

APPENDIX 5-9

Tailings Storage Facility Geotechnical Assessment

Hastings Technology Metals

Yangibana Project, Gascoyne Region, WA

Geotechnical Investigation for Tailings Storage Facilities and Associated Infrastructure

January, 2017

112391.11R01 - TSF GI Rev 0

Document History and Status

Title: Job Number/Extension	Yangibana Project- Geotechnical Investigation 112391.11
Document Number:	112391.11R01 TSF GI Rev 0
Last Printed:	January 2017
File Path:	G:\Synergy\Projects\112\112391 Yangibana Rare Earth\11 Geotechnical Investigation\Reports\R01\Text\112391.11R01 - TSF GI\112391.11R01 - TSF GI Rev 0.docx
Author:	Alpesh Patel/Colin Jenner
Reviewer:	John Leavy
Job Manager:	Alpesh Patel

Rev.	Status	Issued to Issue Dat		Signatures Author	Reviewer
Α	Draft Issue	Wave, Hastings	27/01/2017	AP/CJ	JL
0	EPA Referral Document Issue	Wave, Hastings	30/01/2017	AP/CJ	JL

This Revision distributed To:	Hard Copy	Electronic Copy
Hastings Technology Metals/Wave International	-	\checkmark
ATCW Perth Office	-	On network

John Leavy Reviewer

Alpesh Patel/Colin Jenner Author

> IMPORTANT NOTICE Please refer to our Conditions of Investigation and Report

CONDITIONS OF INVESTIGATION AND REPORT

Conditions of Report

- 1. This report has been prepared by us for the purposes stated herein. We do not accept responsibility for the consequences of extrapolation, extension or transference of the findings and recommendations of this report to different sites, cases or conditions.
- 2. This report is based in part on information which was provided to us by the client and/or others and which is not under our control. We do not warrant or guarantee the accuracy of this information.
- 3. We believe the conclusions and recommendations contained herein were reasonable and appropriate at the time of issue of the report. However, the user is cautioned that fundamental input assumptions upon which this report is based may change with time. It is the user's responsibility to ensure that input assumptions remain valid.
- 4. This report must be read in its entirety. This notice constitutes an integral part of the report, and must be reproduced with every copy.
- 5. This report is prepared solely for the use of the person or company to whom it is addressed. No responsibility or liability to any third party is accepted for any damages howsoever arising out of the use of this report by any third party.
- 6. Unless specifically agreed otherwise in the contract of engagement, ATC Williams retains Intellectual Property Rights over the contents of this report. The client is granted a licence to use the report for the purposes for which it was commissioned.

Geotechnical Investigation

- 1. Geotechnical site investigation necessarily involves the investigation of the subsurface conditions at a site at a few isolated locations, and the interpretation and extrapolation of those conditions to elsewhere on the site not so investigated. This procedure has been adopted at the site that is the subject of this report and due care and skill has been applied in carrying out and reporting on the work. Thus the findings, conclusions and comments contained in this report represent professional estimates and opinions and are not to be read as facts unless the context makes it clear to the contrary. In general, statements of fact are confined to statements as to what was done and/or what was observed. Other statements have been based on professional judgement.
- 2. The scope of the work has been planned in the absence of any fore-knowledge of the site other than that stated in the report. Unless otherwise stated we consider that the number of locations investigated and the depths to which they have been investigated are reasonable bearing in mind the scale and nature of the project, and the defined purpose for which the investigation was undertaken.
- 3. We do not accept any responsibility for any the variance between interpreted and extrapolated conditions and those that are revealed by any means subsequently. Specific warning is also given that many factors, either natural or artificial, may render ground conditions different from those which pertained at the time of the investigation. Should there be revealed during the construction or at any other time any apparent difference from subsurface conditions described or assessed in this report, it is strongly recommended that such differences be brought to our attention so that its significance may be assessed and appropriate advice given.

TABLE OF CONTENTS

1	INTRODUCTION
2	PROJECT BACKGROUND. 7 2.1 Site Location. 7 2.2 Geological Setting
3	GEOTECHNICAL FIELD INVESTIGATION
4	LABORATORY TESTING
5	RESULTS OF INVESTIGATION 13 5.1 Subsurface Conditions 13 5.1.1 Boreholes 13 5.1.2 Test Pits 14 Silty Sand (SM) 14 Clayey Sand (SC) 14 Sandy Gravel (GC) 14 Sandy Gravel (GWS) 14 Source 14 Source 14 Sandy Gravel (GWS) 14 Source 14 Subscription 14 Source 14 </td
	5.3In-situ Permeability Testing165.4Laboratory Test Results175.4.1Soil testing175.4.2Rock strength testing18
6	ANALYSIS, CONCLUSIONS AND RECOMENDATIONS.196.1TSF sites.196.1.1Site preparation and construction considerations.196.1.2Foundations196.1.3Embankment construction materials196.1.4Seepage control measures20
7	CLOSURE

FIGURES

Figure 1: Yangibana Project Location	7
Figure 2: Yangibana Geology	8
Figure 3: Proposed Processing Route Yangibana Project 1	

TABLES

Table 1: TSF borehole field work information	11
Table 2: TSF test pit field work information	12
Table 3: Laboratory Testing Program	13
Table 4: Summary of Test Pit Subsurface Conditions	
Table 5: Falling head in-situ permeability tests results	16
Table 6: Packer Test Results	17
Table 7: Laboratory Classification Test Results	17
Table 8: Modified compaction and CBR test results	18
Table 9: Permeability and tri-axial test results	18
Table 10: Point Load test results	18

DRAWINGS

	Drawing 001	General Site Layout
--	-------------	---------------------

- Drawing 002 TSF Borehole and Test Pit Locations
- Drawing 003 Borrow material locations

APPENDICES

- Appendix A Test Pit Logs
- Appendix B Test Pit Photographs
- Appendix C TSF Borehole Logs
- Appendix D
- TSF Borehole Photographs In-Situ Permeability Test Results Appendix E
- Appendix F Laboratory Test Certificates
- Appendix G Point Load Results

1 INTRODUCTION

Hastings Technology Metals are currently preparing a feasibility study for the Yangibana Rare Earths Project in the Gascoyne region of Western Australia.

ATC Williams has been engaged by Hastings Technology Metals to complete geotechnical investigations for the proposed mine infrastructure at the Yangibana Rare Earths Project. The geotechnical investigation will provide information for infrastructure design and the submission of a mining proposal. The objectives of the geotechnical investigation are to:

- Undertake field investigations and laboratory testing of soil and rock samples to an extent sufficient to provide data and relevant geotechnical parameters for design of the mine infrastructure,
- Assess the availability and suitability of site won soil and rock materials for earthworks construction and for use as concrete aggregate if appropriate,
- Provide recommendations for design of structural foundations at the plant site, administration area, camp site and potential culverts or bridge crossings at creek locations,
- Provide recommendations and geotechnical parameters for design of the TSF and evaporation pond containment embankments,
- Provide recommendations for pavement design including preliminary assessment of sub base and base course requirements,
- Identify the depth to groundwater beneath the proposed TSF areas and obtain baseline groundwater samples for water quality analysis.

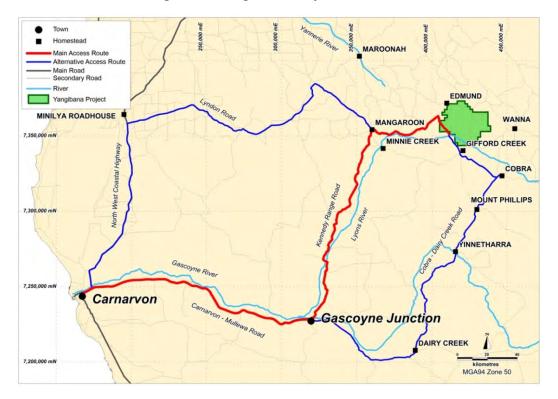
The geotechnical investigation was carried out in two stages.

The first stage was completed between 23rd October 2016 and 6th November 2016. The fieldwork comprised diamond core and RC drilling at the proposed plant site and Tailings Storage Facility (TSF) locations. The second stage was completed between 8th November 2016 and 22nd November 2016 which comprised test pit excavation at the proposed primary mine infrastructure locations.

Terms of reference for this investigation were provided in ATC Williams proposal 112391.11P01 Rev2 dated 12th October 2016. Authorisation to proceed was received from Andy Border of Hastings Technology Metals Ltd.

This document reports the geotechnical investigations undertaken at the proposed TSF sites only. The TSF sites comprise;

- TSF 1 A central thickened discharge type TSF to store "rougher" flotation tailings. Bleed water and incidental run off will be stored in an appurtenant water storage pond,
- TSF 2 A paddock type TSF to store "cleaner" flotation tailings,
- TSF 3 A paddock type TSF to store Hydrometallurgy plant tailings,
- An evaporation pond to store and evaporate hydrometallurgy plant waste water.


The findings of the investigations undertaken at the proposed plant and primary mine infrastructure locations will be provided in a separate report.

2 PROJECT BACKGROUND

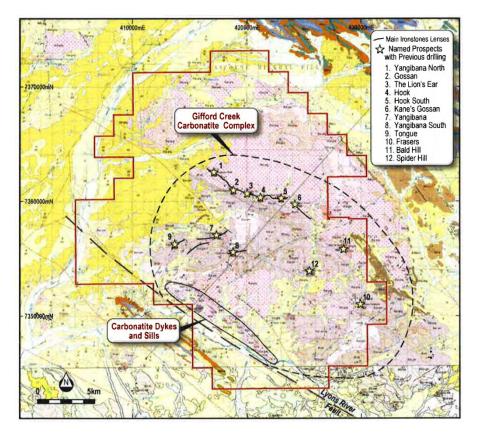
2.1 Site Location

Yangibana is located in the Gascoyne region of Western Australia, approximately 270 km northeast of Carnarvon. Error! Reference source not found. **Figure 1** shows the site location and **Drawing 001** shows the general mine site layout.

Figure 1: Yangibana Project Location

2.2 Geological Setting

The dominant lithologies in the tenement area are the Pimbyana Granite and the Yangibana Granite of Proterozoic age (*c* 1860 ma). Rafts of meta-sedimentary rocks including sandstones, tillites, calc-silicates and schists occasionally occur within the site area.


The granites are very well exposed and form extensive low rugged hills covered in boulders with numerous smooth, rounded outcrops of low relief.

The orebody is hosted in the Gifford Creek Carbonatite complex, formed by intrusion of ferrocarbonatite sills into the granitic units. The dominant trend is north west, parallel to the Lyons River fault which is located to the south of the proposed mining area. The sills dip towards the fault.

The near surface expression of the hydrothermally altered (fenitised) ferrocarbonatite dykes is represented by sinuous veins of iron oxides (ironstones) primarily of magnetite composition containing significant amounts of rare earth elements.

The geological setting is illustrated in Figure 2.

Figure 2: Yangibana Geology

Localised shallow deposits of unconsolidated silt, sand and gravel are present in the creeks crossing the site area and calcrete deposits are locally present adjacent to the alluvial channels.

To the north and east of the exposed granite complex and locally adjacent to creeklines, sandy and clayey distal sheetwash and slope deposits are inferred. To the west, first generation alluvial units of ferruginised and dissected sand and gravel are indicated.

2.3 Topography

The site topography comprises gently undulating grassland and rocky outcrop with concentrations of trees in creek beds and in isolated locations elsewhere.

Localised ridges with relief typically of less than 10 m are present along the proposed access and haul road alignments. Prominent hills have maximum relief of between 15 m (Spider Hill) and 30 m (Bald Hill). The Lyons River is the principal watercourse, flowing from east to west immediately south of the proposed camp site. Fraser Creek forms a major north to south flowing tributary passing through the mining area.

Fairly broad valleys are present in most of the study area, typically sloping at around 0.7% to 0.5% towards the west or south west.

2.4 Climate

The local area has an arid climate. It is generally warm all year round. The dry season lasts approximately nine months from April to December. Peak wet season rainfall generally occurs in February.

The nearest weather station recording a full suite of climate data is Mount Phillips station (station number 007058) located approximately 60 km south of the site. Average maximum daily temperatures range from 9 °C in July to 40°C in January.

Wanna station (station number 007028) is the closest station recording rainfall data, approximately 20 km south of the site. The mean annual rainfall is about 230 mm, but the area has experienced rainfalls up to 550 mm at average intervals of about 15 -20 years.

2.5 Mining

Open pit, drill and blast mining methods are proposed for approximately 4 pits, commencing with the Bald Hill pit and Frasers pit in the eastern mineralisation belt and continuing with the Yangibana and Yangibana West pits in the western mineralisation area. The preferred plant site location is situated approximately 2 km to the south of the Bald Hill pit.

The depth of significant weathering is very shallow across most of the mine tenement area; although, approximately 25 m of extremely to highly weathered saprolitic material has been identified at Bald Hill.

Mining rate of ore is approximately 1 Mtpa for a period of 7 to 8 years is envisaged.

Waste rock dumps formed primarily of slightly weathered to fresh granite will be located on the northern footwall side of the pits. The saprolitic material at Bald Hill may be stockpiled separately and may be used as low permeability material for dam construction and ultimately for mine rehabilitation purposes.

2.6 Processing

The generalised processing route for the Yangibana ore is summarised in Figure 3.

Three tailings streams are expected from the proposed processing route as follows:

- Rougher and Cleaner tailings from the beneficiation plant, and
- Tailings from the hydrometallurgical plant.

The tailings from the beneficiation plant rougher flotation cells are expected to comprise 93% of the slurried waste materials and are expected to be benign with relatively low levels of radioactive nuclides (approx. 1 Bq/g activity concentration). A large tailings storage facility (TSF 1) is proposed for storage of these materials, which will be thickened to a solids concentration of approximately 60% prior to discharge.

The tailing from the beneficiation plant cleaner flotation cells and the hydrometallurgical processing plant will comprise the remainder of the slurried waste materials and will contain concentrated levels of radionuclides. Two separate tailings storage facilities comprising HDPE lined paddock type facilities are proposed to store these materials (TSF 2 and TSF 3).

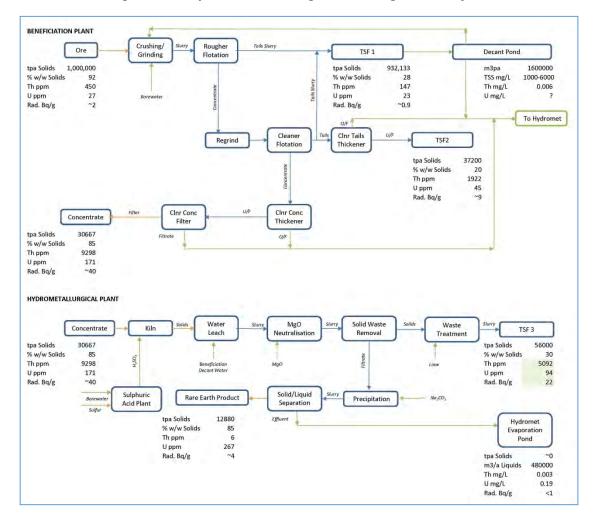


Figure 3: Proposed Processing Route Yangibana Project

2.7 Water Supply

Groundwater was encountered during exploration drilling, where the mineralised zone was found to be highly permeable forming a confined aquifer within the granitic host rocks. It is expected that the mine water supply will be sourced from dewatering of the orebody, supplemented by decant water return from the TSF and collection of wet season rainfall run-off. Additional water supply may be developed from compartmentalised sections of the mineralised zone along the strike of the orebody.

As part of the feasibility study, hydrogeological investigation has been undertaken at the Bald Hill, Frasers and Yangibana pit locations by Groundwater Resource Management (GRM).

3 GEOTECHNICAL FIELD INVESTIGATION

3.1 General

The locations of the boreholes were accessible using existing exploration roads/tracks. Most of the test pits were in locations without tracks/access. The excavator was used to clear paths to the locations. All clearing was undertaken under a DMP approved Program of Works.

The fieldwork and logging was carried out by an experienced ATCW Engineer who logged and sampled the test holes.

The test pit logs and photographs are presented in **Appendix A** and **Appendix B** respectively.

The borehole logs and core photographs for the TSF 1 site are presented in **Appendix C** and **Appendix D** respectively.

In-situ permeability testing data sheets from the boreholes are presented in Appendix E.

3.2 Tailing Storage Facility

The following field work was conducted at the proposed TSF site locations:

- Four (4) HQ diamond drill boreholes to depths between 11.0 m and 55.5 m bgl;
- One (1) RC dill hole to a depth of 66.0 m bgl (CTBH-2);
- Piezometer installation in the RC borehole to measure groundwater table depth and fluctuation;
- Six (6) down hole packer tests performed in boreholes CTBH-1 and CTBH-3;
- Six (6) falling head permeability tests to depths between 0.99 m and 6.6 m bgl.
- Forty (40) test pits excavated to depths between 0.35 m to 2.1 m bgl;

A summary of borehole and test pit information is presented in **Table 1**Error! Reference source not found. and **Table 2**Error! Reference source not found. respectively.

Hole ID	Туре	Proposed Infrastruc- ture	Easting MGA94	Northing MGA94	Dip	Depth (m) bgl	Date Start	Date Finish
CTBH1	Diamond Drill	TSF 1 -RWP	426,455	7,352,168	-90	40.5	27/10/16	28/10/16
CTBH2	Reverse Circulation	TSF 1	426,837	7,352,238	-90	66	6/11/16	7/11/16
СТВН3	Diamond Drill	TSF 1	427,497	7,352,254	-90	55.5	29/10/16	31/10/16
CTBH4	Diamond Drill	TSF 1	426,933	7,351,878	-90	11	1/11/16	1/11/16
СТВН5	Diamond Drill	TSF 1	427,005	7,352,740	-90	12.5	26/10/16	26/10/16

Table 1: TSF borehole details

Hole ID	Proposed Infrastructure	Depth (m) bgl	Easting MGA94	Northing MGA94	Equipment Used
CTTP-01	RWP	1.1	426,745	7,351,678	13 T Excavator
CTTP-02	RWP	1.4	426,770	7,351,944	13 T Excavator
CTTP-03	RWP	0.5	426,456	7,352,106	13 T Excavator
CTTP-04	RWP	0.45	426,541	7,352,232	13 T Excavator
CTTP-05	RWP	0.6	426,429	7,352,188	13 T Excavator
CTTP-06	RWP	0.5	426,481	7,352,294	13 T Excavator
CTTP-07A	RWP	0.45	426,556	7,352,388	13 T Excavator
CTTP-07B	RWP	0.4	426,558	7,352,400	13 T Excavator
CTTP-08	RWP	0.5	426,655	7,352,511	13 T Excavator
CTTP-09	RWP	1.8	426,780	7,352,644	13 T Excavator
CTTP-10	RWP	1	426,915	7,352,721	13 T Excavator
CTTP-11	RWP	0.5	426,737	7,352,424	13 T Excavator
CTTP-12	RWP	0.45	426,710	7,352,246	13 T Excavator
CTTP-13	TSF 1	0.4	426,939	7,352,559	13 T Excavator
CTTP-14	TSF 1	1.7	426,886	7,352,068	13 T Excavator
CTTP-15	TSF 1	0.45	427,119	7,352,277	13 T Excavator
CTTP-16	TSF 1	1.3	427,076	7,352,117	13 T Excavator
CTTP-17	TSF 1	0.5	427,327	7,352,439	13 T Excavator
CTTP-18	TSF 1	1.3	427,620	7,352,852	13 T Excavator
CTTP-19	TSF 1	1.7	427,728	7,352,493	13 T Excavator
CTTP-20	TSF 1	0.9	427,726	7,352,139	13 T Excavator
CTTP-21	TSF 1	2.1	427,827	7,351,945	13 T Excavator
CTTP-22	TSF2/TSF3	1	428,104	7,352,653	13 T Excavator
CTTP-23	TSF2/TSF3	1.9	428,359	7,352,657	13 T Excavator
CTTP-24	TSF2/TSF3	1.1	428,232	7,352,526	13 T Excavator
CTTP-25	TSF2/TSF3	1	428,078	7,352,398	13 T Excavator
CTTP-26	TSF2/TSF3	0.5	428,365	7,352,384	13 T Excavator
CTTP-27	TSF2/TSF3	1.5	428,214	7,352,236	13 T Excavator
CTTP-28	TSF2/TSF3	1.1	428,054	7,352,074	13 T Excavator
CTTP-29	TSF2/TSF3	0.55	428,365	7,352,074	13 T Excavator
CTTP-30	Evap Pond	1.6	428,519	7,352,823	13 T Excavator
CTTP-31	Evap Pond	0.35	428,872	7,352,890	13 T Excavator
CTTP-32	-	0.7	429,267	7,352,700	13 T Excavator
CTTP-33	Evap Pond	2	428,704	7,352,599	13 T Excavator
CTTP-34	Evap Pond	0.7	428,550	7,352,350	13 T Excavator
CTTP-35	Evap Pond	0.4	428,866	7,352,236	13 T Excavator
CTTP-36	Evap Pond	0.4	428,497	7,352,014	13 T Excavator
CTTP-37	Evap Pond	0.4	428,882	7,351,981	13 T Excavator
CTTP-38	RWP	1.1	426,615	7,351,938	13 T Excavator
CTTP-39	TSF 1	0.35	427,399	7,351,763	13 T Excavator

Table 2: TSF test pit details

Drawing 002 shows the locations of the boreholes and test pits completed at the TSF sites.

4 LABORATORY TESTING

Following the fieldwork, select soil samples recovered from both the test pits and boreholes were submitted to a NATA accredited soils laboratory for a range of testing. Point load Index tests were completed by ATCW. The test samples were chosen to determine the design parameters of each material unit encountered at the site. **Table 3**Error! Reference source not found. summarises the types and quantities of tests undertaken.

Table 3: Laboratory Testing Program

Test	Standard Used	Test Output	Quantity
PSD: Sieve Only	AS 1289 3.6.1	PSD Chart	12
Atterberg Limits	AS 1289 3.3.2	PI, LL, PL	6
In-situ Moisture Content	AS 1289 2.1.1	% Moisture	8
Modified Compaction	AS 1289 5.2.1	Moisture density curve	4
Emerson test	AS1289 3.8.1	Dispersion numbers	2
CU triaxial 92% MMDD - Multi-Stage	AS 1289 6.4.2	Friction angle and cohesion	2
Point Load Index	AS4133.4.1	Point Load Index, Is_{50}	8

The soils laboratory test certificates are presented in Appendix F.

The results of point load tests on rock core are given in Appendix G.

5 RESULTS OF INVESTIGATION

5.1 Subsurface Conditions

5.1.1 Boreholes

Boreholes were drilled at the TSF 1 site to termination depths between 11 m and 66 m. Each borehole terminated in Granite rock.

Superficial soils were less than 1.15 m thick and comprised dense to very dense, finer to coarse clayey sand with gravel or very stiff, red brown, medium to high plasticity clay. Superficial soils were not encountered in CTBH-2.

Extremely to moderately weathered granite with low to medium strength was encountered beneath the shallow superficial soils to depths between 3.4 m and 9.5 m below which slightly weathered to fresh rock of high to very high strength was proven to the termination depths of the boreholes. The granite was generally pale grey and porphyrytic with minor black crystals of mafic minerals.

Joints in the rock mass were tight and rough with localised pale brown staining predominantly in the upper weathered zones. Joint spacing decreased significantly with depth in the slightly weathered and fresh rock mass.

5.1.2 Test Pits

Six types of soil /rock were encountered during the test pit investigation and are summarised in **Table 4**Error! Reference source not found.. The table also gives the depths to which the soil/rock was encountered. Descriptions of the soil types and rock are given below.

