50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 53.5 54.0 54.5 55.0 55.5 55.0 55.5 56.0 56.5 57.0 56.5 57.0 57.5 58.0 57.5 58.0 59.0 59.5		Grey stiff clay ,with t	race of fine to medium gr	ained, sub angular,	moderately sorted sand.		

F	UIC enviro		borchole	9		Borehol MB	e No: 7
	CLIENT: PROJECT: LOCATION: JOB NUMBER:	Doral Minera Yoongarillup Yoongarillup DMS/2011/00	l Sands D1		DATE COMMENCED: DATE COMPLETED: LOGGED BY: CHECKED BY:	27/01/2011 27/01/2011 D Bourke GMA	
	Drilling Co: Driller: Class 18 PVC	Cape Drilling Phil Williams	Drilling Method: Weather: Total Depth of Hole:	Rotary Mud Fine 20.0m	Surface RL: Datum: Top of Casing RL: Water Strike:	Easting: Northing:	35539 626397
Depth (mBGL)	GRAPHICAL LOG	501111	LITHOGIC	AL DESCRIPTION	Which Strike.	WELL CONST	RUCTION
0.5 1.0 1.5 2.0 2.5		Grey sand, medium t	o coarse grained, sub rou	inded, moderately s	orted sand.		
3.0 3.5 4.0		Pale yellowish brown moderately sorted sa	n/light greenish grey clay, and and gravel.	with some coarse g	rained, sub rounded,		
4.5 5.0 5.5		Light greenish grey c	ay with some gravel, ha	d lateritic layer betv	ween 4.0-5.0m.		
6.0 6.5 7.0 7.5 8.0 8.5		Moderate yellowish gravel.	brown clay with some co	arse grained, sub an	gular, poorly sorted sand and		
9.0 9.5 10.0 10.5		Light greeny grey/mo	oderate red clay-				
11.0 11.5 12.0 12.5 13.0 13.5		Light greenish grey/p	ink clay.				
14.0 14.5		Light greenish grey/p	ink clay with some coars	e grained, sub angul	ar moderately, sorted sand.		
15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5		Light greenish grey/p	ink clay with trace of me	dium to coarse grair	ned sand.		
Appendix B

Slug testing results

Appendix C

Mine plan

Modelled mining schedule

Pit No.	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15	Jan-16	Feb-16	Mar-16	Apr-16	May-16	Jun-16	Jul-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Jun-17	Jul-17	Aug-17	Sep-17	Oct-17	Nov-17	Dec-17	Jan-18	Feb-18	Mar-18
2																																	
4																																	
5																																	
6																																	
7																																1	
8																																	
9																																	
10																															I		
11																															I		
12																															I		
13																															ļļ		
14																															ļļ		
15																															µ		
16																															I		
17																															I		
18																															I		
19																															I		
20																															I		
21																															I		
22																															I		
23					ļ	ļ																											
24																															,	I	
25																															1		

Active Mining / Active drain cells

Appendix D

Sensitivity analysis results

Month	Sensitivity Run 1	Sensitivity Run 2	Sensitivity Run 3	Sensitivity Run 4
		Dewaterin	g rate (L/s)	
Nov-13	5	2	4	2
Dec-13	4	1	2	2
Jan-14	4	2	3	2
Feb-14	4	1	2	2
Mar-14	3	1	2	2
Apr-14	3	1	2	2
May-14	2	1	2	1
Jun-14	1	1	1	1
Jul-14	4	2	4	3
Aug-14	2	1	2	1
Sep-14	2	1	2	1
Oct-14	2	1	1	1
Nov-14	15	7	13	9
Dec-14	12	4	8	7
Jan-15	12	4	7	7
Feb-15	11	4	7	7
Mar-15	11	4	7	7
Apr-15	16	7	14	10
May-15	13	5	9	8
Jun-15	13	5	9	8
Jul-15	2	2	2	2
Aug-15	11	5	8	7
Sep-15	9	4	6	6
Oct-15	6	4	6	5
Nov-15	6	3	4	4
Dec-15	1	1	2	2

Parsons Brinckerhoff Australia Pty Limited

ABN 80 078 004 798

29 January 2014

Amy Walton Project Manager – Yoongarillup Doral Mineral Industries Lot 7 Harris Road PICTON WA 6229 Level 5 503 Murray Street Perth WA 6000 PO Box 7181 Cloisters Square WA 6850 Australia Tel: +61 8 9489 9700 Fax: +61 8 9489 9777 Email: perth@pb.com.au

www.pbworld.com

Certified to ISO 9001, ISO 14001, AS/NZS 4801 A GRI Rating: Sustainability Report 2011

Our ref: 2200516A-WAT-LTR-001 RevB

Your ref: email 16 Sep 2013

By email Amy.Walton@doral.com.au

Dear Amy

Surface water assessment for the proposed Yoongarillup Mineral Sands Project

1. Introduction

This letter report provides an update to the findings of the preliminary surface water assessment for the proposed Doral Yoongarillup mineral sands project that were previously reported in a letter (Parsons Brinckerhoff, 2011). This revision was commissioned by Doral Mineral Sands Pty Ltd (Doral) to Parsons Brinckerhoff Pty Ltd (PB) on 5 Nov 2013 to update the findings for the revised mine pit footprint. The preliminary surface water assessment is required as part of the approvals process for the proposed Doral Yoongarillup mineral sands project. This assessment reflects the mine plan provided to Parsons Brinckerhoff dated 28 October 2013 (design_5_mining_depth.dxf).

2. Objective

The primary objectives of the preliminary surface water assessment were to:

- 1. Assess how the proposed pit will impact the surface water flows;
- 2. Estimate the surface runoff yield of the local catchment in which the proposed pit is to be located; and
- 3. Assess the reduction in flow volumes down gradient of the proposed pit.

3. Methodology

The preliminary surface water assessment was conducted by adopting the following approach:

- Collation of rainfall and runoff data so as to understand the existing streamflow characteristics;
- Delineation of the catchments of the local creeks and rivers that are likely to be affected by mining;
- Development of a simple rainfall-runoff relationship based on local gauged data;
- Assessment of the proportional contribution of runoff from the proposed mine footprint;

- Estimation of the pre-mining and post-mining catchment yield of surface runoff from the local catchments to assess the net change in surface water yield; and
- Presentation of the information as an average annual water balance.

4. Project location

The proposed Doral mineral sands mine is located approximately 16.0 km south-east of Busselton in the South-West region of Western Australia, and is situated in the foothills of the Whicher Range as shown on Figure 1. This assessment considers the proposed mining pit located to the west of Piggott Rd in the foothills of the Whicher Range within the lease boundary M7000459 and M7000458 (Figure 2).

5. Hydrology

5.1 Regional waterways

The proposed mineral sands mine is located in the upper reaches of the Vasse River basin as shown in Figure 1.

The Vasse River originates in the Whicher Ranges and flows into the Vasse Estuary; its only tributary is the Sabina River which similarly flows into the Vasse Estuary. The majority of the catchment is agricultural land; consequently approximately 80% of the catchment has been cleared. The proposed mine lease area falls within the south-eastern section of the Vasse River catchment. The Vasse River has been modified by several stream diversions.

5.2 Local waterways

There are no local waterways within the study area. Sheet flow or flow in small gullies is expected based on aerial observations. A smaller portion within the Vasse River catchment has been defined for the purposes of this assessment and is hereby referred to as the Vasse River sub-catchment in Figure 2. The Vasse River sub-catchment contains the top of the catchment upstream of the pit (referred to as the Foothills sub-catchment), the pit outline and the overland flow path downstream of the mine where runoff from this local sub-catchment meets the Vasse River.

5.3 Rainfall and Runoff

Table 1 summarises rainfall and stream flow gauge information.

The Department of Water (DoW) has two gauging stations of interest within the vicinity of the proposed mine area:

- 610025 Sabina Diversion, Wonnerup East Road, approximately 6.6 km north of the proposed pit; and
- 610008 Margaret River North, approximately 4.6 km south of the proposed pit in the Whicher Ranges.

The gauged flows at 610025 receives runoff from the Whicher Ranges and the agricultural parts of the Sabina River catchment with an annual streamflow of 4.46 GL/yr based on data from 2001 to 2009. The Station 610008 is situated in the Whicher Ranges and receives flows from the headwaters of Margaret River and has an average annual streamflow of 1.44 GL/yr based on data from 1978 to 2012. Comparison of

streamflows for a common period of 2006 to 2009 suggests much lower values (0.98 GL/yr for 610008 and 4.01 GL/yr for 610025). Runoff encountered from the hills has declined significantly (32% reduction) compared to the agricultural catchment (10% reduction) in recent times.