Silty Sand (SM)

Superficial dry silty sand was encountered between 0.0 m and 0.3 m bgl in CTTP-20 and CTTP-21. The soil was medium dense, fine and medium, pale brown/brown, with trace clay.

Clayey Sand (SC)

Fine to coarse or fine and medium clayey sand was encountered between 0.0 m and 2.1 m bgl in most test pits. The soil was generally red brown, with minor gravel content. In situ moisture condition varied from dry to moist. The material was generally dense to very dense.

The clayey sand was generally underlain by sandy gravel or weathered granite.

Sand (SP)

Pale brown, fine to coarse, medium dense sand with silt was encountered between 0.0 m and 0.6 m depth in three test pits (CTTP-07B, CTTP-32 and CTTP-34). The sand was dry, red brown or grey mottled red brown, with trace clay and rootlets.

The sand was underlain by slightly weathered granite.

Clayey Gravel (GC)

Clayey gravel was locally encountered between 0.0 m and 1.55 m bgl, typically below the clayey sand layer and underlain by sandy gravel / extremely weathered granite material. The soil was generally very dense, fine to coarse, red brown or grey brown with cobbles and variable moisture content.

Sandy Gravel (GWS)

Sandy gravel was encountered between 0.0 m and 1.9 m bgl in most of the test pits directly above highly weathered granite. The material was generally very dense, fine to coarse, pale brown and grey, purple brown or red brown, with clay, trace cobbles and dry.

Granite

All but two of the test pits encountered refusal on granite. The granite was generally highly to moderately weathered, grey and white with yellow brown or red brown discoloration and of low to medium strength. The rock mass was typically encountered between 0.3 m and 2.0 m bgl.

Hole ID	Proposed Infrastructure	SM	SC	SW	GC	GWS	Granite
CTTP-01	RWP		0.80			1.00	> 1.10
CTTP-02	RWP		0.50			0.50	> 1.40
CTTP-03	RWP		0.40				> 0.50
CTTP-04	RWP		0.35				> 0.45
CTTP-05	RWP		0.50				> 0.60
CTTP-06	RWP				0.30		> 0.50
CTTP-07A	RWP				0.30		> 0.45
CTTP-07B	RWP			0.30			> 0.40
CTTP-08	RWP				0.35		> 0.50
CTTP-09	RWP		1.30				> 1.80
CTTP-10	RWP		0.70				> 1.00
CTTP-11	RWP		0.20				> 0.50
CTTP-12	RWP					0.35	> 0.50
CTTP-13	TSF 1		0.30				> 0.40
CTTP-14	TSF 1		0.70			0.15	> 1.70
CTTP-15	TSF 1		0.30				> 0.45
CTTP-16	TSF 1		0.70			1.10	> 1.30
CTTP-17	TSF 1		0.35				> 0.50
CTTP-18	TSF 1		0.50		0.90		> 1.30
CTTP-19	TSF 1		0.70		1.55		> 1.70
CTTP-20	TSF 1	0.30	0.60				> 0.90
CTTP-21	TSF 1	0.10	2.10				
CTTP-22	TSF2/TSF3		0.40		0.90		> 1.00
CTTP-23	TSF2/TSF3		1.20			1.80	> 1.90
CTTP-24	TSF2/TSF3		1.10				
CTTP-25	TSF2/TSF3		0.40		0.90		> 1.00
CTTP-26	TSF2/TSF3					0.40	> 0.50
CTTP-27	TSF2/TSF3		1.40				> 1.50
CTTP-28	TSF2/TSF3		0.50		1.10		> 1.20
CTTP-29	TSF2/TSF3		0.50				> 0.55
CTTP-30	Evap Pond		0.70			1.40	> 1.60
CTTP-31	Evap Pond		0.30				> 0.35
CTTP-32	-		0.30	0.60			> 0.70
CTTP-33	Evap Pond		0.80		1.20	1.90	> 2.00
CTTP-34	Evap Pond			0.20		0.60	> 0.70
CTTP-35	Evap Pond		0.30				> 0.40
CTTP-36	Evap Pond		0.35				> 0.40
CTTP-37	Evap Pond		0.25				> 0.40
CTTP-38	RWP		0.50			0.80	> 1.10
CTTP-39	TSF 1		0.30				> 0.35

Table 4: Summary of Test Pit Subsurface Conditions

5.2 Groundwater

Groundwater was not encountered in any of the test pits. The majority of the boreholes drilled at the TSF site did not intersect groundwater, with the exception of CTBH-2 located at the proposed TSF 1 perimeter embankment where groundwater was intersected within the granite at a depth of 54.0 m during drilling.

The presence of perched groundwater was inferred adjacent to Fraser Creek in CTBH-01 at approximately 7.5 m depth, on the basis of three return water level monitoring visits, performed during a five day period after drilling. It is possible; however that this represents residual drilling fluid and further water level readings are required to assess this.

CTBH-2 was instrumented with a slotted standpipe and was subsequently sampled and tested for water quality. The water quality results are comparable to the water quality results obtained for Bald Hill pit and from eight local pastoral bores with slightly higher manganese levels and higher total suspended solids. For the analytes tested, water quality is generally comparable to that of drinking water (Australian Drinking Water Guidelines). The relevant test results are included in **Appendix F**.

To facilitate TSF design ATCW have conducted laboratory testing of flotation tailings generated during metallurgical testwork. The associated tailings decant water quality was also analysed and the results are provided in **Appendix F**.

Comparison of the results indicate that the decant water has slightly elevated Aluminium, Manganese and Zinc but at concentrations within the drinking water guideline criteria. Dissolved Iron and Molybdenum concentrations in the decant water are marginally above the drinking water guidelines. Calcium and magnesium concentrations in the tailings decant water were considerably lower than the CTBH-2 groundwater sample. Trace Thorium was present in the decant water (0.006 mg/l); however Uranium concentration was lower in the decant water than in most of the pastoral bores and CTBH-2.

5.3 In-situ Permeability Testing

In-situ measurements of permeability were recorded at the TSF site.

Permeability test data sheets for falling head and packer testing in the boreholes are presented in **Appendix E**.

Table 5Error! Reference source not found. summarizes the falling head test results conducted at the TSF site.

Borehole ID	Proposed Infrastructure	Depth (m bgl)	Permeability, k (m/s)	Material
CTBH-01	RWP	0.00 m to 6.60 m	1.44 x 10 ⁻⁰⁶	HW Granite
CTBH-01	RWP	0.00 m to 1.50 m	1.19 x 10 ⁻⁰⁷	Clay / EW Granite
CTBH-02	TSF 1	0.00 m to 1.60 m	6.56 x 10 ⁻⁰⁷	EW/MW Granite
CTBH-02	TSF 1	0.00 m to 5.60 m	1.33 x 10 ⁻⁰⁷	EW/MW Granite
CTBH-03	TSF 1	0.00 m to 0.90 m	6.31 x 10 ⁻⁰⁷	Clay / Clayey Sand
CTBH-03	TSF 1	0.00 m to 6.55 m	7.91 x 10 ⁻⁰⁸	Clayey Sand / EW/MW Granite
CTBH-04	TSF 1	0.00 m to 10.7 m	1.12 x 10 ⁻⁰⁶	HW/SW Granite

Table 5: Falling head in-situ permeability tests results

a			8/	
CTBH-05	TSF 1	0.00 m to 11.85 m	1.65 x 10 ⁻⁰⁶	HW/SW Granite

The results of the in-situ packer testing performed in boreholes CTBH-01 & CTBH-03 are summarised below in **Table 6**. Permeability values have been interpreted from the Ludgeon test results.

Borehole ID	Proposed Infrastructure	Test Type	Test Interval (m bgl)	Permeability, k (m/s)	Lugeon Value	Material
CTBH-01	RWP	Falling Head	9.1 - 21.5	1.01 x 10 ⁻⁰⁷	-	SW Granite
CTBH-01	RWP	Falling Head	22.6 - 36.5	2.55 x 10 ⁻⁰⁷	-	Fresh Granite
CTBH-01	RWP	Constant Head	22.6 - 36.5	3.73 x 10 ⁻⁰⁶	-	Fresh Granite
CTBH-03	TSF 1	Constant Head	9.5 - 21.5	3.49 x 10 ⁻⁰⁶	-	SW Granite
CTBH-03	TSF 1	Lugeon	9.5 - 55.5	3.95 x 10 ⁻⁰⁸	0.3	Fresh Granite
CTBH-03	TSF 1	Lugeon	26.6 - 39.2	6.38 x 10 ⁻⁰⁹	0.049	MW/SW Granite

Table 6: Packer Test Results

5.4 Laboratory Test Results

5.4.1 Soil testing

The laboratory tests were undertaken by SGS Australia soil laboratory. The test certificates available at the time of writing are provided in **Appendix F**.

The results for classification tests are summarized in Table 7Error! Reference source not found..

Test pit ID	Proposed Infrastructure	Depth (m bgl)		PSD			Atterber	g Limit	s	MC (%)	Emer -son Class No.	USC S
			Gravel (%)	Sand (%)	Fines (%)	LL	PL	PI	LS			
CTTP-01	RWP	0.5 - 0.8	16	64	20	38	22	16	7	7.8	-	SC
CTTP-03	RWP	0.1 - 0.4	15	51	17	-	-	-	-	9.8	-	SC
CTTP-07A	RWP	0.1 - 0.3	33	46	21	-	-	-	-	-	-	SC
CTTP-09	RWP	1 - 1.2	TBC	TBC	TBC	9.5	49	25	24	8.0	4	TBC
CTTP-16	TSF 1	0.4 - 0.6	12	55	33	TBC	TBC	TBC	TBC	6.8	-	SC
CTTP-18	TSF 1	0.6 - 0.8	26	42	32	59	27	32	14	12.2	-	SC
CTTP-19	TSF 1	1.2 - 1.4	37	46	17	-	-	-	-	8.0	-	SC
CTTP-21	TSF2/TSF3	1.5 - 1.7	26	51	23	-	-	-	-	8.0	-	SC
CTTP-24	TSF2/TSF3	0.8 - 1.1	21	53	26	36	18	18	11	-	-	SC
CTTP-27	TSF2/TSF3	0.8 - 1	53	36	11	TBC	ТВС	ТВС	TBC	5.4	TBC	GWS
CTTP-30	Evap Pond	0.5 - 0.7	18	60	22	-	-	-	-	-	-	SC

 Table 7: Laboratory Classification Test Results

Test pit ID	Proposed Infrastructure	Depth (m bgl)		PSD			Atterber	g Limit	s	MC (%)	Emer -son Class No.	USC S
			Gravel (%)	Sand (%)	Fines (%)	LL	PL	PI	LS			
CTTP-30	Evap Pond	1 - 1.2	44	47	9	-	-	-	-	-	-	SP

The modified compaction test results are presented in Table 8Error! Reference source not found..

Table 8: Modified Compaction test results

Test pit ID	Proposed Infrastructure	Depth	MMDD (t/m3)	OMC (%)	USCS
CTTP-03	RWP	0.1 - 0.4	ТВС	ТВС	SC
CTTP-19	TSF 1	1.2 - 1.4	ТВС	ТВС	SC
CTTP-21	TSF 1	1.5 - 1.7	ТВС	ТВС	SC
CTTP-27	TSF 2/TSF 3	0.8 - 1	ТВС	ТВС	GWS

Laboratory results for permeability and tri-axial testing are presented in Table 9.

Table 9: Laboratory Permeability and Tri-axial test results

Test pit ID	Proposed Infrastructure	Depth	Permeability (m/s)	Friction Angle (φ°)	Cohesion (KPa)
CTTP-03	RWP	0.1 - 0.4	ТВС	ТВС	ТВС
CTTP-27	TSF 2/TSF 3	0.8 - 1	ТВС	ТВС	ТВС

5.4.2 Rock strength testing

Point load testing was conducted on rock core samples by ATCW in accordance with AS 4133.4.1. Table 10 summarises the test results.

Table 10: Point Load test results

Borehole ID	Proposed Infrastructure	Depth	I _s 50 (MPa)	Strength Class (AS 1726-1993)
CTBH-01	RWP	2.80-3.00	3.25	VH
CTBH-01	RWP	5.00-5.25	0.76	Μ
CTBH-01	RWP	17.00-17.25	4.03	VH
CTBH-01	RWP	29.60-29.90	9.91	VH
CTBH-04	TSF 1	2.50-2.70	4.87	VH
CTBH-04	TSF 1	8.70-8.94	5.07	VH
CTBH-05	TSF 1	2.00-2.20	1.88	Н
CTBH-05	TSF 1	8.50-8.65	4.45	VH

6 ANALYSIS, CONCLUSIONS AND RECOMENDATIONS

6.1 TSF sites

6.1.1 Site preparation and construction considerations

Prior to bulk earthworks and embankment construction, the impoundment and embankment footprint should be cleared, grubbed and stripped of topsoil. The topsoil should be stockpiled for subsequent use in rehabilitation of the TSF site infrastructure.

The TSF embankments will be constructed primarily from pre-strip mine waste rock materials with a low permeability upstream zone being formed from clayey materials excavated from the vicinity of TSF 1 and RWP. Foundation preparation will include excavation of a cut off trench through the superficial materials and backfilling with compacted clayey material to minimise potential for lateral seepage beneath embankments.

Excavation conditions in the vicinity of the TSF 1 and RWP are expected to be variable. The superficial clayey sand, clayey gravel and sandy gravel materials will excavate easily; but ripping may be required to excavate indurated near surface weathered granite material.

The in-situ moisture content of the clayey borrow materials is generally expected to be lower than optimum moisture content at the time of construction; consequently moisture conditioning by adding water during construction is anticipated to optimise compaction.

6.1.2 Foundations

Foundation conditions under the embankments are anticipated to comprise dense superficial soils and weathered rock at shallow depth. The rock mass is considered to have sufficient strength to support embankment loading without undue consolidation and settlement.

6.1.3 Embankment construction materials

In areas where surface granite was not present, clayey gravel and clayey sand materials typically less than 0.7 m thick were identified in the TSF 1 impoundment area and are considered suitable for low permeability construction material. Clayey/silty fines content typically ranged from 9% to 33%.

Potential sources of clayey sand materials were also identified in other areas as shown in **Drawing 003**. The depth of the material identified at test pit locations typically ranged between 1.5 m and 2.0 m bgl.

The clayey materials in the vicinity of the TSF have moderate dispersion potential, inhibited to some extent by the presence of calcium carbonate (Emerson class 4). Dispersion by erosion will be minimised by the rapid accumulation of tailings against the upstream face of the low permeability zone.

6.1.4 Seepage control measures

Detailed seepage analyses will be completed as part of the TSF design; however, the in situ permeability values obtained during the investigation provide an indication of relative seepage potential. Permeability values greater than 10^{-5} m/s indicate potential for rapid to moderate seepage, between 10^{-5} m/s and 10^{-7} m/s indicate potential for moderate to slow seepage and values less than 10^{-7} m/s indicate very low seepage potential.

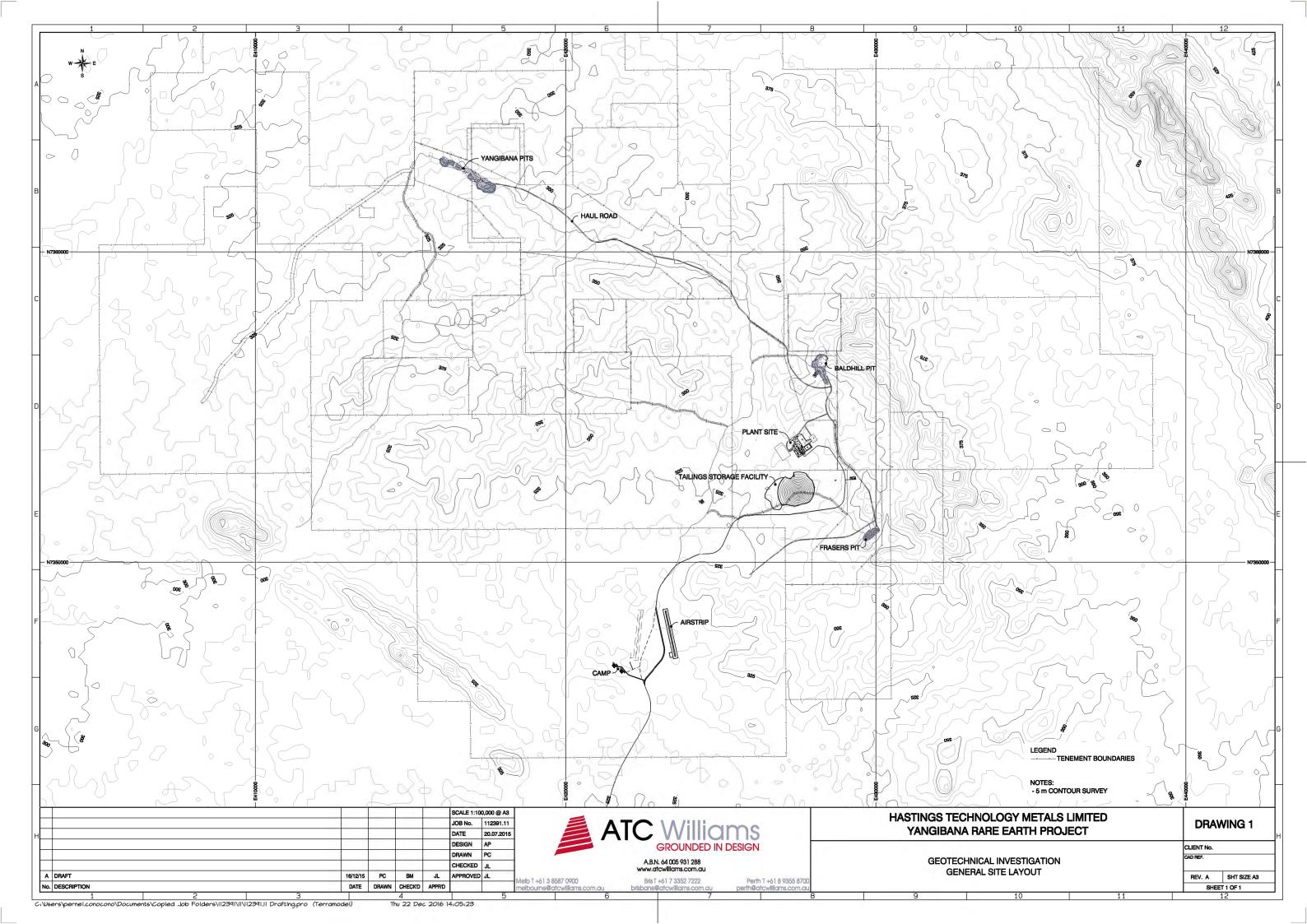
Falling head in-situ permeability tests conducted in the TSF 1 area between 0.0 m and 11.9 m depth indicate relatively low permeability in the superficial soils and weathered rock (1.44×10^{-6} m/s to 7.91 x 10^{-8} m/s). In-situ permeability of between 3.73×10^{-6} m/s and 6.38×10^{-9} m/s was obtained from down borehole packer tests, performed in moderately to freshly weathered granite bedrock underlying the site.

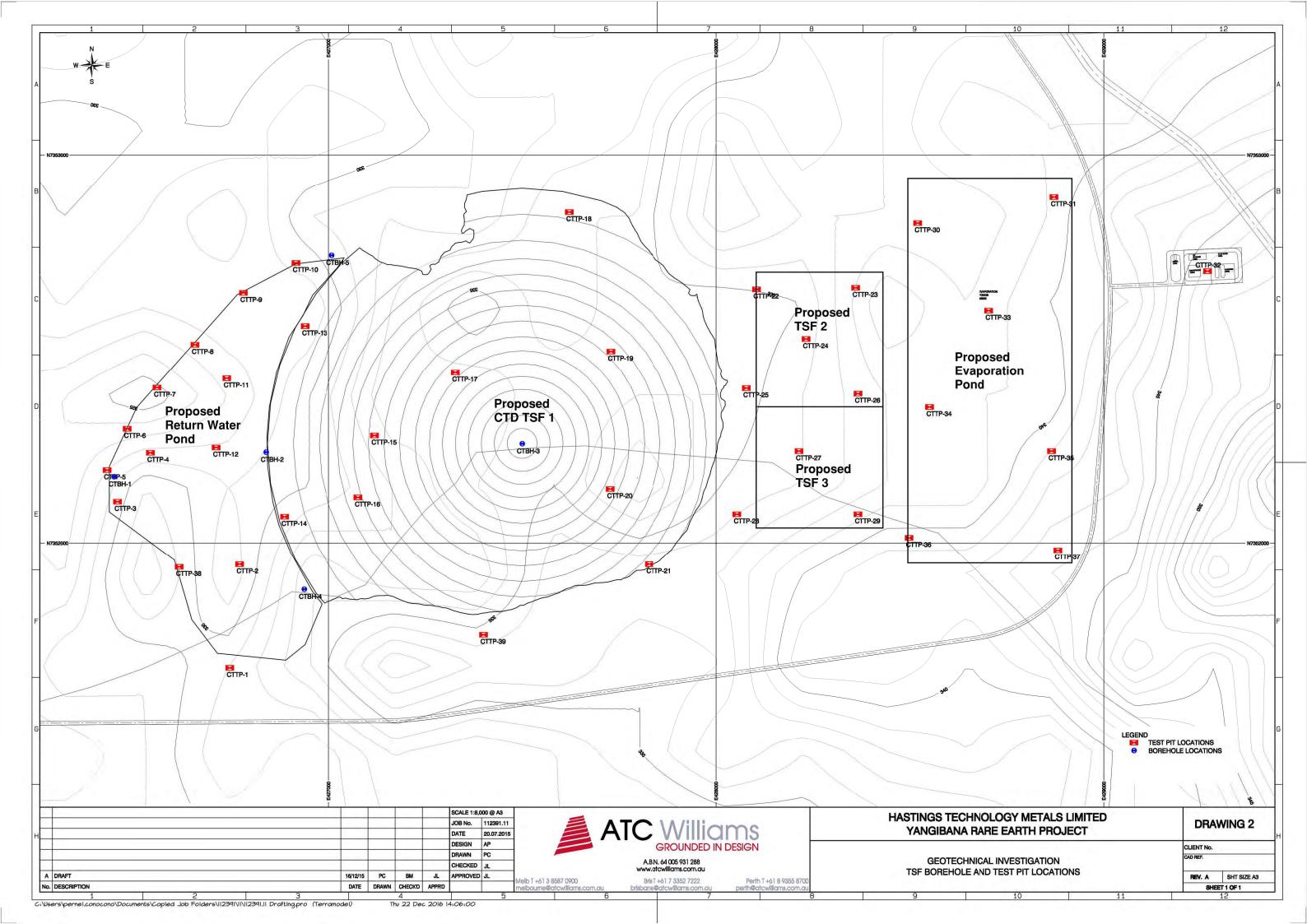
TSF 1 will store inert tailings material with an expected activity concentration of less than 1 Bq/g and the decant water quality is expected to be similar to that of the groundwater. As groundwater is expected to lie at a depth of approximately 54 m and the material between the water table and the TSF predominantly comprises massive slightly weathered to fresh granite of very low permeability, vertical seepage rates will be very slow and it is unlikely that a hydraulic connection and fully saturated conditions between the decant water pond and groundwater will be established.