Several rain gauging stations are located within the vicinity of the study area:

- DoW 509355 located at the same site as gauging station 610008;
- Bureau of Meteorology (BOM) 9771 north-east of the study area;
- BOM 9971 south-west of the study area.

The calculated average annual rainfalls based on data from 1978 to 2012 at gauging stations 9771 and 509355 are 795.6 mm/yr and 917.7 mm/yr respectively. The average annual rainfall for gauging station 9971 is 770.2 mm/y, based on data from 2001 to 2012. The calculated annual average rainfall for 2001 to 2012 for stations 9771 and 509355 are 718.5 mm/yr and 841.8 mm/yr respectively.

	Rainfall Stations							
	9771	9971		509355				
	Yoongarillup BOM	Yoongarillup BOM Acton Park BO		Dow				
Data Start	1957	2000		1977				
Data Finish	Operating	Operating		Operating				
Years of Data	57	14		37				
Average Annual Rainfall, 1978 - 2012 (mm/yr)	795.6 770.2 ^{1.}			917.7				
	Department of Water Stre							
	610008		610025					
	Margaret River North		Sabina Diversion					
Catchment Area (km ²)	15.52		77.6					
Data Start	May,1977		Jul, 2000					
Data Finish	Operating		Jul, 2010					
Number of years without major gaps	29 (1978-1999, 2006-2012)		9 (2001-2009)					
Data Gap	Dec, 1999 – Jun, 2005							
Common period of data	2006-2009		2006-2009					
Average Annual Streamflow (GL/yr)	0.98 (2006-2009)		4.01 (2006-	2009)				

 Table 1
 Rainfall and stream gauging station summary

1. The average for this station are based on data from 2001 to 2012

6. Results

6.1 Catchment Areas

Table 2 summarises the estimated catchment areas of the sub-catchments around the proposed pit as shown in Figure 2. The total catchment area of the Vasse River sub-catchment within which the pit is located is 34.48 km².

The southern and upper part of the Vasse River sub-catchment is located within the Whicher Range, which is defined as the Foothills sub-catchment in this report. The catchment area of the Foothills sub-catchment is 10.79 km².

The total area of the pit outline is 0.40 km^{2} and it intercepts 2.36 km^{2} of the upstream catchment (which is part of the Foothills sub-catchment). The total intercepted area including the pit outline is 2.76 km^{2}.

These areas were used in assessing the relative surface runoff yields as discussed in Section 6.3.

Table 2 Catchment areas

Mine	Vasse River Sub-catchment Area (km ²)	Pit Area (km²)	Foothills sub- catchment Area (km ²)	Pit Area + intercepted upstream catchment (km ²)	Vasse River Sub- catchment area excluding pit footprint (km ²)
Yoongarillup Pit	34.48	0.40	10.79	2.76	34.08

6.2 Changes to waterways during mining

Once mining commences, it is assumed that the mine pit will be isolated from runoff and does not directly contribute to surface runoff. The intercepted area up-gradient of the proposed pits will drain surface runoff towards the proposed pit, possibly into the pit if it is not fully protected by bunds. If bunds are provided, then the surface runoff may accumulate up gradient of the pit and possibly flow around the pit depending on the topography. In either case, it is assumed that Doral will develop a water management plan to manage the runoff up gradient of the pit via a flow diversion structure. The study of the flow diversion alternatives was not within the scope of this study.

6.3 Estimated runoff volume change

As the proposed Yoongarillup pit and its intercepted catchment are located within the foothills of the Whicher Ranges, flows from the 610008 gauge and rainfall data from the DoW 509355 rain gauge were assumed to be representative of the expected rainfall and runoff characteristics for this part of the Vasse River sub-catchment. All available data for periods 1978-1999 and 2006-2012 were used in the rainfall-runoff analysis.

The results of data analysis are summarised in Figure 3. This figure shows the average monthly stream flow and rainfall for a period from 1978 to 2012, and estimated average monthly runoff coefficients for periods 1978- 2012 and 2006-2009. In this assessment the runoff coefficient is defined as the ratio between stream flow and rainfall depth over the sub-catchment area and is expressed as a percentage.

Stream flow in the local waterways is expected to occur from May, peaking in August and is then expected to decline from August through to January. It is important to note that the highest runoff coefficient of 30% occurs in October, three months after the peak stream flow. The peak runoff coefficient despite low monthly rainfall compared to June and July suggests that groundwater base flow dominates the total stream flow from October to December.