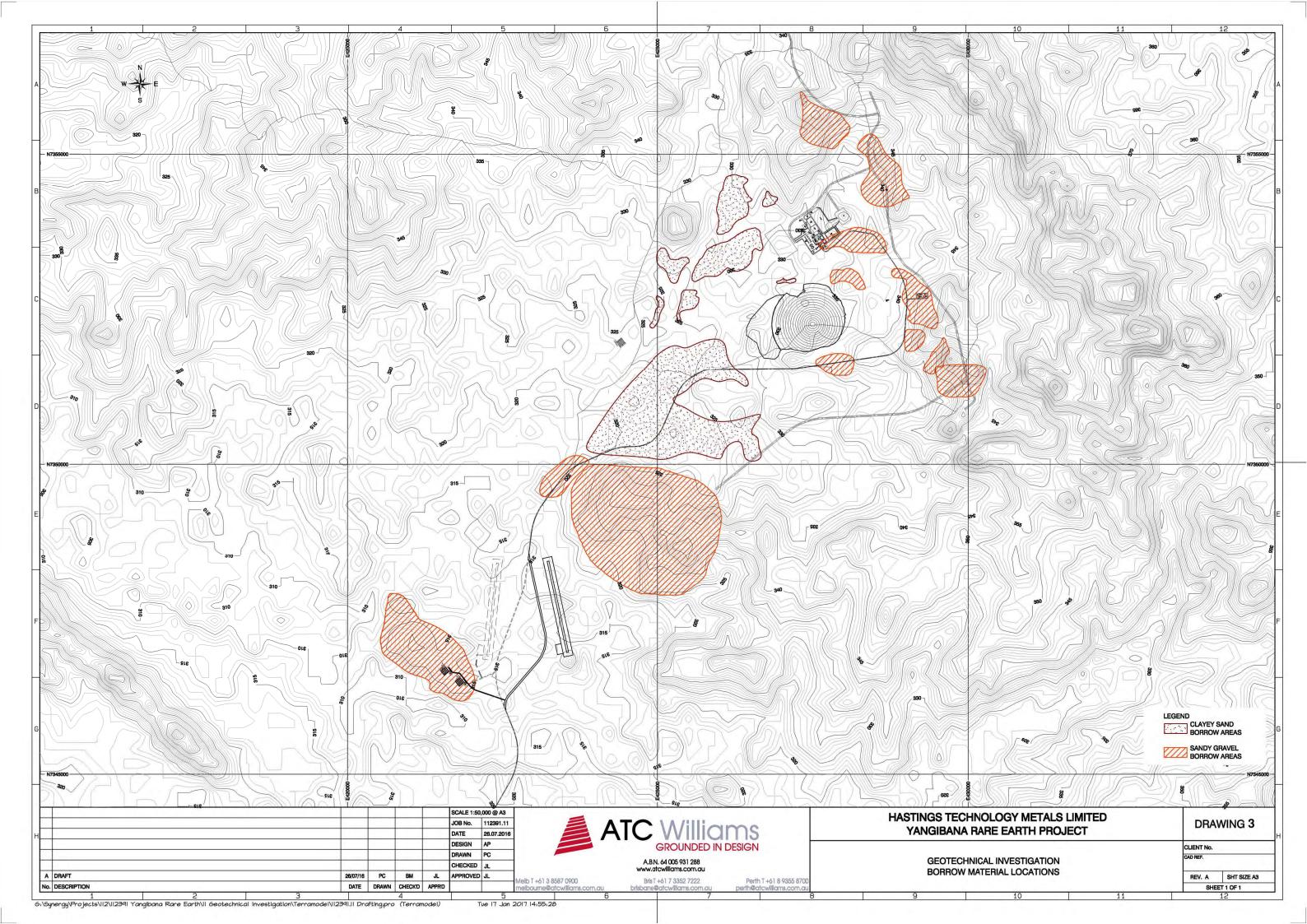
The tailings stored in TSF 2 and TSF 3 will have activity concentrations in excess of 1 Bq/g and will therefore require appropriate containment measures for long term storage. The design of these facilities will incorporate a composite liner on the upstream embankment faces and across the floor of the impoundment. The liner is likely to include a combination of HDPE, compacted clay and sand drainage layers as required to satisfy landform closure criteria.

The evaporation pond will store waste process water from the hydrometallurgy plant. Periodic transfer of decant water from TSF 2 and TSF 3 may be required to provide a continuous water cover during operation and the pond will have a similar composite liner.

Lateral seepage from TSF 2, TSF 3 and the evaporation pond will be minimised by the provision of a composite liner on the upstream embankment faces and also by provision of a cut off trench on the upstream side of the embankments. A cut off trench will also be incorporated beneath the TSF 1 and water storage pond perimeter embankments.


The design of TSF 1 allows for transfer of bleed water and incidental run off from the tailings surface to an external storage pond area, consequently a decant pond will not be maintained on the tailings surface. Decant recovery from the storage pond will limit the operational pond size. To reduce potential for vertical seepage following significant rainfall events, at least 300 mm of the clayey in-situ soils in the base of the pond impoundment area should be proof compacted during the initial TSF 1 construction stage.


7 CLOSURE


Your attention is drawn to the "Conditions of Investigation" which appear after the document history and status page of this report.

ATC WILLIAMS PTY LTD

DRAWINGS

APPENDICES

APPENDIX A

FIGURE

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

			13			LOCATION 426745E 7351678	BN		
				Graphic Log	Classification	encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	be be	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
Method	Water	RL (m)	Depth (m)	Grap	Clas Sym		Sample Type	Sam	0 4 8 12 16
					SC	CLAYEY SAND fine to coarse, red brown, with gravel, moist		-	
			0.5		GWS	SANDY GRAVEL	BS		
					GVVS	fine to coarse, grey, with trace clay, moist			
				+++		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength			
			- - 1 <u>.5</u> -			Test pit CTTP-01 terminated at 1.1m			
			_ 2 <u>.0</u>						
			-						

FIGURE TEST PIT NUMBER CTTP-02

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

	MENT	13	Т Ехс	avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 426770E 7351944 encountered	N	D	ATUM
Method Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
		-		SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist			
		0 <u>.5</u>		GWS	SANDY GRAVEL Very dense, fine to coarse, red brown, with clay, moist	_		
		1 <u>.0</u> 			GRANITE Highly weathered, grey and white, very low to low strength	_		
		1 <u>.5</u>			Test pit CTTP-02 terminated at 1.4m			
		-						
		2 <u>.0</u>						
		- 2.5						

FIGURE TEST PIT NUMBER CTTP-03

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11 MENT			OGGE avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 426456E 7352106	ŝN	D	ATUM		
R	EMA	RKS	Grou	ndwat	er not	encountered					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic C No. of b indicated	one Penetromete lows for depth by bar thickness	er S
					SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, moist					
						GRANITE	BS				
			0.5			Highly weathered to moderately weathered, grey and white, low to medium strength					_
			- - - 1.0 - - - - - - - - - - - - - - - - - -			Test pit CTTP-03 terminated at 0.5m					_
			2.0								_

FIGURE TEST PIT NUMBER CTTP-04 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

				avator er not	encountered			
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
				SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry			
		-						
		_					-	
			++++++		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength			
		0 <u>.5</u>			Test pit CTTP-04 terminated at 0.45m			
		-						
		_						
		1 <u>.0</u>						
		-						
		-						
		1 <u>.5</u>						
		-						
		-						
		-						
		2 <u>.0</u>						
		_						
		-						
		_						

FIGURE TEST PIT NUMBER CTTP-05

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

	8/11				D BY AP CHECKED JL R.L. SURFACE		D	ATUM
				avator		8N		
	kn5	Grou	ndwat	er not	encountered Material Description:			
			b	ion	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition		ndition	Dynamic Cone Penetrometer No. of blows for depth
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Sample Type	Sample condition	indicated by bar thickness
				SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist			
		-						
		-						
		_					-	
		0 <u>.5</u>	<u>///</u> + - +		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength		-	
			+		Test pit CTTP-05 terminated at 0.6m			
		-						
		-						
		1 <u>.0</u>						
		-						
		_						
		-						
		-						
		1 <u>.5</u>						
		_						
		-						
		-						
		-						
		2 <u>.0</u>						
		-						
		-						
		_						
		2.5						

FIGURE TEST PIT NUMBER CTTP-06

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

EQUIPMENT 13 T Excavator LOCATION 426481E 7352294N REMARKS Groundwater not encountered Image: Contract of the second									
	Water	RL (m)	Depth (m)		Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
					GC	CLAYEY GRAVEL Very dense, fine to coarse, red brown, with cobbles, moist			0 4 8 12 16
			-			GRANITE Highly weathered to moderately weathered, grey brown, low to medium strength	_		
			0.5	· +		Test pit CTTP-06 terminated at 0.5m			
			_ 1.0						
			-						
			-						
			-						
			1 -						
			1 <u>.5</u>						
			-						
			-						
			-						
			2 <u>.0</u>						
			-						
			-						
			-						

FIGURE TEST PIT NUMBER CTTP-07A

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11			D BY AP CHECKED JL R.L. SURFACE		DA	ATUM
EQUIPMENT 13 T Excavator LOCATION 426556E 7352388N REMARKS Groundwater not encountered LOCATION 426556E 7352388N								
Method	Water	RL (m)	Graphic Log		Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
MPAWATC/ATCW BOREHOLE / TEST PIT_TESTPIT_LOGS.GPJ_GINT_AUSTRALIA.GDT_30/11/16 Me	MV			GC	CLAYEY GRAVEL Very dense, fine to coarse, red brown, with cobbles, moist GRANITE Highly weathered to moderately weathered, grey brown with purple, low to medium strength Test pit CTTP-07A terminated at 0.45m	BS		
MPAW/ATC//			2.5					

Method

FIGURE **TEST PIT NUMBER CTTP-07B**

SHEET 1 OF 1

JOB NAME Yangibana Project

CLIENT Hastings Technology Metals JOB NUMBER 112391.11 JOB LOCATION Gascoyne Region, Western Australia LOGGED BY AP DATE 8/11/16 CHECKED JL **R.L. SURFACE** DATUM EQUIPMENT 13 T Excavator LOCATION 426558E 7352400N **REMARKS** Groundwater not encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Sample condition Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness Classification Symbol Graphic Log Sample Type Water RL (m) Depth (m) SAND Medium dense to dense, fine to coarse, pale red brown, with silt, rounded cobbles, dry SW GRANITE + Highly weathered to moderately weathered, grey brown, low to medium strength + Test pit CTTP-07B terminated at 0.4m 0.5 1.0 1.5 2.0 2 5

FIGURE TEST PIT NUMBER CTTP-08

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

ATE 8/11/16 LOGGED BY AP CHECKED JL R.L. SURFACE QUIPMENT 13 T Excavator LOCATION 426655E 7352511N EMARKS Groundwater not encountered LOCATION 426655E 7352511N						1N	DATUM				
El	MAR	RKS	Grou	ndwat	er not	encountered Material Description:					
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness		
1					GC	CLAYEY GRAVEL Very dense, fine to coarse, red brown, with cobbles, moist					
			-								
			-								
			-								
			-	+ + +		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength					
			0.5	+++		Test pit CTTP-08 terminated at 0.5m					
			_								
			-								
			-								
			1 <u>.0</u>								
			-								
			-								
			-								
			_								
			1 <u>.5</u>								
			-								
			-								
			-								
			-								
			2 <u>.0</u>								
			-								
			_								
			-								

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

		8/11	/16 ' 13 ⁻			D BY AP CHECKED JL R.L. SURFACE LOCATION 426780E 7352644	1 NI	DATUM				
						encountered	+1N					
5	Water	RL	Depth (m)	ohic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness			
_	3	(m)	(m)	Ū ////	ට ගි SC	CLAYEY SAND	°, N	, С	5 10 15 20			
			0.5 		SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, trace cobbles, moist GRANITE Highly weathered, dark grey and white, very low strength	BS					
				+ + + + + + + +								
╡						Test pit CTTP-09 terminated at 1.8m		$\left - \right $				
			2 <u>.0</u>									
			-									
			-									

MPAW/ATC/ATCW BOREHOLE / TEST PIT TESTPIT LOGS.GPJ GINT AUSTRALIA.GDT 30/11/16

FIGURE TEST PIT NUMBER CTTP-10 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

E	MAR	RKS	Grou	ndwat	er not	encountered	1	1	
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
					SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry			
			-						
			-						
			_						
								\bigotimes	
			0 <u>.5</u>				BS	\bigotimes	
			-					××	
			_			GRANITE	-		
						Highly weathered to moderately weathered, dark grey and white, low to medium strength			
			-						
			1.0			Test pit CTTP-10 terminated at 1m			
			-						
			_						
			-						
			-						
			1 <u>.5</u>						
			-	-					
			_						
			-						
			-						
			2 <u>.0</u>						
			_						
			-						
			-						
			2.5						

FIGURE TEST PIT NUMBER CTTP-11 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

QUI	PME		13 1	ГЕхса	avator		4N	D	ATUM
Water				Graphic Log	Classification Symbol	encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
	š (I	m)	Depth (m)	ট ///	ට් ගි SC	CLAYEY SAND	Sa	Sa	0 <u>5 10 15 20</u> : : : :
						Very dense, fine to coarse, red brown, with gravel, moist			
				+ + + + +		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength		-	
			0.5	+ + + + +					
+	+		0.0			Test pit CTTP-11 terminated at 0.5m			
			-						
			-						
			-						
			-						
			1 <u>.0</u>						
			-						
			-						
			-						
			_						
			1 <u>.5</u>						
			-						
			-						
			-						
			-						
			2 <u>.0</u>						
			_						
			_						
			_						
			_						
			2.5						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

	PMEN ARKS				encountered			
Mater	Water (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
		-		GWS	SANDY GRAVEL Dense to very dense, fine to coarse, red brown, with clay, moist GRANITE			
		0 <u>.5</u>	+ + +		Highly weathered to moderately weathered, grey and white, low to medium strength Test pit CTTP-12 terminated at 0.45m			
		-						
		- 1 <u>.0</u>						
		-						
		-						
		1 <u>.5</u>						
		-						
		2 <u>.0</u>						
		-						
		-						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

	8/11				D BY AP CHECKED JL R.L. SURFACE		D	ATUM
				avator er not	LOCATION 426939E 7352559 encountered	N		
Method	RL (m)	Depth (m)	hic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
┢				SC	CLAYEY SAND fine to coarse, red brown, with gravel, dry			0 5 10 15 20 2
		-						
		-	//// + - +		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength	-		
			+		Test pit CTTP-13 terminated at 0.4m			-
		0 <u>.5</u> –						
		-						
		-						
		1 <u>.0</u>						
		-						-
/16		-						-
.GDT 30/11								-
AUSTRALIA		-						-
MPAWATC/ATCW BOREHOLE / TEST PIT TESTPIT LOGS/GPJ GINT AUSTRALIA GDT 30/11/16		-						-
ESTPIT LOG		-						-
EST PIT TI		2 <u>.0</u>						-
EHOLE / TI		-						
ATCW BUR		-						-
MPAW/ATC/		2.5						-

FIGURE

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

EQUI	T 13	T Exc	avator		8N	DA	ATUM
Water	Denth	bhic Log	Classification Symbol	encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
	- - 0 <u>.5</u>		SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist		-	
			GWS	SANDY GRAVEL Very dense, fine to coarse, grey and white, moist			
	2 <u>.0</u>	+ + + + + + + + + + + + + + + + + + + +		GRANITE Highly weathered, pale grey and white, very low to low strength Test pit CTTP-14 terminated at 1.7m			
	- 2.5						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

DATE 8/11/1 EQUIPMENT	16 LOGGE	ED BY AP CHECKED JL R.L. SURFACE	N	D	ATUM
REMARKS G	Groundwater not	tencountered			
Method Water G T8	() () () () () () () () () () () () () (Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
	SC	CLAYEY SAND			0 4 8 12 16
		Very dense, fine to coarse, red brown, with gravel, moist GRANITE	-	-	
	+ + - + + +	Highly weathered to moderately weathered, dark grey and white, low to medium strength			
	0. <u>5</u> - - 1. <u>0</u> - 1. <u>5</u>	Test pit CTTP-15 terminated at 0.45m			
	2.0				

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

EQ	UIPI		13	T Exc	avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 427076E 7352113 encountered Material Description:	7N		ATUM
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
			-		SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry			
			0 <u>.5</u>				BS		
			- 1 <u>.0</u>	•	GWS	SANDY GRAVEL Very dense, fine to coarse, dark grey, with clay, dry			
			-	+ + + + + + +		GRANITE Highly weathered, dark grey and white, low strength Test pit CTTP-16 terminated at 1.3m			
			- 1 <u>.5</u> -						
			-						
			2 <u>.0</u> _						
			- 2.5						

FIGURE TEST PIT NUMBER CTTP-17 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

			avator er not	LOCATION 427327E 735243 encountered	9N		
Water	Depth (m)	hic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
			SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, moist			0 4 8 12 16
	-					-	
	-						
	_						
		/// +		GRANITE Highly weathered to moderately weathered, grey and white, medium strength			
	0.5	- + + - +		The second se			
	 0.0			Test pit CTTP-17 terminated at 0.5m			
	-						
	-						
	_						
	_						
	1.0						
	-						
	-						
	-						
	-						
	1 <u>.5</u>						
	_						
	-						
	2 <u>.0</u>						
	_						
	_						
	_						
	_						
	2.5						

FIGURE TEST PIT NUMBER CTTP-18 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

QUIP		r 13	Т Ехс	avator		2N	DA	TUM
EMA	RKS	Grou	ndwat	er not	encountered Material Description:			
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
				SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with trace gravel, moist			
		-						
		-						
		-						
		-				BS		
		0 <u>.5</u>		GC	CLAYEY GRAVEL Very dense, fine to coarse, red brown, moist			
		-		-				
		-				BS		
		-						
		-	+		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength	_		
		1.0	+ + + + +					
		-	++					
		-	+++++++++++++++++++++++++++++++++++++++					
-			+ +		Test pit CTTP-18 terminated at 1.3m			
		-	-					
		1 <u>.5</u>	-					
		-	-					
		-	-					
			-					
		2 <u>.0</u>						
		-						
		-						
		-						
		_						
		2.5						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

			encountered Material Description:			
RL (m)	(m) Graphic Log	Classification Symbol	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
		GC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with trace gravel, moist CLAYEY GRAVEL Very dense, fine to coarse, pale brown, with trace cobbles, moist Very dense, fine to coarse, pale brown, with trace cobbles, moist GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength	BS		
	2. <u>0</u> –		Test pit CTTP-19 terminated at 1.7m			

FIGURE TEST PIT NUMBER CTTP-20 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

			13 T Ground			encountered			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
					SM	SILTY SAND Dense, fine and medium, pale brown/brown, with clay, dry CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry			
				+ + + + + + + + + + + + + + +		GRANITE Highly weathered, dark grey white with yellow, low to medium strength Test pit CTTP-20 terminated at 0.9m			
			1 <u>.0</u> _ _						
			- 1 <u>.5</u>						
			2 <u>.0</u> _						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

EM	AR	KS	Grou	ndwat	er not	encountered Material Description:			
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
T					SM	SILTY SAND Medium dense, fine and medium, pale brown, with clay, dry			
					SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, moist		-	
			0 <u>.5</u> 				BS		
			- 1 <u>.0</u> -			becomes pale brown, with trace gravels			
							BS		
			 2 <u>.0</u>			Test pit CTTP-21 terminated at 2.1m			
			_						

FIGURE TEST PIT NUMBER CTTP-22 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

DATE 8/11/16 LOGGED BY AP CHECKED JL R.L. SURFACE DATUM EQUIPMENT 13 T Excavator LOCATION 428104E 7352653N DATUM										
						encountered				
	Water	RL (m)	Depth (m)	bhic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness	
-	>	()	(11)		SC	CLAYEY SAND	01-	0)	0 <u>5 10 15 20</u>	
			-			Dense to very dense, fine to coarse, red brown, with gravel, moist				
			0 <u>.5</u>		GC	CLAYEY GRAVEL Very dense, fine and medium, grey brown, moist				
			-							
			-	++++		GRANITE Highly weathered, dark grey and red brown, low to medium strength	_			
			1.0	+		Test pit CTTP-22 terminated at 1m				
			-							
			-							
			_							
			1 5							
			1 <u>.5</u>							
			-							
			-							
			_							
			_							
			2 <u>.0</u>							
			-							
			-							
			_							
			_							
			2.5							

FIGURE TEST PIT NUMBER CTTP-23 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

					D BY AP CHECKED JL R.L. SURFACE LOCATION 428359E 7352657	N		ATUM
	RL				Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	ample ype	ample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
3	(m)	(m)	U ////			й́Г	ů	0 5 10 15 20
		- - 0 <u>.5</u>		50	Dense to very dense, fine to coarse, red brown, with gravel, dry		-	
							\boxtimes	
		_				BS		
		10						
		-						
		-		GWS	SANDY GRAVEL Very dense, fine to coarse, white pale grey, with clay, trace cobbles, dry	-		
		1 <u>.5</u>						
		_						
			+ +		GRANITE Highly weathered to moderately weathered, yellow brown grey and red, low to medium	-		
			+		strength Test pit CTTP-23 terminated at 1.9m	-	$\left \right $	
		2 <u>.0</u>						
		-						
						1		
ļ	UIPI	UIPMENT MARKS	JIPMENT 13 MARKS Grout Marks Grout RL Depth RL Depth 0.5	UIPMENT 13 T Exca MARKS Groundwate RL Depth RL Depth 0.5 1.5 1.5	JIPMENT 13 T Excavator MARKS Groundwater not Marks Groundwater not RL Depth Bo Depth Bo SC 0.5 SC 1.0 GWS I.1.5 GWS	UIPPENT 13 T Excavator MARKS Groundwater not encountered Material Description: Soit: type, USCS symbol, strength, plasticity or patcles ize, colour, secondary components, moisture condition understand 0 0 0 0 understand SC CLAYEY SAND CLAYEY SAND Understand 0.5 CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, dry understand 0.5 GWS CLAYEY SAND Understand 0.5 GWS CLAYEY SAND Understand 0.5 GWS CLAYEY SAND Understand GWS CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, dry Understand 0.5 GWS Sector CLAYEY SAND Understand GWS MOUY GRAVEL Very dense, fine to coarse, while pale grey, with clay, trace cobbiles, dry Understand GWS CEMPTE Very dense, fine to coarse, while pale grey, with clay, trace cobbiles, dry Understand Highly weathered to moderately weathered, yellow brown grey and red, low to medium The optimization of the optin optin of the optimization of the optimization of th	UIPMENT 13 T Excavit LOCATION 24239E7326267N MARKS Coundwater not encountered Material Description: Components, musisule condition Image: Components, musisule condition	

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		: 8/ P ME		16 LC 13 T Exca		D BY AP CHECKED JL R.L. SURFACE LOCATION 428232E 7352526	DATUM				
						encountered					
Method	Water	R (n	:L	(m) Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness		
					SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, dry becomes grey brown at 0.4 m Test pit CTTP-24 terminated at 1.1m	BS				

FIGURE TEST PIT NUMBER CTTP-25 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

EQL	JIPN		13	Т Ехс	avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 428078E 7352398 encountered	N		ATUM
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
			_		SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with trace gravel, dry			
			- 0 <u>.5</u> - -		GC	CLAYEY GRAVEL . Very dense, fine to coarse, red brown, with cobbles, dry	_		
_			1.0	+++++	-	GRANITE Highly weathered to moderately weathered, white grey with pale red and thin red brown clay infill, low to medium strength Test pit CTTP-25 terminated at 1m	_		
			-	-					
			- 1 <u>.5</u>						
			-						
			- 2 <u>.0</u>						
			- -						
			2.5						

FIGURE TEST PIT NUMBER CTTP-26 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11 MENT			OGGE avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 428365E 7352384	4N	DA	ATUM
RE	MAF	RKS	Grou	ndwat	er not	encountered			
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
-					GWS	SANDY GRAVEL		0	<u>5 10 15 20</u>
			-			Very dense, fine to coarse, red brown, with cobbles, clay, moist			
			0.5	+		GRANITE Moderately weathered, grey and white, medium strength			
			- - 1 <u>.0</u> -			Test pit CTTP-26 terminated at 0.5m			
			- 1 <u>.5</u>						
			-	-					
			-						
			2 <u>.0</u> -						
			-						
			2.5						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11/ /IENT			OGGE avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 428214E 7352236	6N	DA	ATUM
EN	IAR	KS	Grou	ndwat	er not	encountered			
0000	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
+					SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist			
						becomes dark grey with brown	BS		
				+++		GRANITE Highly weathered, dark grey and white with red and yellow, low strength			
+			1.5	+		Test pit CTTP-27 terminated at 1.5m			
			-	-					
			-						
			_	-					
			2.0						
				1					
			-						
			_						
			-						
			_	-					
			2.5						

FIGURE TEST PIT NUMBER CTTP-28 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		13 Grou			LOCATION 428054E 7352074 encountered			
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
				SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with trace gravel, dry			
		0 <u>.5</u> 		GC	CLAYEY GRAVEL Very dense, fine to coarse, pale grey/brown, moist			
		1.0			GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength Test pit CTTP-28 terminated at 1.1m			
		- 1 <u>.5</u>						
		- - 2 <u>.0</u>						
		-						
		_						

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

		8/11		LOGGE	ED BY AP CHECKED JL R.L. SURFACE	0 /		ATUM
			13 T E			N		
RE	MAF	RKS	Groundv	ater no	encountered Material Description:			
Method	Water	RL (m)	Depth E (m) C		Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
				SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist			
			0 <u>.5</u> //	74	GRANITE	-		
			_		Moderately weathered, white pale grey, medium strength Test pit CTTP-29 terminated at 0.55m			
			_					
			-					
			1.0					
			_					
			-					
			-					
			1 <u>.5</u>					
			_					
			_					
			_					
			_					
			2 <u>.0</u>					
			2.5					

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

DATE 8/ EQUIPMEN REMARKS	NT 13	T Exca	avator	encountered	BN	DATUM
Method Water W	- Depth) (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
			SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist		
	- - 1 <u>.0</u> -		GWS	SANDY GRAVEL Very dense, fine to coarse, pale brown/brown, with clay, trace cobbles, moist	BS	
	- 1 <u>.5</u>			GRANITE Highly weathered, yellow brown grey with red brown, low to medium strength	_	
	- - 2 <u>.0</u> - -			Test pit CTTP-30 terminated at 1.6m		

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

Q	UIPN		13	Т Ехс	avator		ON	D	ATUM
	Water	RL (m)	Grou Depth (m)	bhic Log	Classification Symbol	encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
2	>	(11)	(m)		SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, trace cobbles, moist	0 	S S) <u>3 6 9 12</u>
			_					-	
				+		GRANITE Highly weathered to moderately weathered, grey and white with yellow brown, low to medium strength			
			-			Test pit CTTP-31 terminated at 0.35m			
			0 <u>.5</u>						
			-						
			_						
			_						
			-						
			1 <u>.0</u>						
			-						
			_						
			_						
			_						
			1 <u>.5</u>						
			1.0						
			-						
			-						
			-						
			_						
			2 <u>.0</u>						
			-						
			-						
			-						
			_						
			2.5						

FIGURE

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

	DATE 8/11/16 LOGGED BY AP CHECKED JL R.L. SURFACE DATUM EQUIPMENT 13 T Excavator LOCATION 429267E 7352700N											
					encountered							
Method	Water	RL (m)	(m) Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness				
Meth	Wate		Depth (m)	SW Sym	CLAYEY SAND Dense, fine to coarse, red brown, with gravel, dry SAND Dense to very dense, fine to coarse, grey and red brown, with clay, dry GRANITE Highly weathered to moderately weathered, dark grey brown, low to medium strength Test pit CTTP-32 terminated at 0.7m		Sam					
			2.5									

SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

ATE 8/11		D BY AP CHECKED JL R.L. SURFACE LOCATION 428704E 7352599	DATUM							
QUIPMENT 13 T Excavator LOCATION 428704E 7352599N EMARKS Groundwater not encountered										
Water (m)	(a) (a) (a) (Graphic Log (Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness					
	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	CLAYEY SAND Dense, fine to coarse, red brown, with gravel, dry CLAYEY GRAVEL Very dense, fine to coarse, red brown, dry								
	GWS	SANDY GRAVEL Very dense, fine to coarse, pale grey brown, with clay, cobbles, boulders, moist GRANITE Highly weathered to moderately weathered, yellow brown red and grey, low to medium strength Test pit CTTP-33 terminated at 2m								

FIGURE TEST PIT NUMBER CTTP-34 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

Q			Grou	ndwat	er not	encountered			
0000	Water	RL (m)	Depth (m)	hic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
-			_		SW	SAND Dense, fine to coarse, red brown, with silt, clay, rootlets, dry			
			- - 0 <u>.5</u>		GWS	SANDY GRAVEL Very dense, fine to coarse, red brown and grey, with clay, cobbles and boulders, dry			
			-	++++		GRANITE Highly weathered to moderately weathered, grey and white, medium strength	_		
				Ŧ		Test pit CTTP-34 terminated at 0.7m			
			-						
			-						
			1 <u>.0</u>	-					
			_	-					
			_						
			_						
			-	-					
			1 <u>.5</u>						
			-						
			-						
			-	-					
			_						
			2 <u>.0</u>						
			-						
			-						
			-						
			-						
			2.5						

FIGURE TEST PIT NUMBER CTTP-35 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11 MENT			OGGE avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 428866E 7352230	6N	D	DATUM			
						encountered						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic (No. of indicated			
				////	SC	CLAYEY SAND			0 4	8	12 1	16
			-			Dense to very dense, fine to coarse, red brown, with gravel, dry						
			-	+++		GRANITE Highly weathered to moderately weathered, grey and white, medium strength						
				+		Test pit CTTP-35 terminated at 0.4m						
			0 <u>.5</u>							•		-
										•		
			-									
			-									
			_							•		
			1.0							•		
			1.0							•		
			-							•		
			-									
			_							•		•
91./1.1										•		
10 30/			_							•		
MFAWAICAICW BOREHOLE/IESIPII IESIPII LOGSGFU GINI AUSIKALIA,GUI 30/11/10			1 <u>.5</u>									-
N I I I			-									
			_									
- CHD												
LUGS			-									
			-									
H H			2 <u>.0</u>							•	•	-
OREN			-									
			-							•		
ALC/A			_							•		
/IPAW/			2.5									

FIGURE TEST PIT NUMBER CTTP-36 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

JOB NUMBER 112391.11

EQ	UIP		13	Т Ехс	avator		4N	DA	ATUM
				bhic Log	Classification Symbol	encountered Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	ple	Sample condition	Dynamic Cone Penetrometer No. of blows for depth indicated by bar thickness
Method	Water	RL (m)	Depth (m)	Grap	Clas		Sample Type	Sam	
			,	////	SC	CLAYEY SAND			<u>) 5 10 15 20</u>
			_			Very dense, fine to coarse, red brown, with gravel, dry			
			-						
			_						
				//// +		GRANITE	-		
						Moderately weathered, white pale grey, medium strength Test pit CTTP-36 terminated at 0.4m	-/		
			0 <u>.5</u>						
			-						
			_						
			-						
			1 <u>.0</u>						
			-						
			-						
			_						
			-						
			1 <u>.5</u>						
			-						
			_						
			-						
			2 <u>.0</u>						
			-						
			_						
			-						
			2.5						

FIGURE TEST PIT NUMBER CTTP-37 SHEET 1 OF 1

JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

		8/11 MENT			DGGE avator	D BY AP CHECKED JL R.L. SURFACE LOCATION 428882E 735198	1N	D	ATUM	
RE	MAF	RKS	Grou	ndwat	er not	encountered		-	1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic No. o indicate	netrometer or depth thickness
					SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry				
			-							
			-	+ + + +		GRANITE Moderately weathered, white pale grey, medium strength				
			0 <u>.5</u>			Test pit CTTP-37 terminated at 0.4m				
			-							
			-							
			1 <u>.0</u>							
			-							
0			-							
			1 <u>.5</u>							
			-							
אראעארוטארטש פטאברוטרב וובט דיון ובטידיו בטסטטרט פווען אטט ואאראטאטטר אין וויוס			-							
			2 <u>.0</u>							
			-							
			2.5							

SHEET 1 OF 1

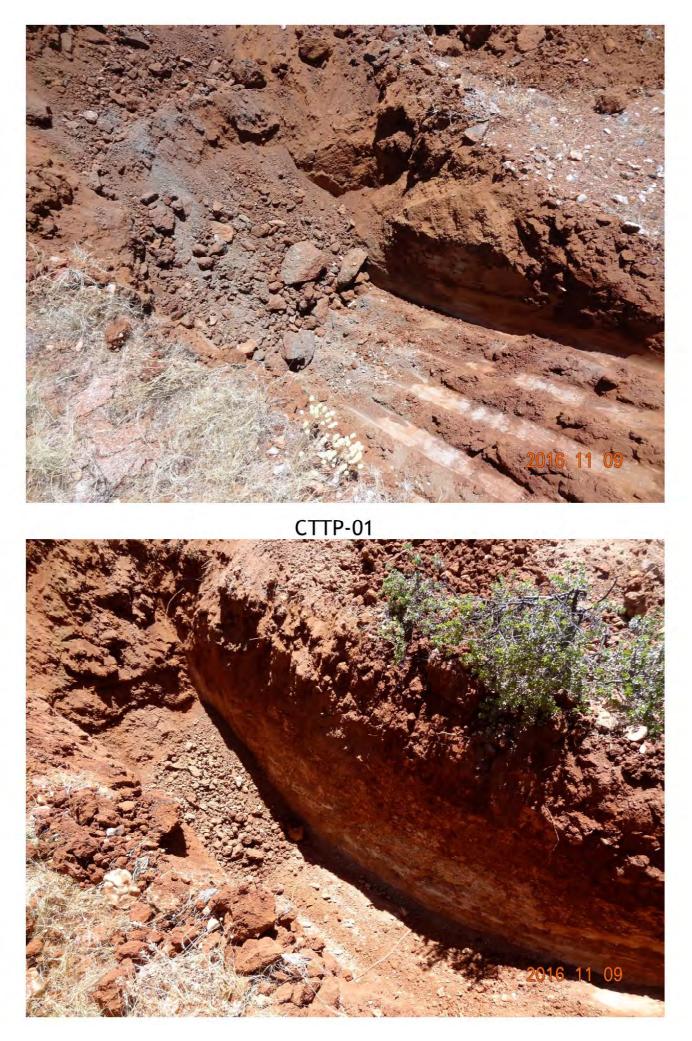
JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

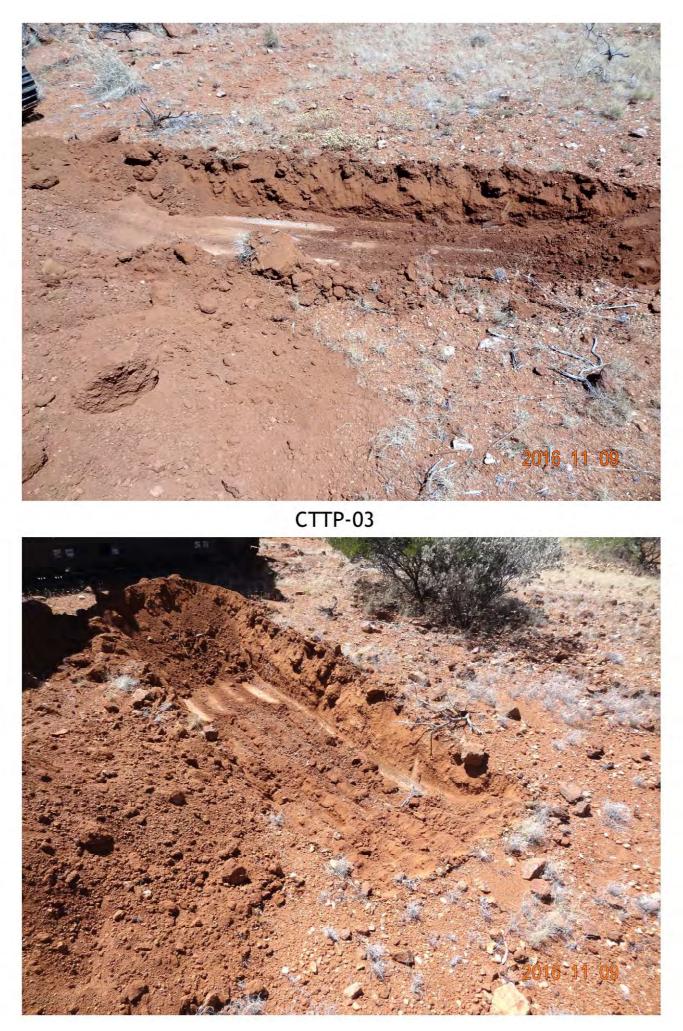
JOB NUMBER 112391.11

EQU	JIPN		13	T Exc	avator	encountered	8N		ATUM
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Cone Penetromete No. of blows for depth indicated by bar thickness
					SC	CLAYEY SAND Dense to very dense, fine to coarse, red brown, with gravel, moist		-	
			0 <u>.5</u> _		GWS	SANDY GRAVEL Very dense, fine to coarse, dark grey and white, with clay, moist		-	
				+ + + + + + + + + + + + + + + + + + + +		GRANITE Highly weathered to moderately weathered, grey and white, low to medium strength			
			_ 1 <u>.5</u>			Test pit CTTP-38 terminated at 1.1m			
			-						
			2 <u>.0</u> -						
			- 2.5						

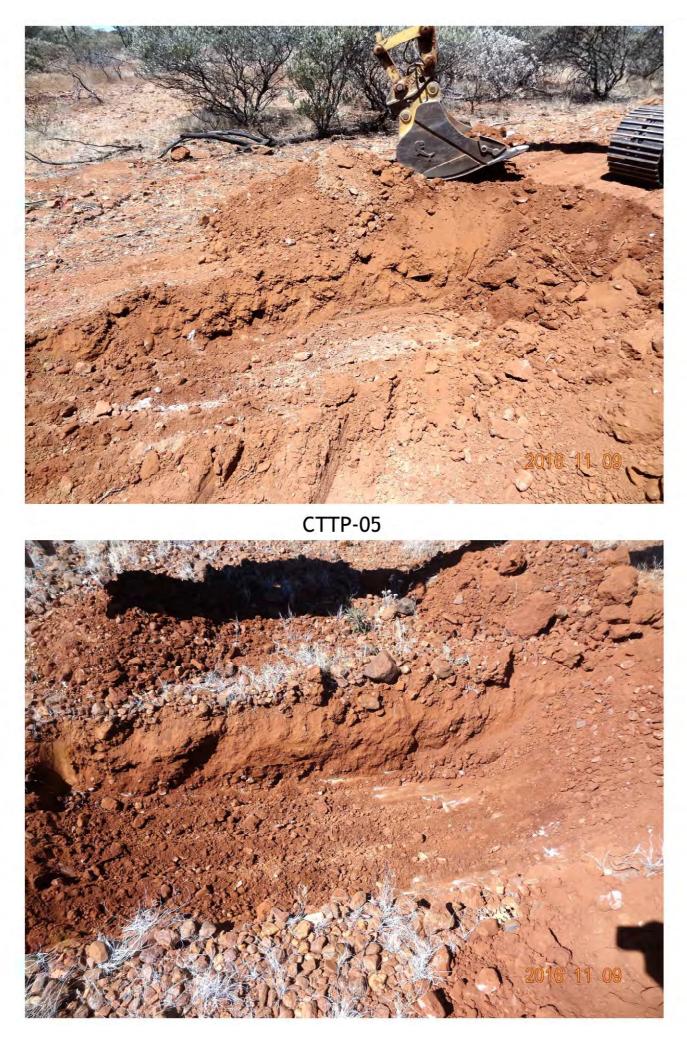
FIGURE


JOB NAME Yangibana Project

JOB LOCATION Gascoyne Region, Western Australia

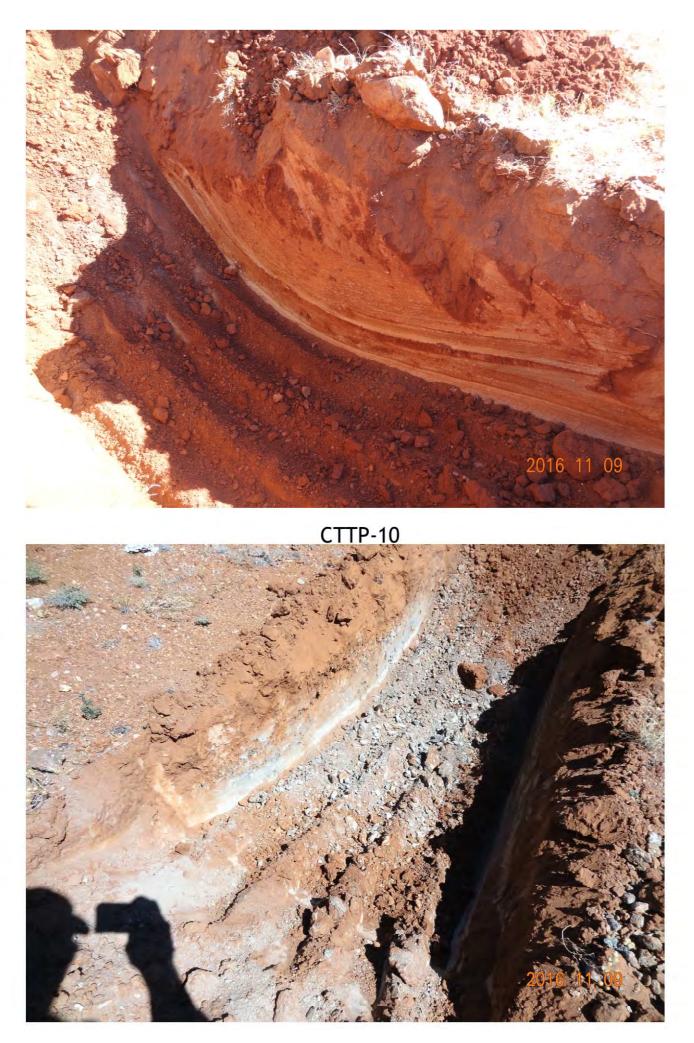

JOB NUMBER 112391.11

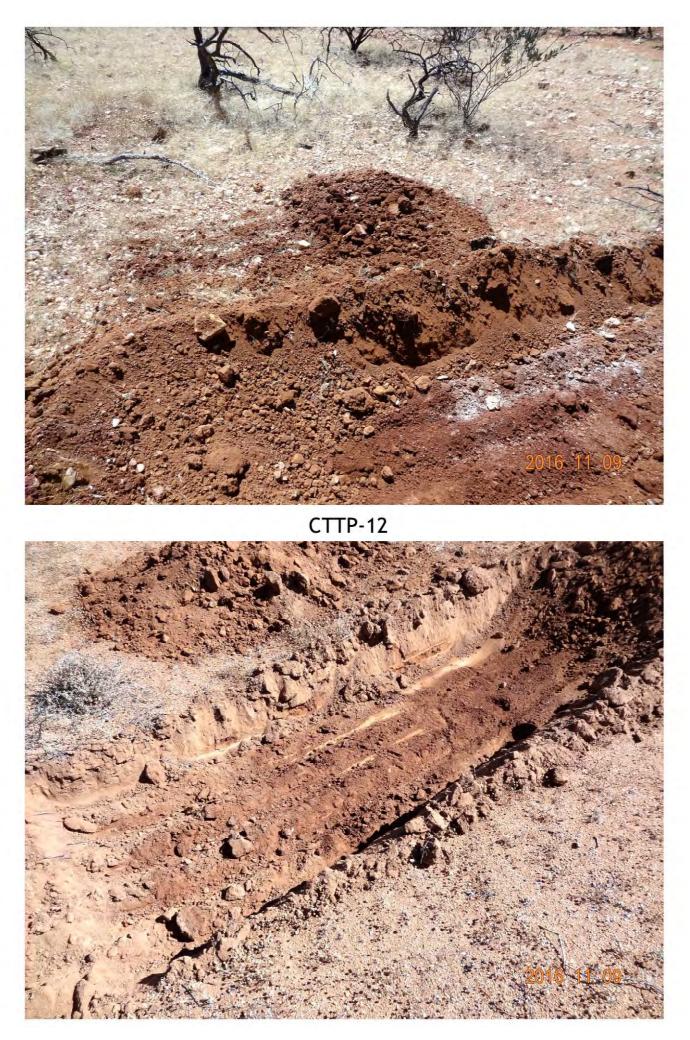
					avator er not	LOCATION 427399E 7351763 encountered	δIN			
	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description: Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	Sample Type	Sample condition	Dynamic Con No. of blo indicated by	e Penetrometer ws for depth bar thickness
+					SC	CLAYEY SAND Very dense, fine to coarse, red brown, with gravel, dry		C	4 8	12 16
								_		
			_	+		GRANITE Moderately weathered arey, medium strength	_			
T						Moderately weathered, grey, medium strength Test pit CTTP-39 terminated at 0.35m	1			
			0 <u>.5</u>							
			_							
			1 <u>.0</u>							
			1 <u>.5</u>							
			2 <u>.0</u>							
			2.5							