The monthly runoff coefficients presented in Figure 3 for the period 2006-2009 were used in estimating the runoff yield from the foothills section of the catchment up-gradient from the proposed mine pit which is summarised in Figure 4.

The annual yield from the Sabina River catchment, the Vasse River sub-catchment and the Foothills sub-catchment area were estimated as summarised in Table 3.

Catchment	Sabina River	Vasse River sub- catchment	Foothills sub-catch	nment
Catchment Area (km ²)	77.6	34.5	10.79	
Monthly runoff (ML)	Based on measured data	Estimated by ratio of catchment areas	Estimated based on average runoff coefficients (1978-2012)	Estimated based on average runoff coefficients (2006-2009)
Jan	38.6	17.1	3.4	6.1
Feb	15.9	7.1	0.2	0.0
Mar	15.1	6.7	0.1	0.5
Apr	25.6	11.4	0.0	0.0
Мау	56.4	25.1	0.9	2.0
Jun	297.9	132.3	38.5	57.7
Jul	1212.8	538.6	167.0	236.2
Aug	955.9	424.5	276.4	425.4
Sep	980.7	435.5	272.5	399.3
Oct	255.5	113.5	158.7	198.3
Nov	89.7	39.9	69.3	92.5
Dec	65.1	28.9	20.3	48.5
Annual runoff yield (GL)	4.01	1.78	1.01	1.47
Yield % of the Vasse River sub-catchment		100%	57%	82%

Table 3 Estimated yield based on flow data from 2006 - 2009

The runoff yield for the foothills section of the catchment were assessed based on long term average (1978-2012) rainfall and runoff coefficients (the 4th column in Table 3) and short term average (2006-2009) rainfalls and runoff coefficients (the 5th column in Table 3).

Based on the revised yield estimates the foothills proportion of the Vasse River sub-catchment is likely to contribute between 57% (1.01 GL/yr) to 82%(1.47 GL/yr) of the total expected yield at the outlet of the Vasse River sub-catchment.

The percentage change in potential surface water runoff yield for the pre- and post-mining case; with and without diversions around the pit is summarised in Table 4 for the Vasse River sub-catchment and the foothills section of this sub-catchment (foothills sub-catchment).

Table 4 Surface water yield (%)

Catchments	Pre-mining yield (%)	Post-mining yield without diversion around pit (%)	Post-mining yield with diversion around pit (%)
The Vasse River sub- catchment	100	86.97	98.11
The foothills sub- catchment	100	74.45	96.30

Surface water yield from the Vasse River sub-catchment will be reduced by approximately 21% without any flow diversions around the pit; whereas with diversions around the pit the yield will be reduced by approximately 3% based on 2006-2009 average rainfall and runoff coefficients.

The reduction in surface water yield from the Vasse River sub-catchment without and with diversion around the proposed mine pit will be 13.0% and 1.9% respectively, if long term averages of rainfalls and runoff coefficients are used.

Additionally, the surface water yield from the foothills sub-catchment, which equates to 82% of the yield for the Vasse River sub-catchment during 2006-2009, will be reduced by approximately 25.5% without any flow diversions around the pit, while the yield will be reduced by approximately 3.7 % if surface water is diverted around the pit.

6.4 Water Balance

The proposed mining is expected to alter the water balance in the local catchments where the proposed mine pits are located. Changes in the water balance could be due to:

- A reduction in the surface runoff catchment area draining towards local waterways due to voids that will be created by the mine pit;
- A reduction in the surface runoff catchment area draining towards local waterways due to the interception of surface runoff from the drainage area up gradient of the proposed pit; and
- A reduction in groundwater through flow due to abstraction of groundwater to keep the mine pit dry during mining.
- A more detailed description of the project water balance is provided in the Yoongarillup Site Water Balance Report (Parsons Brinckerhoff, 2013)

7. Summary

A desktop study was undertaken by Parsons Brinckerhoff to characterise the current waterways and how they will be altered by the proposed mining. Surface water yield estimates indicate that the Vasse River sub-catchment, where the proposed pit is to be located, has an annual runoff yield of approximately 1.78 GL/yr.