APPENDIX B

CTTP-02

CTTP-04


CTTP-06


CTTP-07B

CTTP-09

CTTP-11

CTTP-13

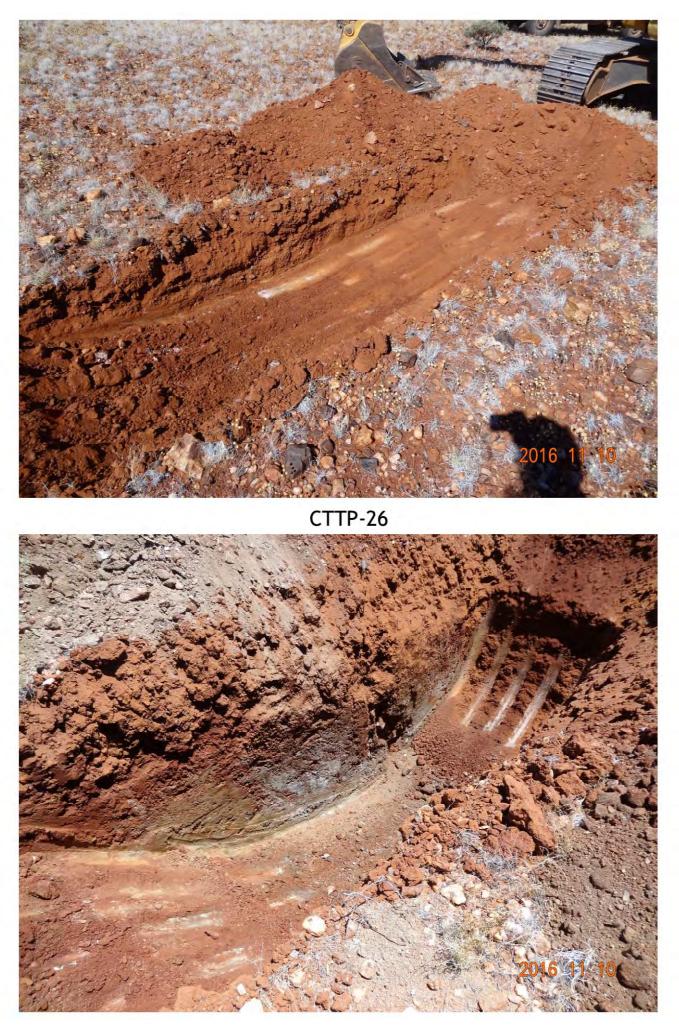
CTTP-15

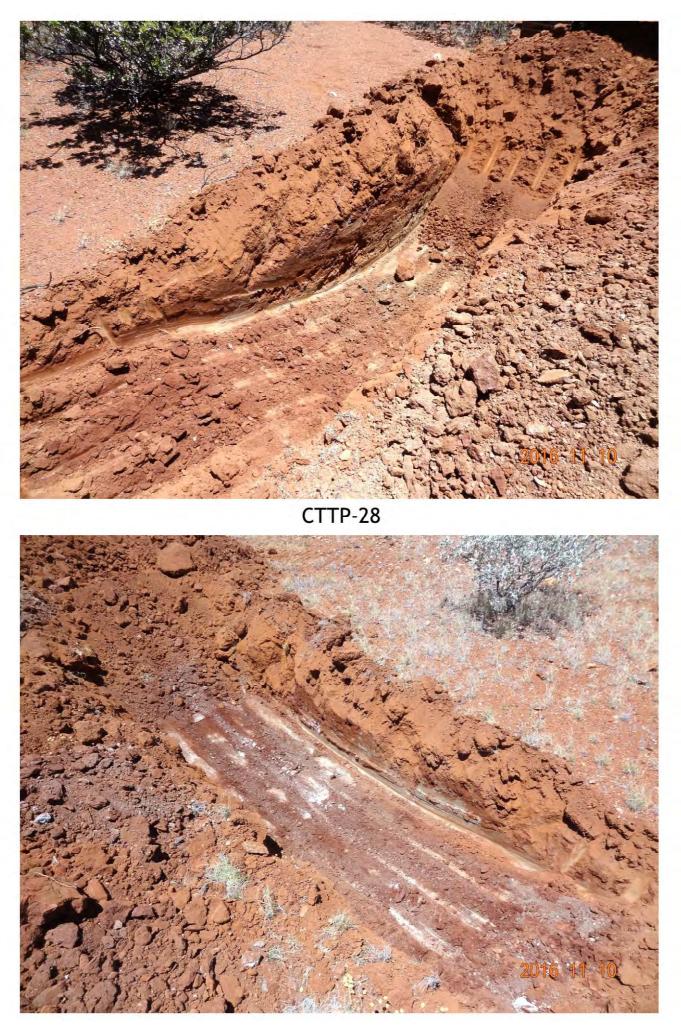
CTTP-17

CTTP-18

CTTP-21

CTTP-22




CTTP-24

CTTP-25

CTTP-27

CTTP-29

CTTP-30

CTTP-31

CTTP-32

CTTP-33

CTTP-37

CTTP-38

														FIGURE
		-	1.4	1:1	ir a		2				B	BOR	EH	OLE NUMBER CTBH-1
A			V	VII	lio	Im	S							SHEET 1 OF 5
				-	Miner 2391.					E Yangil ATION G				-
													Jian	
				ED	27/10/	/16		L. SURF						
								ICLINAT						BEARING Checked by JPL
	• -			Diamo	ond D	rill Ric	۲ (HQ). Groundwater depth not observed (dri			1 00				
F							Material Description							
						bo-	Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition	bu		Estimated Strength	Is ₍₅₀₎ MPa	Def Space	cing	Defect Description
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Weathering		H H H H H H H H H H H H H H H H H H H	D- diam- etral A- axial	m 200 200 200		
F			_	. ,	. ,		CLAY Very stiff, red brown, fissured, with sand		ш	>_2121>m		505 	50	
		66			_	+	GRANITE	-						
					-	+	Extremely weathered, crumbley and weakly cemented, red brown and pale brown, massive MEGA CRYSTALLINE GRANITE	EW						
					1	+++++++	Highly weathered, pale grey, pink and brown, massiv coarse mineral texture, very low to low strength	e						
		92	26		_	+ +		HW						
					-	+ +						╎╎┞		
					2		becoming moderately weathered, low to medium strength							
					-	+++++								
					_	+ +	becoming medium to very high strength							
		100	60			+++++++++++++++++++++++++++++++++++++++					_D 3.25			main joint set hoizontal to 30 degree
					3	+								dip, mostly planar or irregular with rough surface and minor staining
					_	+ + +								
					-	+ +								subordinate joint set 60 - 80 degree dip, undulate or planar with surface
					4	+ +								dip, undulate or planar with surface staining
					-	+ +								
					-	+ +	4.33 m - 4.7 m fractured zone	 HW/MV	W				J	
					_				1			╎╙┼	1	
		100	72		5	+ +					D 0.76			
1/17					_	+++								
T 19/					-	+								
IA.GD					6	+++++++++++++++++++++++++++++++++++++++								
STRAL					_	+ +								
T AU\$					-	+ +								
l GIN					_	+ +								
S.GP.					7	+++++++++++++++++++++++++++++++++++++++								
HOLE						++		_						
BORE					-	+ +	MEGA CRYSTALLINE GRANITE Moderately weathered, pale pink and grey, massive							
3ANA		lo	8		8	+	coarse mineral texture, medium to very high strength							
ANGIE		100	83		_	+								
ΓE Υ					-	+++++++++++++++++++++++++++++++++++++++								
REHC					_	+ +		sw						
ED BO					9	+ +								
CORE					_	+ +								
MPAWATC CORED BOREHOLE YANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17		6			-	+++++++++++++++++++++++++++++++++++++++								
MPAV		100	41		10	+ +							J	

	IEN	Т	Has	stings	lia Miner	als	S			IE Yangil ATION G	oana Ra	ire Earth P	
DA LC EC	TE : CA1 QUIP	STA FION MEI	IRT N NT	ED	27/10/	16	COMPLETED (HQ). Groundwater depth not observed	r.l. suf Inclina Loggee	RF/ TIO	ACE DN 90° BY CJ			DATUM Bearing Checked by JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary components moisture condition Rock: type, weathering, colour, fabric, estima strength, structure and bedding	or S, ළු		Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
		100	41			· · · · · · · · · · · · · · · · · · ·							11.87 m joint 75 deree dip, planar, rough with surface staining
		100	81					sw	7				joint surfaces predominantly irregular, rough with oxide staining
אראיירוט לטרבם פטרבוטבב. דאיטופאיא פטרבוטבבפיטרט פואראטפרראבואיפטר ואידויז		100 100	55 57			+ + + + + + + + + + + + + + + + + + +					_D 4.03		17.93 m - 18.91 m fractured zone 30 mm - 80 mm joint spacings

CLI	ENT	. 1	las	tings	lia Miner 2391.	als	S		FIGUR BOREHOLE NUMBER CTBH- SHEET 3 OF NAME Yangibana Rare Earth Project LOCATION Gifford Creek Station WA
da [.] Lo(TE S CATI UIPN	ION MEN	rte I IT	ED 2	27/10/	'16	COMPLETED (HQ). Groundwater depth not observed	R.L. SUR INCLINA LOGGED	JRFACEDATUMIATION 90°BEARINGED BY CJCHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary component moisture condition Rock: type, weathering, colour, fabric, estima strength, structure and bedding	bu	Estimated Is ₍₅₀₎ Defect Strength MPa Spacing mm Defect Description D- diam- teral A- axial 8,800 00000000000000000000000000000000
			55			+++++++++++++++++++++++++++++++++++++++			
		100	71		 2 <u>1</u>	+ + + + + + + + + + + + + + + +		SW	SW
		100	75		22 23 23 24	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	MEGA CRYSTALLINE GRANITE Freshly weathered, grey white and pale pink, ve high to extremely high strength	у	
		100	68		2 <u>5</u> - 2 <u>6</u> - 2 <u>7</u>	$\begin{array}{c} + & * \\ - & + \\$		FR	FR
		100	100		- 2 <u>8</u> - 2 <u>9</u>	· * * * * * * * * * * * * * * * * * * *			
		100	89			- + + - + + + +			D 9.91

CL	IEN	ΤI	Has	tings	lia Miner 2391.	als	S				jibana Ra	BOREH are Earth F rreek Statio	
LO EQ	CAT UIP	rion Mei	N NT		27/10/		COMPLETED (HQ). Groundwater depth not observed	R.L. SURI INCLINAT LOGGED	ΠC B`	n 90°			DATUM BEARING CHECKED BY JPL
Method	Water		RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary components moisture condition Rock: type, weathering, colour, fabric, estimat strength, structure and bedding	or S, E		Estimated Strength	MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
		100 100	96 89			· + + + + + + + + + + + + + + + + + + +	34.4 m - 34.65 m viens, 65 - 80 degree dip						32.22 m joint 70 degree dip, undulate, rough, clean
		100	100		3 <u>5</u> 	+ + + + + + + + + + + + + + + + + + + +		FR					35.5 m - 36.5 m no fractures in core run (drilling only)
		100	97		38 38 - - - 39	+ + + + + + + + + + + + + + + + + + +							38.25 m joint, irregular, rough, tight and clean
		100	100		40	- + + - + +							39.5 m - 40.5 m no fractures in core run (drilling only)

	-													_		FIGURE
	Á	TO	2	V	/il	lio	m	S						В	OREH	OLE NUMBER CTBH-1 SHEET 5 OF 5
_	CLI	ENT		Has	tings	Mine	rals	0							re Earth P	
						2391.							Gi	ifford Cr	eek Statio	
		re s Cat			ED	27/10/	/16	COMPLETED	R.L. S				0			DATUM BEARING
		JIPI							LOGG							CHECKED BY JPL
ŀ	REN	AF	RKS	5 [Diamo	ond Di	rill Rig	(HQ). Groundwater depth not observed (Material Description	drilling	fluid	l)					
							6o-	Soil: type, USCS symbol, strength, plasticity o particle size, colour, secondary components, moisture condition		bu	Es S	stimate strengtl	ed h	Is ₍₅₀₎ MPa	Defect Spacing mm	Defect Description
:	Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Rock: type, weathering, colour, fabric, estimate strength, structure and bedding	ed	Weathering	EL VL	-∑IZ.		D- diam- etral A- axial	20 60 2000 2000	
ſ			100	100		-	+++++++++++++++++++++++++++++++++++++++			FR						
						_		CTBH-1 terminated at 40.5m							••••	
						4 <u>1</u> _										
						42										
						+ <u>z</u>										
						43										
						-										
						44										
						-										
						4 <u>5</u>										
JT 19/1/17						-										
STRALIA.GD						4 <u>6</u>										
J GINT AUS						- - 4 <u>7</u>										
HOLES.GP						4 <u>7</u>										
3ANA BORE						48										
LE YANGIE						-										
D BOREHO						49										
MPAW/ATC CORED BOREHOLE VANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17						-										
MPAW.						50										

A		C	V	Vil	lia	m	IS				Vansil		FIGURE OREHOLE NUMBER CTBH-2 SHEET 1 OF 7
					Miner 2391.						-		re Earth Project reek Station WA
DA LC EC	TE CA UIF	st/ tio pme	ART N NT	ED	7/11/1	6	COMPLETED). Groundwater strike at 54 m depth w	R. IN LO	.L 1C	SURFAC CLINATION GGED BY	E I 90°		DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Weathering		Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
							GRANITE/SHEARED GRANITE Extremely / moderately weathered, dark grey and brown MEGA CRYSTALLINE GRANITE Extremely / moderately weathered, grey GRANITE/SHEARED GRANITE Moderately weathered to fresh, dark grey					200	

A		C	V Has	Vil	lia	m	S		job nai	ME Ya	angib				FIGU E NUMBER CTB SHEET 2 C	H-2
DA LO EC	TE CA UIP	STA TION PME	NRT N NT	ED	2391. 7/11/1 0 (air	6	COMPLETED . Groundwater strike at 54 m depth wt	R. IN LO	JOB LOO L. SURF CLINATI DGGED I	ACE	0°	ifford (Creek S	D B	/A ATUM EARING HECKED BY JPL	
Method	Water		RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Weathering	Estimat Streng	D- 0 e A- a	(50) Pa diam- etral axial	Defec Spaci mm	ng	D	efect Description	
						+ + + + + + + + + + + + + + + + + + + +	MEGA CRYSTALLINE GRANITE Moderately weathered / fresh, grey GRANITE/SHEARED GRANITE Moderately weathered to fresh, dark grey									

		S	BORE	FIGURE HOLE NUMBER CTBH-2 SHEET 3 OF 7 Project
DATE START LOCATION EQUIPMENT		COMPLETED). Groundwater strike at 54 m depth v	JOB LOCATION Gifford Creek Sta R.L. SURFACE INCLINATION 90° LOGGED BY KF vhilst drilling.	tion WA DATUM BEARING CHECKED BY JPL
Method Water TCR % RQD %	RL Depth (m) (m) bo	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Estimated Strength uiae trai A-axial B B B B B B C B B C B B C B C B C B C	Defect Description
	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	MEGA CRYSTALLINE GRANITE Moderately weathered //resh, grey GRANITE/SHEARED GRANITE Slight weathered to fresh, dark grey		

A			0	V	Vil	lia Miner	mals	S		JO	B NAI	ИE	Yangil	bana		OREH			FIGU R CTI HEET 4	BH-2
	AT DC	E S	sta Ion	RT		2391. 7/11/1		COMPLETED	R	.L. ICI	SURF		E 90°	ifford	d Cr	eek Statio	DATUN BEARI	NG	וסו	
	EM	L	% %		RC Ri (m)	g (air Depth (m)	Graphic Log	. Groundwater strike at 54 m depth w Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding		E		ed th	Is ₍₅₀₎ MPa D- diam- etral A- axial	Spa	fect acing im			ED BY	JFL	
MPAW/ATC CORED BOREHOLE YANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17						$\begin{array}{c} - \\ 31 \\ - \\ 32 \\ - \\ 32 \\ - \\ 33 \\ - \\ - \\ 33 \\ - \\ - \\ 34 \\ - \\ 35 \\ - \\ - \\ 35 \\ - \\ - \\ 35 \\ - \\ - \\ 35 \\ - \\ - \\ 35 \\ - \\ - \\ 35 \\ - \\ - \\ 39 \\ - \\ - \\ 39 \\ - \\ - \\ 39 \\ - \\ - \\ - \\ 39 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	+ + + + + + + + + + + + + + + + + + +													

		S		JOB NAME Yangil	bana Rare Earth	
JOB NUMBER DATE START LOCATION EQUIPMENT REMARKS	ED 7/11/16	COMPLETED Groundwater strike at 54 m depth w	R. IN LO	JOB LOCATION G L. SURFACE ICLINATION 90° DGGED BY KF	Sinora Creek Stat	DATUM BEARING CHECKED BY JPL
Wethod Water RQD %	RC Rig (all Hush). 60 10 10 10 10 10 10 10 10 10 1	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	eathering	Estimated Is(50) Strength MPa D- diam- etral A- axial	Defect Spacing mm ୧. ଜୁରି ତ୍ଥିତ୍ରି	Defect Description
MPAWATC CORED BOREHOLE YANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17	$\begin{array}{c} - + + + + + + + + + + + + + + + + + + $					

	IEN	11	ная	stings	lia Miner 2391.	ais	S				-	bana Rare E	FIGURE DREHOLE NUMBER CTBH-2 SHEET 6 OF 7 Earth Project ek Station WA
LC EC	OCA QUIF	tioi Pme	N NT		7/11/1		COMPLETED	IN Le	NС .ОС	SURFAC LINATION GGED BY	1 90°		DATUM BEARING CHECKED BY JPL
Method	Water		%	RC RI RL (m)	g (air Depth (m)	Graphic Log). Groundwater strike at 54 m depth of Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Meathering Veathering		Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
						+ +	MEGA CRYSTALLINE GRANITE Slightly weathered /fresh, dark grey						

A		C	W	Vil	lia	m	S		JO	BI		ME	Yangi	ban			FIGURE DREHOLE NUMBER CTBH-2 SHEET 7 OF 7 e Earth Project
JO DA LO EQ	B N TE S CAT	UMI STA TION MEI	BEF IRTI N NT	ε 11 Ε D	2391. 7/11/1	11 6	COMPLETED . Groundwater strike at 54 m depth v	F	JO R.L. NCI	B I SU LIN GE	_OC IRF AT		TION				DATUM DATUM BEARING CHECKED BY JPL
Method	Water		RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	Weathering	I	Estii Stre	eng	th	Is ₍₅₀₎ MPa D- diam- etral A- axial	S	Defectoric Dacir mm	ng	Defect Description
						+ + + + + + + + + + + + + + + + + + + +	CTBH-2 terminated at 66m										
					6 <u>9</u> - - - - - - - - - - - - - - - - - - -												

CLI	ENT	Γ	las	stings	lic Miner 2391.		S	JOB NA	RAFT ME Yangibana CATION Giffor	A Rare Earth P	-
LO EQ	CAT UIPI	'ior Mei	I NT		29/10			LOGGED	ION 90° BY CJ		DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	hic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	buj	Estimated Is, Strength Mi	tral	Defect Description
		75	0		- - - 1		CLAY Very stiff, medium to high plasticity, red brown, with sand CLAYEY SAND Dense and weakly cemented, pale red brown, fine coarse sand trace gravel				
		86	0		-	+ + + + +	CLAYEY SAND (EXTREMELY WEATHERED GRANITE) Very dense / dense, green grey and pale grey and black, with gravel	EW			
		0			<u>2</u> - -		MEGA GRANITE Highly weathered, dark green grey and black, massive, very low to medium strength.	HW			
		100	56		3		GRANITE Moderately weathered, dark green grey and pale grey, massive, low to medium strength 3.5 m becoming dark grey				joint surfaces predominantly irregular, planar and rough with staining and no infill.
		100	58		4 - - 5			MW			
		100	82		- - 6 - -		5.5 m with irregular foliations			r.	
		94	16		 		 7.0 m - 8.1 m highly weathered, grey and green grevery low / medium strength 7.38 m - 8.1 m highly weathered, miceaceous rubb core 				7.38 m - 8.1 m highly fractured zone
		100	92		9		SHEARED GRANITE Moderately weathered to slightly weathered, dark green grey, white and black, massive, low to mediu strength	IM MW			
		100	92		- - - 10		9.5 m slightly weathered	sw			9.36 m joint 40 degree dip, planar, cla infill

CL	IENT	F	las	stings	lio Miner 2391.	als	S	JOB NA	RAF ME Yangi CATION (ibana Ra	are Earth P	
LO EQ	CAT UIPI	ION MEN	I NT		29/10/ ond Di		COMPLETED g (HQ). Groundwater depth not observed	R.L. SURI INCLINAT LOGGED	ION 90° BY CJ			DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary components moisture condition Rock: type, weathering, colour, fabric, estimat strength, structure and bedding	БП	Estimated Strength ⊒∃⊒≅±	Is ₍₅₀₎ MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
		100	92		- - 1 <u>1</u> - - 1 <u>2</u> -			SW				
		100	65		- 1 <u>3</u> - - 1 <u>4</u> - - - 1 <u>5</u>		13.1 m dark green grey and white, medium to ve high strength 14.6 m moderately weathered, dark green grey a pale grey,		-			14.65 m joint 75 degree dip, planar, rough tight
		100	67		- 1 <u>6</u> - - 1 <u>7</u> - 1 <u>8</u> -		15.67 m - 15.80 m modeterately to highly weather zone becoming slightly to moderately weathered	sw/Mv	-			
		100	57		- 1 <u>9</u> - - - 20							

CL	IEN	ΓΙ	Has	tings	lic Mine 2391		IS	JOB NA	M	RAF E Yangi ATION (bana Ra	Project	-		
LO EQ	DATE STARTED 29/10/16 COMPLETED OCATION EQUIPMENT REMARKS Diamond Drill Rig (HQ). Groundwater depth not observed								B	ACE DN 90° YY CJ				DATUM BEARING CHECKED BY	
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary componen moisture condition Rock: type, weathering, colour, fabric, estima strength, structure and bedding	bu		Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Sp. r	efect acino nm	Defect	Description
		100	57		- - 2 <u>1</u> -	-		SW/M	N					21.25 - 21.5 m th fractures, irregula	ree subhorizontal ır, rough
		100	59		2 <u>2</u> 23		MEGA GRANITE							22.55 m - 22.7 m clay infill in joints	highly fractured zone
		100	76				Slightly weathered / fresh, pale grey and dark g and pink crystaline texture, massive, very high t extremely high strength.	rey to SW							
		100	95		2 <u>5</u> - - 2 <u>6</u> - - - - - - - - - - - - - - - - - - -		becoming freshly weathered	FR						Joints predomina undulating or plan degrees).	ntly clean, rough nar with low dip (0 - 20
		100	100		28 28 - - 29 - - - - - - - - - - - - - - - -										

CL	ENI		Has	stings	lic Mine 2391		S	JOB NA	M	AF E Yangik ATION G	bana Ra	re Ea	rth F	
LO EQ	CAT UIPN	'ION MEN	I NT		29/10 ond D		COMPLETED (HQ). Groundwater depth not observed	R.L. SUR INCLINAT LOGGED	ПC В) 90° Y CJ				DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity of particle size, colour, secondary components moisture condition Rock: type, weathering, colour, fabric, estimate strength, structure and bedding	Ē	EI	Estimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Def Spa m	cing m	Defect Description
		100 100	99 100		3 <u>1</u> 3 <u>2</u> 3 <u>3</u>									31.01 m joint clean irregular rough
		100	98		3 <u>4</u> - - 3 <u>5</u> - - - - - - - - - - - - - - - - - - -	* * * * * * * * * * * * * *		FR						
		100	66											
		100	66		40									

JO	IEN ⁻ B N	UME	-las BEF	stings R 11	lio Miner 2391.	als 11		JC	ob na Ob lo	ME CAT	Yang T ION (ibana Ra Gifford C	ire Ea	arth F	on WA
LO EQ	CA1 UIP	'ION MEI	I NT		29/10/ ond Di		COMPLETED (HQ). Groundwater depth not observe	INC LOC	GED	ion By	90°				DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticit particle size, colour, secondary componer moisture condition Rock: type, weathering, colour, fabric, estim strength, structure and bedding		Weathering	S	timated trength	Is ₍₅₀₎ MPa _{D-} diam- etral A- axial	Spa m		Defect Description
		100	66		- - 4 <u>1</u> -	+ + + + + + + + + + + + + + + + + + +									40.61 m joint subhorizontal, planar, rough, tight, slight staining ∖ 40.7 - 41.33 m set of poorly developed foliations evident (25 degree dip).
		100	100		4 <u>2</u> 4 <u>3</u> - - - - - - - - - - - - - - - - -		43.0 m pale grey, large quartz crystals		FR						only drill fractures evident below 42.3 m.
		100	100		- - 4 <u>6</u> - -	- + + - + - + - + - + - + - + - + + - +	45.4 m - 46.4 m dark grey, poorly developed fo evident	bliations							
		100	100		4 <u>7</u> - - 4 <u>8</u> - - - - - - - - - -										
		100	100		50	- + + - + + - +									

CL	ATC WILLIAMS CLIENT Hastings Minerals JOB NUMBER 112391.11									-	BOREH a Rare Earth P rd Creek Static	-
LC EC	DATE STARTED 29/10/16 LOCATION EQUIPMENT PEMARKS Diamond Drill Pig						COMPLETED	INCI LOG	GED I	ION 90° BY CJ		DATUM BEARING CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticit particle size, colour, secondary componen moisture condition Rock: type, weathering, colour, fabric, estim strength, structure and bedding	y or its,	eathering	Estimated Is Strength M	S ₍₈₀₎ Defect IPa Spacing diam- etral axial	Defect Description
		100	100			+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$			FR			
		100	100		5 <u>4</u> 5 <u>4</u> 		CTBH-3 terminated at 55.5m					
					56 - - 57 - - - - - - - - - - - - - - - -							
					5 <u>9</u> - - - 60							