The reductions in surface water yield from the Vasse River sub-catchment are likely range from approximately 14% to 21% without any flow diversions around the pit; whereas with diversions around the pit the reduction in yield may range from 2.0% to 3.0%.

Additionally, the surface water yield from the foothills sub-catchment, which can range from 57% to 82% of the yield for the Vasse River sub-catchment, will be reduced by approximately 25.5 % without any flow diversions around the pit, while the yield will be reduced by approximately 3.7 % if surface water is diverted around the pit.

A surface water diversion plan and an investigation of water quality issues related to potential erosion or potential contamination from mining operations were not part of the scope of this study. It is expected that Doral will prepare a Water Management Plan to manage surface water quality and quantity around the proposed mine site.

Yours sincerely

Dr Aditya Jha Principal Engineer, Water Resources Parsons Brinckerhoff

cc: Aurora Environmental - Damon Bourke

References

Parsons Brinckerhoff. (2011). Surface water assessment for the proposed Yoongarillup pit, Doral Mineral Sands ref 201026254/PR2_23712/aj. unpublished report prepared for Doral Mineral Industries.
 Parsons Brinckerhoff. (2013). Yoongarillup Site Water Balance. unpublished report prepared for Doral Mineral Industries.

Doral	N	© Parsons Briekerhoff Australia Pty Ltd ("PB") Copyright in the drawings, information and data recorded in this document ("the information") is the groupsty of PB. This document and the information are solely for the used of the authorised racipant and this document may not be used, oppied or reproduced in whole or their document may not be used, oppied or reproduced to whole or their document may not be used, oppied or reproduced to whole or the sole of	Drawing No.	2172609A_	GIS_F027_A		Doral Mineral Sands Pty Ltd
Durai		part for any pupped other than that tench is was supplied by Po- PS makes no representation, undertakes no day and categoria no responsibility to any third party who may use or rely upon this support of the supplier of the supplier of the supplier of the NGSI Certified Quality System to 150 3051 APP ROVED FOR AND ON BEHALF OF a	Revision:	А	Date:	4/12/2013	Surface Water Assessment for Doral's Yoongarillup Mineral Sands Project
PARSONS	Scale: 1:200,000 at A4	NOT REQUIRED	Drawn By:	SH / JV	Checked by:	AJ	
BRINCKERHOFF	Coord. System.: MGA50 GDA94	DAT 6	Data Source	Landgate; S	LIP (2011)		Figure 1

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F027_A.mxd

Doral	N	© Parsons Briekerhoff Australia Pty Ltd ("PB") Copyright in the drawings, information and data recorded in this document ("the information") is the groupsty of PB. This document and the information are solely for the used of the authorised racipant and this document may not be used, oppied or reproduced in whole or their document may not be used, oppied or reproduced to whole or their document may not be used, oppied or reproduced to whole or the sole of	Drawing No.	2172609A_	GIS_F027_A		Doral Mineral Sands Pty Ltd
Durai		part for any pupped other than that tench is was supplied by Po- PS makes no representation, undertakes no day and categoria no responsibility to any third party who may use or rely upon this support of the supplier of the supplier of the supplier of the NGSI Certified Quality System to 150 3051 APP ROVED FOR AND ON BEHALF OF a	Revision:	А	Date:	4/12/2013	Surface Water Assessment for Doral's Yoongarillup Mineral Sands Project
PARSONS	Scale: 1:200,000 at A4	NOT REQUIRED	Drawn By:	SH / JV	Checked by:	AJ	
BRINCKERHOFF	Coord. System.: MGA50 GDA94	DAT 6	Data Source	Landgate; S	LIP (2011)		Figure 1

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F027_A.mxd

Doral
PARSONS BRINCKERHOFE

Drawing No.:	2172609A_GIS_F028							
Revision:	А	Date:	03/12/2013					
Drawn By:	SH	Checked by:	AJ					
Data Source: Landgate, DoW, Doral (2013)								

Doral Mineral Industries Surface Water Assessment for Doral's

Yoongarillup Mineral Sands Project

Catchment plan Figure 2

GIS File: \\Apperfil01\proj\D\Doral_Mineral_Industries\2172609a_YOONGARILLUP_GROUNDWATER_MODE\10_GIS\Projects\Drawings_Figures_Sketches\2172609A_GIS_F028_A.mxd

PARSONS BRINCKERHOFF

Figure 3 Study area hydrological characteristics

Figure 4 Surface water runoff yields for the foothills sub-catchment