C		C	V Has	Vil	lia	rals	S			AF Yangit		BOREH	FIGURE OLE NUMBER CTBH-4 SHEET 1 OF 2
D. L(TION G CE N 90°	iifford C	DATUM BEARING	
	QUIP Emaf			Diamo	ond Di	rill Rig	g (HQ). Groundwater depth not observed (c	LOGGED		CJ			CHECKED BY JPL
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimated strength, structure and bedding	eathering	E	Stimated Strength	Is ₍₅₀₎ MPa D- diam- etral A- axial	Defect Spacing mm	Defect Description
		100	6		 		CLAYEY SAND Medium dense/ dense, fine to coarse, red brown, trace gravel, medium plasticity SILTY GRAVEL (Extremely Weathered Granite) Very dense/weakly cemented, fine to coarse grave lithorelicts, trace sand SHEARED GRANITE Highly weathered, grey and green grey, foliated, ve low / low strength 1.47 m becoming moderately to highly weathered, green grey and white, medium to high strength	I EW	_			N @ N @ N	joints predominantly, rough, irregular with surface staining. 2.01 m - 2.52 m fractured zone, fractures irregular, rough, with very thin clay infill (1 mm - 2 mm)
		100 100	71 18				GRANITE Slightly weathered, green grey and white, medium crystalline, massive, very high/ extremely high strength				D A 4.87 2.7		2.8 m - 3.67 m subvertical joint, irregular, rough, stained
		100	96				4.47 m becoming pale grey and white mega crystalline granite, high to very high strength SHEARED GRANITE Slightly weathered, white and dark grey, poorly foliated, high to very high strength						4.67 m - 4.83 m joints 30° - 40° dip, irregular, rough
		96	94		 			SW					
		100	71		 9						DA 5.079.4		joint 70° dip, rough, stained
		97	81		10	+ + +							

CL	IEN	ΓΙ	Has	stings	lia Miner	als	S	JOB NA		BOREH na Rare Earth P ord Creek Static	
LO EQ	DATE STARTED 1/11/16 COMPLETED LOCATION EQUIPMENT REMARKS Diamond Drill Rig (HQ). Groundwater depth not obs					LOGGED	FION 90° BY CJ		DATUM Bearing Checked by JPL		
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity of particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimate strength, structure and bedding	Ð	Strength D-	Is ₍₅₀₎ Defect MPa diam- etral axial 0 2 0 0 000 0 0 0 000 0 0 0 000 0 0 0 000 0 0 0 0 000 0 0 0 0 000	Defect Description
		97	81		- - - 11	- + + - + + + + + +	10.46 m becoming pale grey and medium grained	i sw			10.44 m - 10.96 m irregular, rough, 5º - 25 ^{dp}
							CTBH-4 terminated at 11m				
					1 <u>8</u> 1 <u>8</u> - 1 <u>9</u> - 20						

MPAW/ATC CORED BOREHOLE YANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17

CLI	IEN	Γ I	Has	stings	lic Mine	rals	S	JOB	NAN	RAFT ME Yangibana CATION Giffor	a Rar	e Earth P	-
LO EQ	DATE STARTED 26/10/16 COMPLETED LOCATION EQUIPMENT REMARKS Diamond Drill Rig (HQ). Groundwater depth not observed					R.L. SURFACE DATUM INCLINATION 90° BEARING LOGGED BY CJ CHECKED BY d (drilling fluid) CHECKED BY CHECKED BY				BEARING			
Method	Water	TCR %	RQD %	RL (m)	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity particle size, colour, secondary component moisture condition Rock: type, weathering, colour, fabric, estima strength, structure and bedding		weatnering	Strength M	s ₍₅₀₎ IPa diam- etral axial	Defect Spacing mm	Defect Description
		37			- - 1		CLAYEY GRAVEL Dense/very dense, fine to coarse, brown and gr medium plasticity. GRANITE Moderately weathered, grey and light grey, med					L	
		100	83				Moderately weathered, grey and light grey, med crystaline, massive, medium/ high strength 1.2 m - 2.2 m dark grey and white, high / very his strength 2.2 m - 5.95 m moderately weathered, green gre	gh		_D 1.86	A_ 8 2.2		joints irregular, rough, clean or with slight iron oxide staining
		100	77				massive, medium / high strength	м	W				
		100	65		4 - - 5								
		100	47		6	- +	5.95 m - 6.5 m highly weathered zone, closely						5.3 m - 5.38 m highly fractured zone
		100	77		- - - 7 -		fractured, low / medium strength 6.5 m moderately weathered, grey, white and crystaline, high/ very high strength GRANITE Slightly weathered, grey and light grey, medium		w				6.54 m - 6.67 m closely fractured zone
		93	81		- - 8 -] + + + + +	crystalline, massive, medium/ very high strength			-D.	A_ 5 8.65		
		100	96		 9 			s	W	4.45	b 8.65		8.65 m - 8.72 m closely fractured

MPAW/ATC CORED BOREHOLE YANGIBANA BOREHOLES.GPJ GINT AUSTRALIA.GDT 19/1/17

LOC EQU REM	ATI	ION			11			-	na Rare Earth Pi ord Creek Statio	•
		2NS	NТ	26/10/			R.L. SURF INCLINAT LOGGED	ION 90° BY CJ		DATUM BEARING CHECKED BY JPL
Method	Water		RQD %	Depth (m)	Graphic Log	Material Description Soil: type, USCS symbol, strength, plasticity or particle size, colour, secondary components, moisture condition Rock: type, weathering, colour, fabric, estimate strength, structure and bedding	r (eathering	Estimated Strength D-	Is ₍₅₀₎ Defect MPa Spacing diam- etral - axial	Defect Description
		95 100	87 96	 11	· + + + + + + + + + + + + + + + + + + +	GRANITE Freshly weathered, green grey and white, medium crystalline, massive, very high/ extremely high strength	SW			
		100	97	- - - 1 <u>2</u> -	· + + + + + + + + + + + + + + +	11.98 m becoming dark grey with pink feldspar crystals	FR			
				1 <u>3</u> -		CTBH-5 terminated at 12.5m				
				1 <u>4</u> - - 1 <u>5</u>						
				1 <u>5</u> - - - 1 <u>6</u>						
				- - 1 <u>7</u>						
				_ 1 <u>8</u> 						
				1 <u>9</u> 						

APPENDIX D

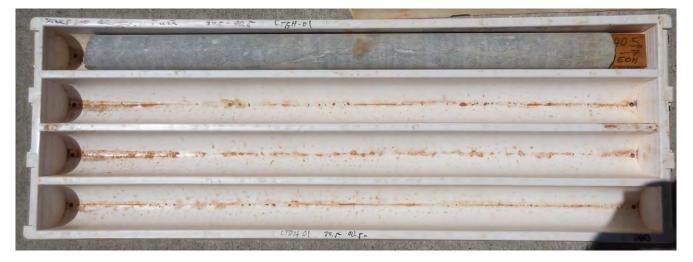
CTBH1 (0.00 - 10.10 m)

CTBH1 (10.10 - 20.30 m)

СТВН

Geotechnical Inspection

CTBH1 (20.30 - 29.80 m)

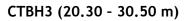


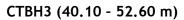
CTBH1 (29.80 - 39.50 m)

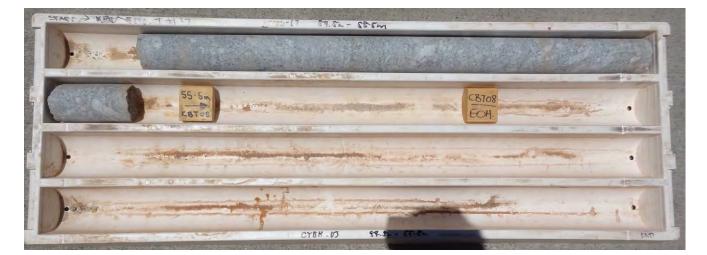
CTBH1 (39.50 - 40.50 m)

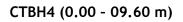
CTBH3 (0.00 - 09.50 m)

CTBH3 (09.50 - 20.30 m)




CTBH3 (30.50 - 40.10 m)





CTBH3 (52.60 - 55.50 m)

CTBH-4 00 - 3.4 m

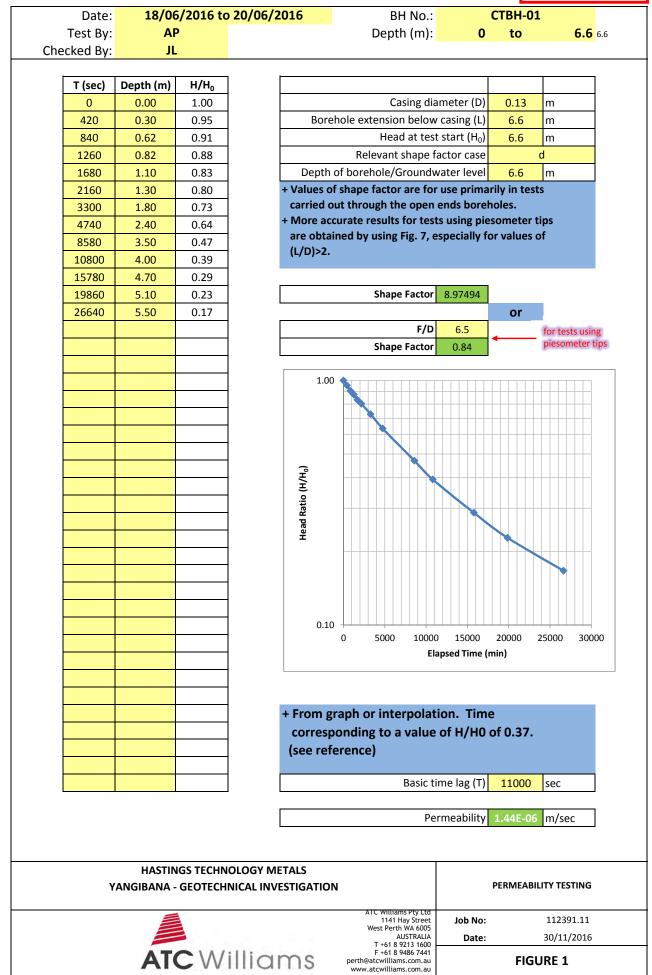
10150

12415-2000

TR49 #1

CTBH4 (09.60 - 11.00 m)

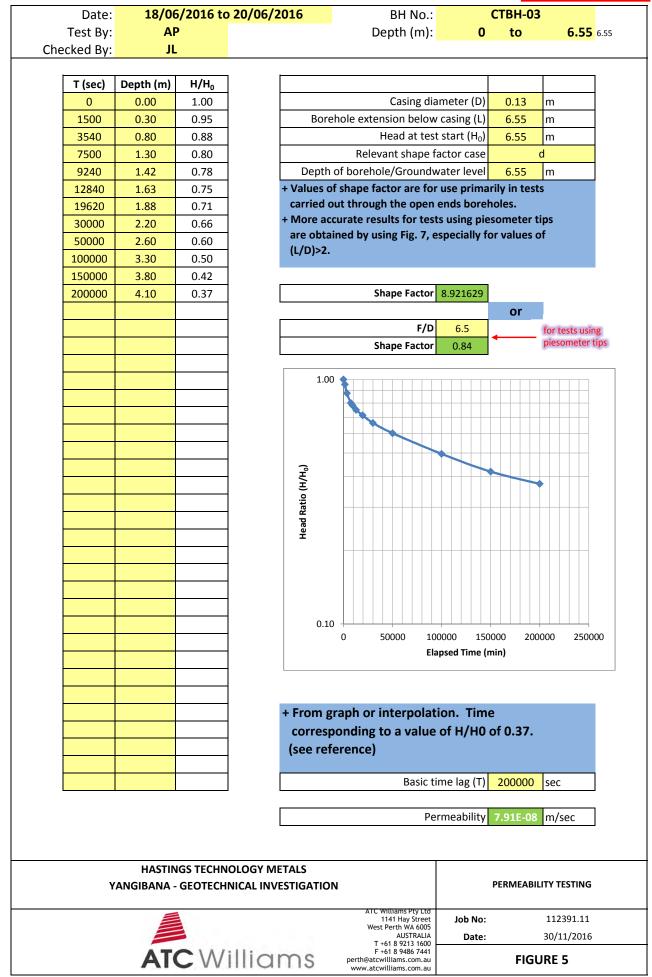
CTBH5 (0.00 - 10.00 m)

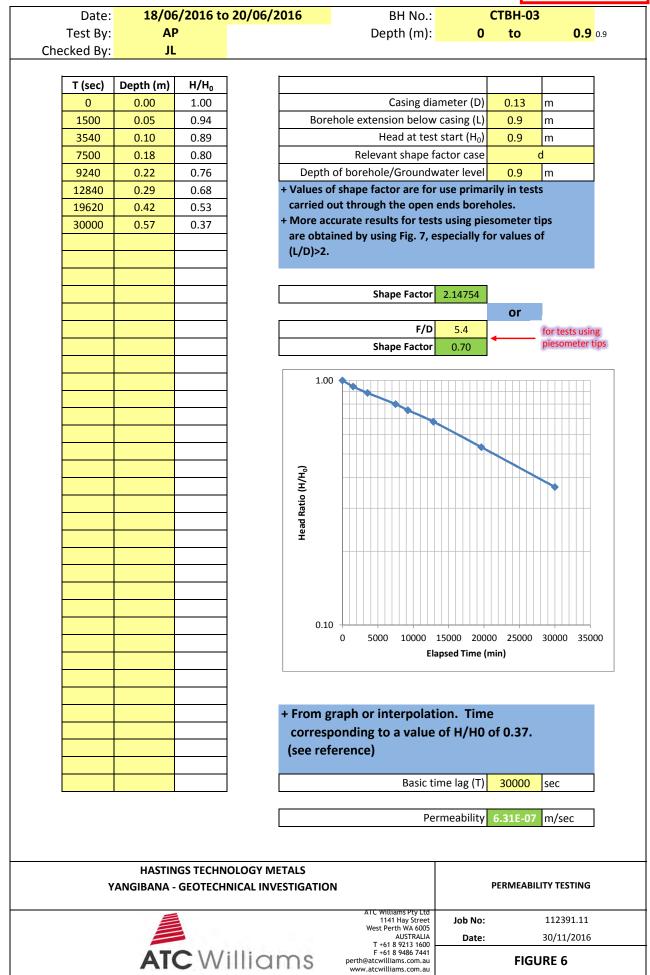


CTBH5 (10.00 - 12.50 m)

APPENDIX E

Date:		5/2016 to 20/06	
Test By:	AF		Depth (m): 0 to 1.5 1
Checked By:	JL		
T ()	Double (m)		
T (sec)	Depth (m) 0.00	H/H ₀ 1.00	Casing diameter (D) 0.13 m
360	0.00	0.95	Borehole extension below casing (L) 1.5 m
780	0.07	0.93	Head at test start (H_0) 1.5 m
1200	0.11	0.91	Relevant shape factor case d
2820	0.25	0.83	Depth of borehole/Groundwater level 1.5 m
4260	0.28	0.81	+ Values of shape factor are for use primarily in tests
8100	0.32	0.79	carried out through the open ends boreholes.
10320	0.35	0.77	+ More accurate results for tests using piesometer tips
15180	0.40	0.73	are obtained by using Fig. 7, especially for values of
19380	0.44	0.71	(L/D)>2.
26160	0.49	0.67	
40000	0.58	0.61	Shape Factor 3.000847
80000	0.75	0.50	or
120000	0.87	0.42	F/D 5.7 for tests using
150000	0.94	0.37	Shape Factor 0.74 piesometer tip
			[
			1.00
			Head Ratio (H/H _o)
			0.10
			0 50000 100000 150000 200000
			Elapsed Time (min)
			+ From graph or interpolation. Time
			corresponding to a value of H/H0 of 0.37.
			(see reference)
			Basic time lag (T) 150000 sec
			Permeability 1.19E-07 m/sec
	Пусти	IGS TECHNOLOGY	METALS
Ŷ	-	GEOTECHNICAL II	
			AIC Williams Pty Ltd 1141 Hay Street Job No: 112391.11
			West Perth WA 6005 JOD NO: 11259.11 AUSTRALIA Date: 30/11/2016 T +61 8 2213 1600





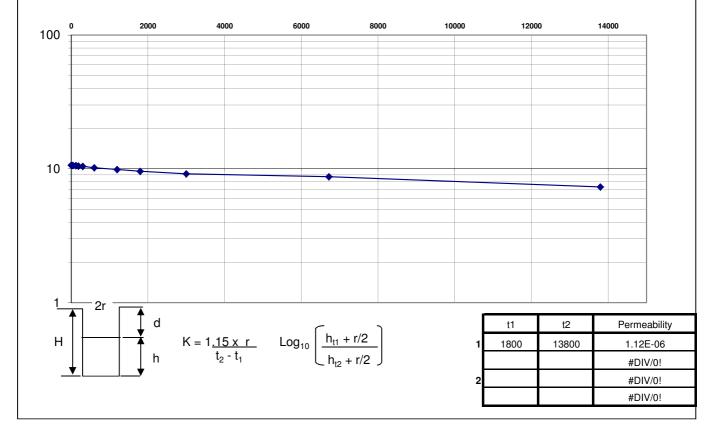
Date:	18/0	6/2016 to 20/0	D6/2016 BH No.: CTBH-02
Test By:			Depth (m): 0 to 5.6 s
hecked By:			
icercu by.			
T (sec)	Depth (m)	H/H₀	
0	0.00	1.00	Casing diameter (D) 0.13 m
1200	0.22	0.96	Borehole extension below casing (L) 5.6 m
3900	0.46	0.92	Head at test start (H_0) 5.6 m
5700	0.65	0.88	Relevant shape factor case d
11880	1.10	0.80	Depth of borehole/Groundwater level 5.6 m
15960	1.31	0.77	+ Values of shape factor are for use primarily in tests
22680	1.60	0.71	carried out through the open ends boreholes.
50000	2.40	0.57	+ More accurate results for tests using piesometer tips
100000	3.30	0.41	are obtained by using Fig. 7, especially for values of
120000	3.55	0.37	(L/D)>2.
			Shape Factor 7.895806
			or
			F/D 6.4 for tests using
			Shape Factor 0.83 piesometer tip
			1.00
			(°н
			Head Ratio (H/H ₀)
			atic
			Ť
			0.10
			0.10 0 20000 40000 60000 80000 100000 120000 14000
			Elapsed Time (min)
		<u> </u>	
		<u> </u>	+ From graph or interpolation. Time
		<u> </u>	corresponding to a value of H/H0 of 0.37.
			(see reference)
			Basic time lag (T) 120000 sec
			Basic time lag (T) 120000 sec
			Basic time lag (T) 120000 sec
	HASTIN		Basic time lag (T) 120000 sec Permeability 1.33E-07 m/sec
		NGS TECHNOLOGY - GEOTECHNICAL I	Basic time lag (T) 120000 sec Permeability 1.33E-07 m/sec SY METALS
Y			Basic time lag (T) 120000 sec Permeability 1.33E-07 m/sec SY METALS Permeability INVESTIGATION PERMEABILITY TESTING ATC withams Pty Ltd Job No: 112391.11
Y			Basic time lag (T) 120000 sec Permeability 1.33E-07 m/sec SY METALS INVESTIGATION PERMEABILITY TESTING AIT WILLIAMS PELLED Job No: 112391.11 West Perth WA 6005 AUST RALLA Date: 30/11/2016
Y			Basic time lag (T) 120000 sec Permeability 1.33E-07 m/sec SY METALS INVESTIGATION PERMEABILITY TESTING AIC wittiams Pty Ltd 1141 Hay Street West Pert Wa 6005 Job No: 112391.11 Date: 30/11/2016

ATC Williams Pty Ltd 1141 Hay Street, West Perth WA 6005 T +61 8 9213 1600 F +61 8 9486 7441 perth@atcwilliams.com.au

FIGURE

RAF

Job No: 112391.11


Date: 2/11/16

TESTED BY: CJ

BOREHOLE PERMEABILITY TEST - PORCHET METHOD

PROJECT: Yangibana Rare Earth Project

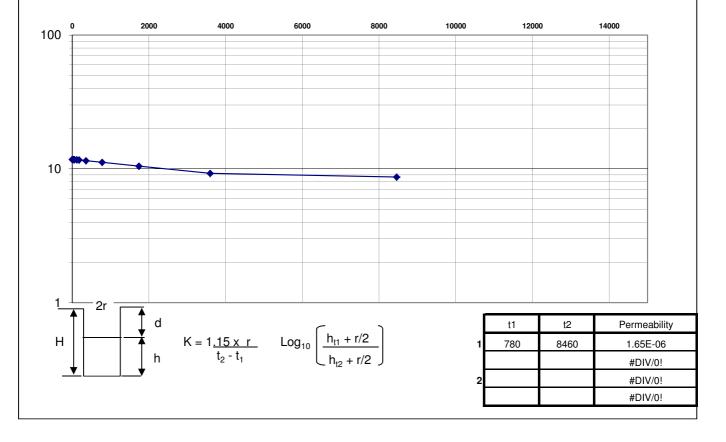
HOLE NO:	CTE	<mark>3H-4</mark>	Depth: (m Water: (m	-	10.70 60	Radius:(m	1)	0.1	
		Test One				Test Or	ne (Continue	d)	
t hr:min:sec	t sec	d m	h m	h + r/2 m	t hr:min:sec	t sec	d m	h m	h + r/2 m
N/A	0	0.09	10.61	10.66					
N/A	42	0.13	10.57	10.62					
N/A	120	0.145	10.555	10.605					
N/A	190	0.25	10.45	10.5					
N/A	300	0.31	10.39	10.44					
N/A	600	0.56	10.14	10.19					
N/A	1200	0.855	9.845	9.895					
N/A	1800	1.155	9.545	9.595					
N/A	3000	1.58	9.12	9.17					
N/A	6720	2.02	8.68	8.73					
N/A	13800	3.42	7.28	7.33					

ATC Williams Pty Ltd 1141 Hay Street, West Perth WA 6005 T +61 8 9213 1600 F +61 8 9486 7441 perth@atcwilliams.com.au

FIGURE

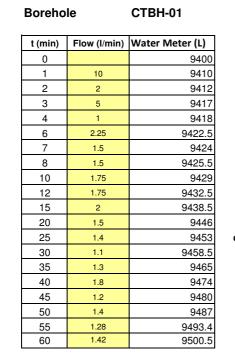
RAFT

Job No: 112391.11


Date: 2/11/16

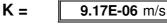
TESTED BY: CJ

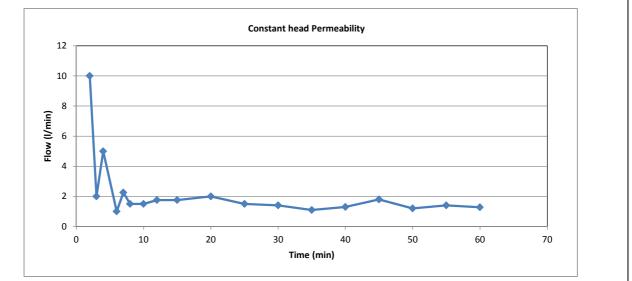
BOREHOLE PERMEABILITY TEST - PORCHET METHOD


PROJECT: Yangibana Rare Earth Project

HOLE NO:	СТЕ	<mark>3H-5</mark>	Depth: (m Water: (m	-	11.85 60	Radius:(m	1)	0.1			
		Test One				Test One (Continued)					
t hr:min:sec	t sec	d m	h m	h + r/2 m	t hr:min:sec	t sec	d m	h m	h + r/2 m		
N/A	0	0.14	11.71	11.76							
N/A	30	0.155	11.695	11.745							
N/A	60	0.165	11.685	11.735							
N/A	120	0.205	11.645	11.695							
N/A	180	0.25	11.6	11.65							
N/A	360	0.385	11.465	11.515							
N/A	780	0.71	11.14	11.19							
N/A	1740	1.42	10.43	10.48							
N/A	3600	2.635	9.215	9.265							
N/A	8460	3.22	8.63	8.68							

28/10/2016




Datum (m)*	0.7
Casing diameter (m)	0.096
Depth to top of packer (m)	21.4
Packer Length (m)	1.2
Depth of borehole (m)	36.5
Test Zone Length	13.9
Hc = Constant Head (m)	8.2
Shape Factor Case (1 - 7)	3
Groundwater depth (m)	7.5

Date

q = constant flow rate (m^3/s) 10 - 60 min period

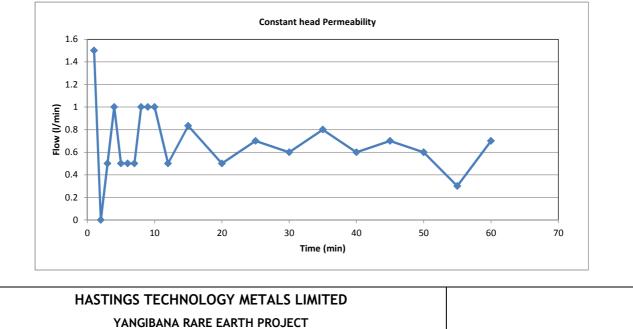
1.98611E-05 m³/s

HASTINGS TECHNOL			
YANGIBANA RAR			
CONSTANT HEAD			
	ATC Williams Pty Ltd 1141 Hay Street, West Perth WA	Job No:	112391.11
	6005 T +61 8 9213 1600 F +61 8 9486	Date:	19/01/2017
ATC Williams	7441 perth@atcwilliams.com.au		

28/10/2016

Boreho	le	CTBH-03		
t (min)	Flow (I/min)	Water Meter (L)		
0		9547		
1	1.5	9548.5		
2	0	9548.5		
3	0.5	9549		
4	1	9550		
5	0.5	9550.5		
6	0.5	9551		
7	0.5	9551.5		
8	1	9552.5		
9	1	9553.5		
10	1	9554.5		
12	0.5	9555.5		
15	0.8	9558		
20	0.5	9560.5		
25	0.7	9564		
30	0.6	9567		
35	0.8	9571		
40	0.6	9574		
45	0.7	9577.5		
50	0.6	9580.5		
55	0.3	9582		
60	0.7	9585.5		

Datum (m)*	1.5
Casing diameter (m)	0.096
Depth to top of packer (m)	21.4
Packer length	1
Depth of borehole (m)	21.5
Test Zone Length (m)	12
Hc = Constant Head (m)	11
Shape Factor Case (1 - 7)	3
Groundwater depth (m)	>60


Date

q = constant flow rate (m³/s) period 3 to 60 mins

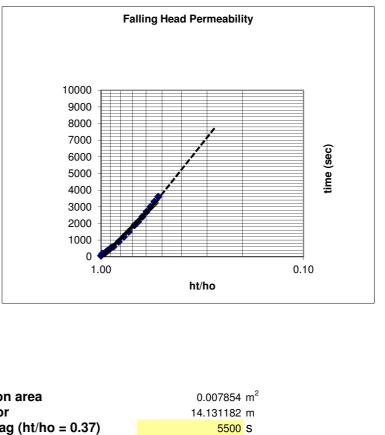
1.01389E-05 m³/s

ATC Williams Pty Ltd 1141 Hay Street, West Perth WA 6005 T +61 8 9213 1600 F +61 8 9486 7441 perth@atcwilliams.com.au

27/10/2016

Date

Borehole CTBH-1


Depth (m)	ht/ho	Datum (m
0	1.000	Standing
0.12	0.985	Borehole
0.37	0.955	Casing dia
0.48	0.941	Test Secti
0.59	0.928	Depth of t
0.7	0.915	Depth of c
0.8	0.902	Test Zone
0.9	0.890	h0 = Head
		Shape Fac
1.5	0.817	
1.88	0.771	*All measure
2.21	0.730	Base of botto
2.59	0.684	Stratum D
2.82		<mark>0.0 - 0.2 R</mark>
		<mark>0.2 - 0.8 E</mark>
		<mark>0.8 - 7.4 H</mark>
		7.4 - 40.5 S
0.02	0.022	
		10000
		10000
		9000
		8000
		. 7000
		6000
		5000
		4000
		3000
		. 2000
		1000
		0
]
	0.48 0.59 0.7 0.8 0.9 1.08 1.5 1.88 2.21 2.59	0.48 0.941 0.59 0.928 0.7 0.915 0.8 0.902 0.9 0.890 1.08 0.868 1.5 0.817 1.88 0.771 2.21 0.730 2.59 0.684 2.82 0.656 3.07 0.626 3.31 0.596 3.53 0.570 3.73 0.545

Datum (m)*	0
Standing Water Level (m)	8.2
Borehole diameter (m)	0.096
Casing diameter (m)	0.078
Test Section diameter (m)	0.1
Depth of borehole (m)	22.2
Depth of casing (m)	9.8
Test Zone Length	12.4
h0 = Head at test start (m)	8.2
Shape Factor Case (1 - 7)	4

*All measurements below datum +0.7 m AGL Base of bottom packer at 9.8 m below datum

Stratum Description:

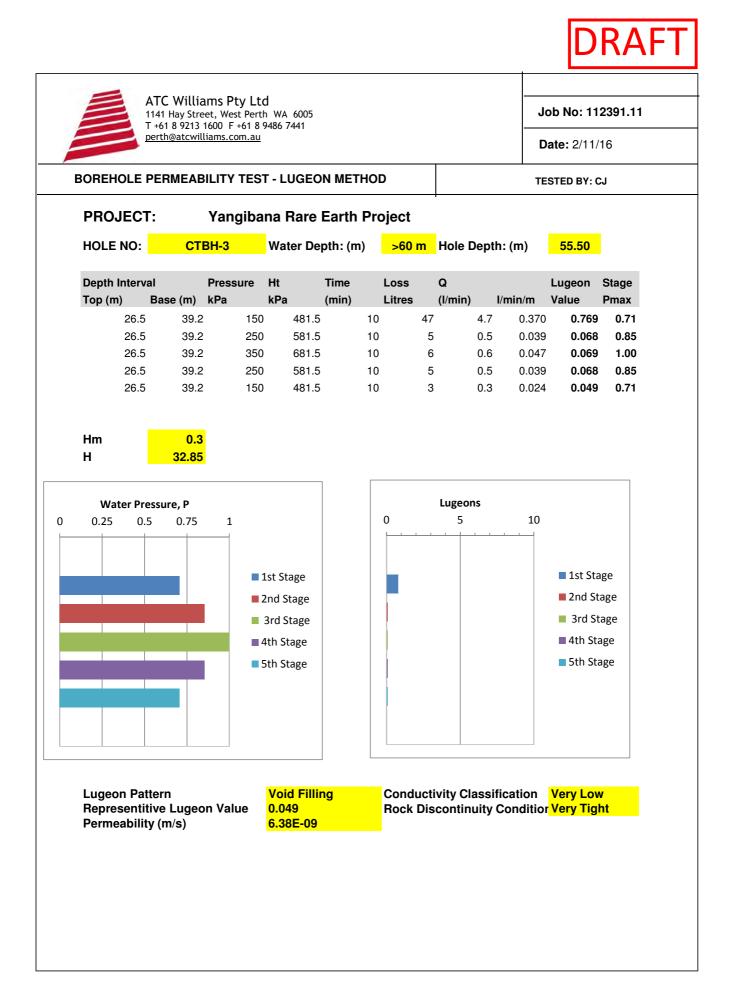
- .0 0.2 Residual Clay
- .2 0.8 Extremely weathered granite
- 0.8 7.4 Highly moderately weathered granite
- 7.4 40.5 Slightly to freshly weathered granite

 K =
 1.01E-07 m/s

 YANGIBANA RARE EARTH PROJECT - FALLING HEAD PERMEABILITY TEST

 Job No: 112391.11

 Date: 27.01.17


DRAFT

Borehole CTBH-1

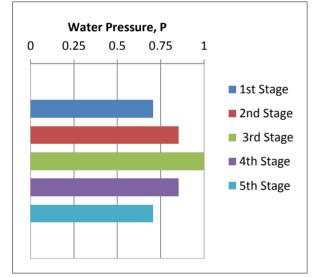
t (sec)	Depth (m)	ht/ho	Datum (m)* 0
60			
60	0.25	1.000	
120	0.25	0.970 0.940	Borehole diameter (m)0.096Casing diameter (m)0.078
120	0.49	0.940	Test Section diameter (m) 0.1
240	0.92	0.888	Depth of borehole (m) 37.2
300	1.14	0.861	Depth of casing (m) 22.8
360	1.14	0.838	Test Zone Length
420			
	1.53 1.72	0.813	h0 = Head at test start (m) 8.2 Shape Factor Case (1 - 7) 4
480 540	1.72	0.790 0.768	Shape Factor Case (1 - 7) 4
600	2.08	0.766	*All measurements below datum +0.7 m AGL
720	2.41	0.740	Base of bottom packer at 23.3 m below dataum
900	2.87	0.650	Stratum Description:
1200	3.55	0.567	0.0 - 0.2 Residual Clay
			0.2 - 0.8 Extremely weathered granite
			0.8 - 7.4 Highly - moderately weathered granite
			7.4 - 40.5 Slightly to freshly weathered granite
			Falling Head Permeability
			10000
			9000
			8000
			7000
			6000 5000 4000
			5000
			4000
			3000
			2000
			2000 1000 0 1.00 0.10
			2000 1000 0 1.00 0.10
			s section area
		F = Shap	s section area 0.007854 m ² 10.451639 m
	Either	F = Shap T = Basi	s section area 0.007854 m^2 be Factor 10.451639 m c time lag (ht/ho = 0.37) 2950 s
	Either Or	F = Shap	s section area 0.007854 m ² 10.451639 m
		F = Shap T = Basi	s section area 0.007854 m^2 to Factor 10.451639 m to time lag (ht/ho = 0.37) 2950 s t2 =
		F = Shap T = Basi	s section area 0.007854 m^2 be Factor 10.451639 m c time lag (ht/ho = 0.37) 2950 s
		F = Shap T = Basi	s section area 0.007854 m^2 to Factor 10.451639 m to time lag (ht/ho = 0.37) 2950 s t2 =
	Or	F = Shap T = Basi t1 =	s section area to E Factor c time lag (ht/ho = 0.37) $t^2 = t^2$ K = 2.55E-07 m/s
YANGIBANA	Or	F = Shap T = Basi t1 =	s section area to E Factor c time lag (ht/ho = 0.37) $t^2 = t^2$ K = 2.55E-07 m/s CT - FALLING HEAD PERMEABILITY TEST Job No: 112391.11
	Or	F = Shap T = Basi t1 = H PROJE	s section area to Factor c time lag (ht/ho = 0.37) $t^2 = t^2$ K = 2.55E-07 m/s CT - FALLING HEAD PERMEABILITY TEST Job No: 112391.11
	or RARE EART	F = Shap T = Basi t1 = H PROJE	s section area to E Factor to time lag (ht/ho = 0.37) $t^2 = t^2$ K = 2.55E-07 m/s CT - FALLING HEAD PERMEABILITY TEST Job No: 112391.11 Date: 27.01.17
	or RARE EART	F = Shar T = Basi t1 = H PROJE	s section area to E Factor to time lag (ht/ho = 0.37) $t^2 = t^2$ K = 2.55E-07 m/s CT - FALLING HEAD PERMEABILITY TEST Job No: 112391.11 Date: 27.01.17
	or RARE EART	F = Shar T = Basi t1 = H PROJE	$s section area 0.007854 m2 10.451639 m 2950 s$ $s factor 10.451639 m 2950 s$ $t^2 = I 2.55E-07 m/s$ $s c trime lag (ht/ho = 0.37) 2950 s$ $t^2 = I 2.55E-07 m/s$ $s c trime lag (ht/ho = head permeability test) Job No: 112391.11 Date: 27.01.17$ $Date: 27.01.17$

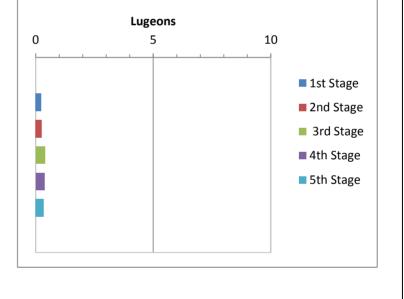
Date

28/10/2016

ATC Williams Pty Ltd 1141 Hay Street, West Perth WA 6005 T +61 8 9213 1600 F +61 8 9486 7441 perth@atcwilliams.com.au

Job No: 112391.11


Date: 2/11/16


BOREHOLE PERMEABILITY TEST - LUGEON METHOD

TESTED BY: CJ

PROJECT: Yangibana Rare Earth Project HOLE NO: CTBH-3 Hole Depth: (m) 55.50 Water Depth: (m) **>60 m Depth Interval** Loss Time Q Lugeon **Pressure Ht** Stage Top (m) Base (m) kPa kPa (min) Litres (I/min) l/min/m Value Pmax 9.5 55.5 150 478 10 52 5.2 0.113 0.236 0.71 9.5 55.5 250 578 10 69 6.9 0.150 0.260 0.85 9.5 55.5 350 678 10 126 0.404 1.00 12.6 0.274 9.5 55.5 250 578 10 98 9.8 0.213 0.369 0.85 9.5 55.5 150 478 10 77 7.7 0.167 0.350 0.71

Lugeon Pattern Representitive Lugeon Value Permeability (m/s)

Conductivity Classification Very Low Rock Discontinuity Condition Very Tight

APPENDIX F

TEST CERTIFICATE

issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to to Client and this document does not exonerate parties to a transaction from exerctiong all their ingins and obligations under the transaction documents. Any numbrated alteration, rogregor or fails/fiction of the content or the content or the content of the content or the content o SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab: ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

8/12/2016 16-MT-9932 CTTP-01 (0.5m - 0.8m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

7.8

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

NATA Iac-MR/

Authorised Signatory:

Accredited for compliance with ISO/IEC 17025 - Testing

(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9932-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

Date: 12/12/2016

TEST CERTIFICATE

s document is to be treate lings at the time of its inte an original within the meaning of UCP 600. Any holder of this document is to be tion only and within the limits of client's instructions, if any. The Company's sole that information contained hereon reflects the Compa pility is to its Client and this document does not exone SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

100.000

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	14/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9932
Lab:	Bassendean	Sample ID:	CTTP-01 (0.5m - 0.8m)

Particle Size Distribution of a Soil

AS1289.3.6.1 100 90 80 70 Percent Passing (%) 60 50 40 30 20 11 10 Ш 0

0.100

Sieve Aperture (mm)

Sieve Size (mm) % Passing Sieve Size (mm) % Passing 100 100 9.5 97 75 100 97 6.7 63 100 4.75 95 53 100 2.36 84 37.5 100 1.18 68 26.5 100 0.6 52 19.0 99 0.425 46 16.0 98 0.300 39 13.2 98 0.150 28 20 0.075

1.000

10.000

Date Sampled:

0.001

Unknown

0.010

Note: Sample supplied by client.

Authorised Signatory:

NATA AC-MR/

(Benjamin Brumpton)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

B.B.

Site No.: 2411 Cert No.: 16-MT-9932-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the lim

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excoverate parties to a transaction from exercising all their rights and dolgations under the transaction documents. Any mandhoized alteration, longarey or altalication of the content or

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	13/01/2017
SGS Job Number:	16-01-2448	Sample No:	16-MT-9932
Lab:	Bassendean	Sample ID:	CTTP-01 (0.5m - 0.8m)

Atterberg Limits (1 Point Casagrande) with Linear Shrinkage

AS 1289.3.1.2(Liquid Limit), 3.2.1(Liquid Limit), 3.3.1(Plasicity Index), 3.4.1(Linear Shrinkage)

Liquid Limit (%):	38
Plastic Limit (%):	22
Plastic Index (%):	16
Linear Shrinkage (%):	7.0
Nature of shrinkage:	Cracked
Length of Mould (mm):	250
History of Sample:	Air Dried
Method of Preparation:	Dry Sieved

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Date: 18/01/2017

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9932-S312 Form No.PF-AU-INDCMT-TE-S312 V2.0 Page 1 of 1

This document is to be treate findings at the time of its inter an original within the meaning of UCP 600. Any ion only and within the limits of client's instruction holder of this document is to be a ns, if any. The Company's sole re bility is to its Client and this docum SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab:

ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean

Client Job No: Order No: Tested Date: Sample No: Sample ID:

14/12/2016 16-MT-9933 CTTP-03 (0.1m - 0.4m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

9.8

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

Authorised Signatory:

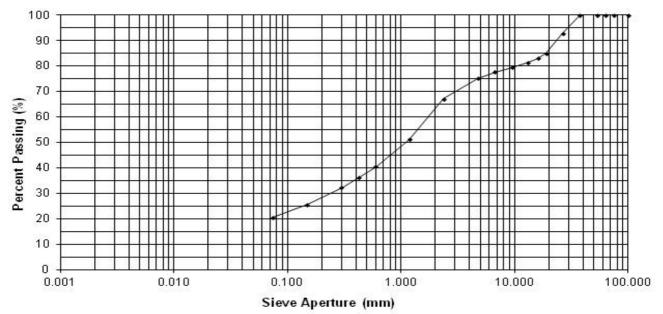
(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

Accredited for compliance with ISO/IEC 17025 - Testing

Date: 18/01/2017

______ Site No.: 2411 Cert No.: 16-MT-9933-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1


pany subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, I any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their ingits and obligations under the transaction documents. Any numberized alteration, regressory or fails/clication of the content or the content of the content or the content or the content of the content or the content or the content of the content or the conten SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	9/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9934
Lab:	Bassendean	Sample ID:	CTTP-07A (0.1m - 0.3m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	79
75	100	6.7	78
63	100	4.75	75
53	100	2.36	67
37.5	100	1.18	51
26.5	93	0.6	40
19.0	85	0.425	36
16.0	83	0.300	32
13.2	81	0.150	25
		0.075	21

Date Sampled:

Unknown

Note: Sample supplied by client.

Authorised Signatory:

NATA AC-MR/

Accredited for compliance with ISO/IEC 17025 - Testing

(Benjamin Brumpton)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

B.B.

mpliance with ISO/IEC 17025 - Testing

Date: 10/01/2017

Site No.: 2411 Cert No.: 16-MT-9934-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

s issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to IS Client and this document does not exonerate parties to a transaction from exercising all their ingits and obligations under the transaction documents. Any numberized alteration, regressory or fails/fication of the content or the content or the content of the content or the conten SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab: ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

8/12/2016 16-MT-9935 CTTP-09 (1.0m - 1.2m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

8.0

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

NATA Iac-MR/

Authorised Signatory:

(Samantha McDonald)

Accredited for compliance with ISO/IEC 17025 - Testing Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

Site No.: 2411 Cert No.: 16-MT-9935-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

Date: 12/12/2016

he Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the lim

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excoverate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any machinized alteration, torget or relationation to resonance to renter or the transaction from exercising all their rights and obligations under the transaction documents. Any machinized alteration, torget or relationation of the content or the transaction from exercising all their rights and obligations under the transaction documents. Any machinized alteration, torget or relationation of the content or the transaction from exercising all their rights and obligations under the transaction documents. Any machinized alteration, torget or relationation of the content or the transaction from exercising all their rights and obligations under the transaction documents. Any machinized alteration, torget or relationation of the content or the transaction from exercising all their rights and the transaction documents. Any machinized alteration, torget or relationation of the content or the transaction from exercising all their rights and the transaction documents. Any machinized alteration, torget or relations on the torget of the transaction documents. Any machinized alteration, torget or relations on the torget of the transaction documents. Any machinized alteration, torget or relations on the torget of the transaction documents. Any machinized alteration, torget or relations on the torget of the torget of the transaction documents. Any machinized alteration, torget or torget of the torg SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	13/01/2017
SGS Job Number:	16-01-2448	Sample No:	16-MT-9935
Lab:	Bassendean	Sample ID:	CTTP-09 (1.0m - 1.2m)

Atterberg Limits (1 Point Casagrande) with Linear Shrinkage

AS 1289.3.1.2(Liquid Limit), 3.2.1(Liquid Limit), 3.3.1(Plasicity Index), 3.4.1(Linear Shrinkage)

Liquid Limit (%):	49
Plastic Limit (%):	25
Plastic Index (%):	24
Linear Shrinkage (%):	9.5
Nature of shrinkage:	Flat
Length of Mould (mm):	250
History of Sample:	Air Dried
Method of Preparation:	Dry Sieved

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9935-S312 Form No.PF-AU-INDCMT-TE-S312 V2.0 Page 1 of 1

nt is issued by the C

an original within the meaning of UCP 600. Any holder of this document is to be ad tion only and within the limits of client's instructions, if any. The Company's sole res This document is to be treated as findings at the time of its interven ed that information contained hereon reflects the Company's sibility is to its Client and this document does not exonerate SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab:

ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean

Client Job No: Order No: Tested Date: Sample No: Sample ID:

13/12/2016 16-MT-9935 CTTP-09 (1.0m - 1.2m)

112391.11

Determination of Emerson Class Number

AS1289.3.8.1

Emserson Class Number:

4

Note: Sample supplied by client.

Authorised Signatory

ILAC-MRA

Date: 15/12/2016

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100

Accreditation No.: 2418

NATA

Form No.

Site No.: 2411 Cert No.: 16-MT-9935-S318

is issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations of

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not encourreat parties to at markadon from exercising all their rights and obligations under the transaction documents. Any unadhorased alteration, togay or disfliction of the content or the content of the content or SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab: ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

8/12/2016 16-MT-9936 CTTP-16 (0.4m - 0.6m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

6.8

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

NATA Iac-MR/

Authorised Signatory:

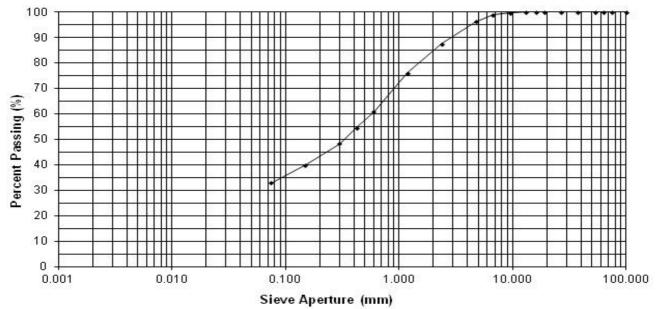
Accredited for compliance with ISO/IEC 17025 - Testing

(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 liance with ISO/IEC 17025 - Testing

Site No.: 2411 Cert No.: 16-MT-9936-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

Date: 12/12/2016


pany subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, I any. The Company's sole responsibility is to its Client and the document does not exonerate parties to a transaction from exerctional all their informs and obligations under the transaction documents. Any number calleration, repayr or fails/clication of the content or the content of the content or the content of the content or SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	14/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9936
Lab:	Bassendean	Sample ID:	CTTP-16 (0.4m - 0.6m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	100
75	100	6.7	99
63	100	4.75	96
53	100	2.36	88
37.5	100	1.18	76
26.5	100	0.6	61
19.0	100	0.425	55
16.0	100	0.300	48
13.2	100	0.150	40
		0.075	33

Date Sampled:

Unknown

Note: Sample supplied by client.

Authorised Signatory:

NATA AC-MR/

(Benjamin Brumpton)

Date: 10/01/2017

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

B.B.

Site No.: 2411 Cert No.: 16-MT-9936-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

sued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitation

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to the Client and this document does not exonerate parties to a transaction from exercising all their right and obligations under the transaction documents. Any numbrozed alteration, rosport or fails/faction of the content or the content of the client of the content or the content of the client SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab: ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

9/12/2016 16-MT-9937 CTTP-18 (0.6m - 0.8m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

12.2

Test Method:

Moisture Content (%)

Note: Sample supplied by client.

Authorised

Signatory: NATA Iac-MR/

Accredited for compliance with ISO/IEC 17025 - Testing

(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 ce with ISO/IEC 17025 - Testing

Site No.: 2411 Cert No.: 16-MT-9937-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

Date: 12/12/2016

any subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, I any. The Company's sole responsibility is to its Client and this document does not exonerate pratise to a transaction from exercising all their rights and obligations under the transaction documents. Any number ad lateration, rights yor fails/its/ation the content or the content of the content or the content or the content of the content or t SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Ш

100.000

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	14/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9937
Lab:	Bassendean	Sample ID:	CTTP-18 (0.6m - 0.8m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Aperture (mm)

0.100

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	88
75	100	6.7	86
63	100	4.75	82
53	98	2.36	74
37.5	97	1.18	65
26.5	96	0.6	56
19.0	95	0.425	51
16.0	93	0.300	47
13.2	92	0.150	38
		0.075	32

1.000

10.000

Date Sampled:

0

0.001

Unknown

0.010

Note: Sample supplied by client.

Authorised Signatory:

NATA AC-MR/

(Benjamin Brumpton)

Date: 10/01/2017

B.B.

Accredited for compliance with ISO/IEC 17025 - Testing

Site No.: 2411 Cert No.: 16-MT-9937-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the lim

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excorreate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or its allication of the content or the transaction form exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction form exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction form exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction for exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction fore exercising all their rights and obligations under the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction fore exercising all their rights and the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction fore exercising all their rights and the transaction documents. Any manufactorized attension, foregor or Italication of the content or the transaction foregore attension. The transaction documents and the transaction documents and the transaction documents. Any manufactorized attension, foregore or Italication of the transaction documents. Any manufactorized attension foregore or the transaction documents and the trights attension of the transaction documents. Any manuf

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	13/01/2017
SGS Job Number:	16-01-2448	Sample No:	16-MT-9937
Lab:	Bassendean	Sample ID:	CTTP-18 (0.6m - 0.8m)

Atterberg Limits (1 Point Casagrande) with Linear Shrinkage

AS 1289.3.1.2(Liquid Limit), 3.2.1(Liquid Limit), 3.3.1(Plasicity Index), 3.4.1(Linear Shrinkage)

Liquid Limit (%):	59
Plastic Limit (%):	27
Plastic Index (%):	32
Linear Shrinkage (%):	14.0
Nature of shrinkage:	Cracked
Length of Mould (mm):	250
History of Sample:	Air Dried
Method of Preparation:	Dry Sieved

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Date: 18/01/2017

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9937-S312 Form No.PF-AU-INDCMT-TE-S312 V2.0 Page 1 of 1

s issued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to at massaction from exercising all their rights and obligations under the transaction documents. Any unadhorased alteration, rights yor distillation of the content or the content of the content or the content of the content or the content o SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab: ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

8/12/2016 16-MT-9938 CTTP-19 (1.2m - 1.4m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

8.0

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

NATA Iac-MR/

Authorised Signatory:

(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

Accredited for compliance with ISO/IEC 17025 - Testing

Date: 20/12/2016

Site No.: 2411 Cert No.: 16-MT-9938-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

sued by the Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitation

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not excende parties to a transaction from exercising all their inform and obligations under the transaction documents. Any numbriced alteration, toget or its failed and the content or the content of the content or the SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab:

Test Method:

Moisture Content (%)

ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean Client Job No: Order No: Tested Date: Sample No: Sample ID:

8/12/2016 16-MT-9939 CTTP-21 (1.5m - 1.7m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

8.0

Note: Sample supplied by client.

Authorised

Signatory: NATA ilac-MRA

Accredited for compliance with ISO/IEC 17025 - Testing

(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 nce with ISO/IEC 17025 - Testing

Site No.: 2411 Cert No.: 16-MT-9939-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0 Page 1 of 1

Date: 12/12/2016

document is to be treate ings at the time of its inter an original within the meaning of UCP 600. Any holder of this document is to be ac tion only and within the limits of client's instructions, if any. The Company's sole res that information contained hereon reflects the Compa pility is to its Client and this document does not exone SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

100.000

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	16/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9939
Lab:	Bassendean	Sample ID:	CTTP-21 (1.5m - 1.7m)

Particle Size Distribution of a Soil

AS1289.3.6.1 100 90 80 11 70 Percent Passing (%) 60 50 40 30 -20 П П 10

Sieve Aperture (mm)

111

0.100

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	97
75	100	6.7	90
63	100	4.75	80
53	100	2.36	74
37.5	100	1.18	67
26.5	100	0.6	52
19.0	99	0.425	45
16.0	99	0.300	37
13.2	99	0.150	28
		0.075	23

1.000

10.000

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

0.010

0

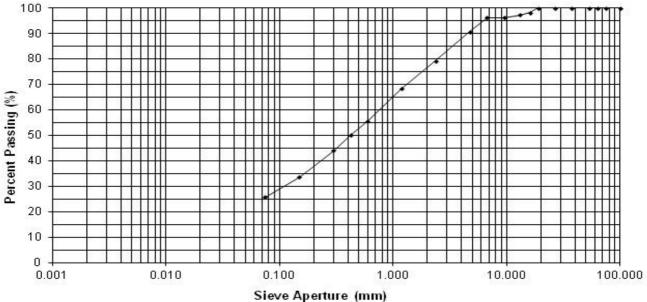
0.001

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

Dorala

______ Site No.: 2411 Cert No.: 16-MT-9939-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1


any subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitation

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of ident's instructions, I any. The Company's sole responsibility is its Cleant and this document does not exonerate parties to a transaction (time vesticing all their injust and obligations under the transaction documents. Any under the advised under the test assist on documents. The company's distribution of the content or the content of the content or the content of the content or SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	14/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9940
Lab:	Bassendean	Sample ID:	CTTP-24 (0.8m - 1.1m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	96
75	100	6.7	96
63	100	4.75	91
53	100	2.36	79
37.5	100	1.18	68
26.5	100	0.6	56
19.0	100	0.425	50
16.0	98	0.300	44
13.2	97	0.150	34
		0.075	26

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9940-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

he Company subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the lim

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's being reportibility is to its Collent and this document does not excorrete parties to a transaction from exercising all their rights and obligations under the transaction document. Any mandhurcze alteration, lorgerey or itsification of the content or the transaction for exercising all their rights and obligations under the transaction document. Any mandhurcze alteration, lorgerey or itsification of the content or the content of the transaction for exercising all their rights and obligations under the transaction document. Any mandhurcze alteration, lorgerey or itsification of the content or the content or the content or the content or the transaction document. Any mandhurcze alteration, lorgerey or the instruction document. Any mandhurcze alteration, lorgerey or itsification of the content or the content or the content or the content or the right of the content or the content or the right of the content or the right of the content or the content or the content or the content or the right of the content or the content or the content or the content or the right of the content or the co

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	13/01/2017
SGS Job Number:	16-01-2448	Sample No:	16-MT-9940
Lab:	Bassendean	Sample ID:	CTTP-24 (0.8m - 1.1m)

Atterberg Limits (1 Point Casagrande) with Linear Shrinkage

AS 1289.3.1.2(Liquid Limit), 3.2.1(Liquid Limit), 3.3.1(Plasicity Index), 3.4.1(Linear Shrinkage)

Liquid Limit (%):	36
Plastic Limit (%):	18
Plastic Index (%):	18
Linear Shrinkage (%):	11.0
Nature of shrinkage:	Cracked
Length of Mould (mm):	250
History of Sample:	Air Dried
Method of Preparation:	Dry Sieved

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9940-S312 Form No.PF-AU-INDCMT-TE-S312 V2.0 Page 1 of 1

This document is to be treate findings at the time of its inter an original within the meaning of UCP 600. Any tion only and within the limits of client's instruction holder of this document is to be ac ons, if any. The Company's sole res ed that information contained hereon sibility is to its Client and this docume reflects the Company's ant does not exonerate SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client: Project: Location: SGS Job Number: Lab:

ATC Williams Pty Ltd Yangibana Rare Earth Gascoyne Region, WA 16-01-2448 Bassendean

Client Job No: Order No: Tested Date: Sample No: Sample ID:

14/12/2016 16-MT-9941 CTTP-27 (0.8m - 1.0m)

112391.11

MOISTURE CONTENT

AS1289.2.1.1 - Convection Oven

5.7

Note: Sample supplied by client.

Test Method:

Moisture Content (%)

NATA Iac-MR/

Authorised Signatory:

Accredited for compliance with ISO/IEC 17025 - Testing

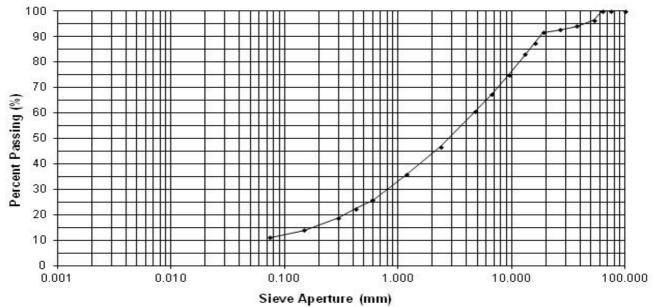
(Samantha McDonald)

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

______ Site No.: 2411 Cert No.: 16-MT-9941-S200 Form No.PF-AU-INDCMT-TE-S200 V4.0

Page 1 of 1

Date: 20/12/2016


any subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitations

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, I any. The Company's sole responsibility is to its Client and the document does not exonerate parties to a transaction (nore vestional all their information documents) and used the transaction documents. Any unadhorated alteration, regord provides the content or the content of the content or the content of the content or the co SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	14/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9941
Lab:	Bassendean	Sample ID:	CTTP-27 (0.8m - 1.0m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	75
75	100	6.7	67
63	100	4.75	60
53	97	2.36	47
37.5	94	1.18	36
26.5	93	0.6	26
19.0	92	0.425	22
16.0	88	0.300	19
13.2	83	0.150	14
		0.075	11

Note: Sample supplied by client.

Authorised Signatory:

(Benjamin Brumpton)

Date: 11/01/2017

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

B.B.

Site No.: 2411 Cert No.: 16-MT-9941-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

npany subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitation

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, I any. The Company's sole responsibility is to its Client and the document does not exonerate parties to a transaction from exerctional all their informs and obligations under the transaction documents. Any number calleration, repayr or fails/clication of the content or the content of the content or the content of the content or SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	9/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9942
Lab:	Bassendean	Sample ID:	CTTP-30 (0.5m - 0.7m)

Particle Size Distribution of a Soil

AS1289.3.6.1 100 90 80 70 Percent Passing (%) 60 50 40 30 ł 20 10 Ш 0 0.001 0.010 0.100 1.000 10.000 100.000 Sieve Aperture (mm)

> Sieve Size (mm) % Passing Sieve Size (mm) % Passing 100 100 9.5 94 75 100 93 6.7 63 100 4.75 89 53 100 2.36 82 37.5 100 1.18 71 26.5 100 0.6 59 51 19.0 98 0.425 16.0 97 0.300 43 13.2 96 0.150 30 22 0.075

Date Sampled:

Unknown

Note: Sample supplied by client.

Authorised Signatory:

NATA AC-MR/

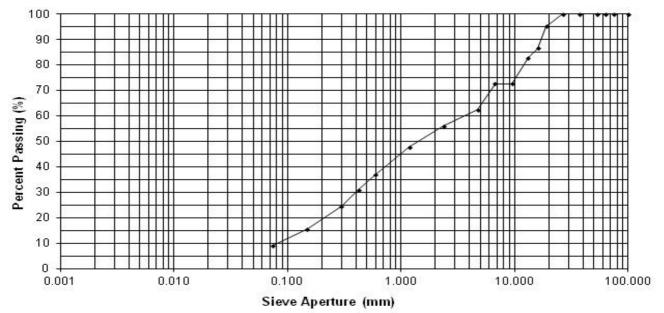
(Benjamin Brumpton)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418

B.B.

Site No.: 2411 Cert No.: 16-MT-9942-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1


ompany subject to its General Conditions of Service (www.sgs.com/terms_and_conditions.htm). Attention is drawn to the limitation

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is to be advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercing all their injury and obligations under the transaction documents. Any unathorized alteration, repay or fails/cliation of the content or the company's and the company's and obligations under the transaction documents. Any unathorized alteration, repay or fails/cliation of the content or the company's and the company's and the company of the content of the content of the content or the company's and the company's and the company of the content of the content or the company's and the company's and the company of the content of the content of the content or the company's and the company's and the company of the content of the content of the content or the company's and the company's and the content or the company's and the company's and the company of the content or the company's and the company's and the company of the content or the company's and the company's and the company of the content or the company's and the company's and the company of the content or the company of the company of the content or the company of the content or the company of the company of the content or the company of the company of the content or the company of the company of the company of the company of the content or the company of the content or the company of the SGS Australia Pty Ltd PO Box 486 Bassendean WA 6934 5 Yelland Way Bassendean WA 6054

Client:	ATC Williams Pty Ltd	Client Job No:	112391.11
Project:	Yangibana Rare Earth	Order No:	
Location:	Gascoyne Region, WA	Tested Date:	9/12/2016
SGS Job Number:	16-01-2448	Sample No:	16-MT-9943
Lab:	Bassendean	Sample ID:	CTTP-30 (1.0m - 1.2m)

Particle Size Distribution of a Soil

AS1289.3.6.1

Sieve Size (mm)	% Passing	Sieve Size (mm)	% Passing
100	100	9.5	73
75	100	6.7	73
63	100	4.75	62
53	100	2.36	56
37.5	100	1.18	48
26.5	100	0.6	37
19.0	95	0.425	31
16.0	87	0.300	24
13.2	83	0.150	16
		0.075	9

Note: Sample supplied by client.

Authorised Signatory:

(Samantha McDonald)

Accredited for compliance with ISO/IEC 17025 - Testing

Client Address: Unit 1, 21 Teddington Road Burswood WA 6100 Accreditation No.: 2418 Site No.: 2411 Cert No.: 16-MT-9943-S301 Form No.PF-AU-INDCMT-TE-S301 V4.0 Page 1 of 1

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Kathy McDougall	Manager	Ros Ma
Client	Groundwater Resource Management	Laboratory	SGS Perth Environmental
Address	PO Box 8110 Fremantle High Street, Fremantle, WA, 6160 23 Parry Street Fremantle 6160	Address	28 Reid Rd Perth Airport WA 6105
Telephone	KARDINYA WA	Telephone	(08) 9373 3500
Facsimile	9433 2322	Facsimile	(08) 9373 3556
Email	kathy@g-r-m.com.au	Email	au.environmental.perth@sgs.com
Project	Yangibana	SGS Reference	PE112999 R0
Order Number	J160014	Date Received	22 Dec 2016
Samples	1	Date Reported	09 Jan 2017

COMMENTS _

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

Metals: Over range on ICPMS Method AN318 was taken from ICPOES Method AN320.

SIGNATORIES

Donald Smith Chemist

Tommy Cheng ICP Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

28 Reid Rd Perth PO Box 32 Wels

Perth Airport WA 6105 Welshpool WA 6983 Australia t +61 8 9373 3500 Australia f +61 8 9373 3556

www.sgs.com.au

welgm

Michael McKay Inorganics and ARD Supervisor

Ohmar David Metals Chemist

Michael McKay

ANALYTICAL REPORT

Sample Number BE113000.001

		nple Number	PE112999.001
		ample Matrix	Water
	s	ample Name	BHCTD02
Parameter	Units	LOR	
pH in water Method: AN101 Tested: 23/12/2016			
рН**	pH Units	_	7.9
pi i	prionita	_	1.8
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 23/	12/2016	
Conductivity @ 25 C	µS/cm	2	1800
Total Dissolved Solids (by calculation)	mg/L	2	1100
Total and Volatile Suspended Solids (TSS / VSS) Method: AN	114 Tested:	6/1/2017	
Total Suspended Solids Dried at 103-105°C	mg/L	5	310
Sulphate in water Method: AN275 Tested: 29/12/2016	mg/L	1	130
Frank			
Metals in Water (Dissolved) by ICPOES Method: AN320/AN32	21 Tested: 2	9/12/2016	
Calcium, Ca	mg/L	0.2	76
Magnesium, Mg	mg/L	0.1	53
Potassium, K	mg/L	0.1	12
Sodium, Na	mg/L	0.5	250
Trace Metals (Dissolved) in Water by ICPMS Method: AN318	Tested: 28/1	2/2016	
Aluminium, Al	µg/L	5	<5
Antimony, Sb	µg/L	1	<1
Arsenic, As	µg/L	1	<1
Barium, Ba	µg/L	1	68
Beryllium, Be	µg/L	1	<1
Boron, B	µg/L	5	700
Cadmium, Cd	µg/L	0.1	<0.1
Chromium, Cr	µg/L	1	<1
Cobalt, Co	µg/L	1	1
Copper, Cu	µg/L	1	<1
Iron, Fe	µg/L	5	11
Lead, Pb	µg/L	1	<1
Manganese, Mn	µg/L	1	230
Molybdenum, Mo	µg/L	1	16
Nickel, Ni	µg/L	1	2
Selenium, Se	µg/L	1	<1
Strontium, Sr	µg/L	1	640
Thorium, Th	µg/L	1	<1
Uranium, U	µg/L	1	18
Vanadium, V	µg/L	1	2
Zinc, Zn	µg/L	5	10

ANALYTICAL REPORT

		s	mple Number ample Matrix Sample Name	Water		
Parameter		Units	LOR			
Mercury (dissolved) in Water Method: AN311(Perth)/AN312 Tested: 29/12/2016						
Mercury		mg/L	0.00005	<0.00005		

QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Conductivity @ 25 C	LB126450	µS/cm	2	<2	0 - 1%	96 - 102%
Total Dissolved Solids (by calculation)	LB126450	mg/L	2	<2		NA

Mercury (dissolved) in Water Method: ME-(AU)-[ENV]AN311(Perth)/AN312

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Mercury	LB126442	mg/L	0.00005	<0.00005	0%	102 - 113%	104 - 106%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB126432	mg/L	0.2	<0.2	0%	98%	88%
Magnesium, Mg	LB126432	mg/L	0.1	<0.1	0%	102%	92%
Potassium, K	LB126432	mg/L	0.1	<0.1	3%	104%	90%
Sodium, Na	LB126432	mg/L	0.5	<0.5	1%	109%	88%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
pH**	LB126450	pH Units	-	6.1 - 6.2	0%	101%

Sulphate in water Method: ME-(AU)-[ENV]AN275

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Sulphate, SO4	LB126429	mg/L	1	<1	0 - 1%	103%	83 - 92%

Total and Volatile Suspended Solids (TSS / VSS) Method: ME-(AU)-[ENV]AN114

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Suspended Solids Dried at 103-105°C	LB126623	mg/L	5	<5	2 - 19%	92%

QC SUMMARY

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : *the absolute difference of the two results divided by the average of the two results as a percentage*. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Aluminium, Al	LB126410	µg/L	5	<5	0%	80%	105%
Antimony, Sb	LB126410	µg/L	1	<1	0%	112%	
Arsenic, As	LB126410	µg/L	1	<1	0%	103%	
Barium, Ba	LB126410	µg/L	1	<1	1%	99%	
Beryllium, Be	LB126410	µg/L	1	<1	0%	109%	
Boron, B	LB126410	µg/L	5	<5	1%	89%	
Cadmium, Cd	LB126410	µg/L	0.1	<0.1	0%	116%	
Chromium, Cr	LB126410	µg/L	1	<1	0%	102%	
Cobalt, Co	LB126410	µg/L	1	<1	6%	99%	
Copper, Cu	LB126410	µg/L	1	<1	0%	106%	
Iron, Fe	LB126410	μg/L	5	<5	1%	110%	112%
Lead, Pb	LB126410	µg/L	1	<1	0%	108%	
Manganese, Mn	LB126410	μg/L	1	<1	0%	101%	103%
Molybdenum, Mo	LB126410	µg/L	1	<1	0%	106%	
Nickel, Ni	LB126410	μg/L	1	<1	7%	100%	
Selenium, Se	LB126410	µg/L	1	<1	0%	113%	80%
Strontium, Sr	LB126410	µg/L	1	<1	0%	117%	
Thorium, Th	LB126410	µg/L	1	<1	0%	84%	
Uranium, U	LB126410	µg/L	1	<1	1%	104%	
Vanadium, V	LB126410	µg/L	1	<1	1%	104%	
Zinc, Zn	LB126410	µg/L	5	<5	1%	114%	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN275	sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate concentration in the sample. Reference APHA 4500-SO42 Internal reference AN275.
AN311(Perth)/AN312	Mercury by Cold Vapour AAS in Waters: Mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320/AN321	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320/AN321	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.

FOOTNOTES .

IS	Insufficient sample for analysis.
LNR	Sample listed, but not received.
*	NATA accreditation does not cover the
	performance of this service.
**	Indicative data, theoretical holding time exceeded.

- LOR Limit of Reporting
- ¢↓ Raised or Lowered Limit of Reporting
- QFH QC result is above the upper tolerance
- QFL QC result is below the lower tolerance The sample was not analysed for this analyte
- NVL
 - Not Validated

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- 37 MBq is equivalent to 1 mCi b.

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

 Job Number:
 15-4218

 Revision:
 00

 Date:
 19 June 2015

ADDRESS: ATC Williams Pty Ltd Unit 1A, 21 Teddington Road BURSWOOD WA 6100

ATTENTION: John Leavy

DATE RECEIVED: 10/06/2015

YOUR REFERENCE: ATCW290515

PURCHASE ORDER:

APPROVALS:

DouglasTodd

112391

DouglasTodd Laboratory Manager Ino

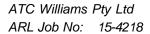
Sam Becker Inorganic Supervisor

REPORT COMMENTS:

Samples are analysed on an as received basis unless otherwise noted. NATA accreditation for alkalinity is held to pH 8.3 and 4.5, not pH 9.5 NATA accreditation for acidity is held to pH 8.3, not pH 9.5

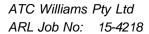
METHOD REFERENCES:

ARL No. 29/402/403	Metals in Water by AAS/ICPOES/ICPMS
ARL No. 029	Metals in Water by AAS
ARL No. 040	Arsenic by Hydride Atomic Absorption
ARL No. 315	Reactive Silica in Water by Discrete Analyser
ARL No. 014	pH in Water
ARL No. 017	Total Dissolved Solids (At 105 ^o C)
ARL No. 016	Total Suspended Solids
ARL No. 037	Alkalinity in Water
ARL No. 021	Acidity in Water
ARL No. 308	Total Phosphorus in Water by Discrete Analyser
ARL No. 301	Sulphate in Water by Discrete Analyser
ARL No. 305	Chloride in Water by Discrete Analyser
ARL No. 321	Fluoride in Water by Discrete Analyser
ARL No. 313/319	NOx in Water by Discrete Analyser



ATC Williams Pty Ltd ARL Job No: 15-4218

Revision: 00


Metals in Water Sample No: Sample Description:	LOR	UNITS	15-4218-1 Edmund HST	15-4218-2 Minga Well	15-4218-3 Contessi Bore	15-4218-4 Edmund Well	15-4218-5 YGBWBI
Aluminium - Total	0.1	mg/L	<0.1	<0.1	<0.1	0.2	0.2
Iron - Total	0.01	mg/L	0.15	0.07	0.03	0.22	0.34
Sulphur - Dissolved	0.05	mg/L	96	38	17	110	25
Calcium - Dissolved	0.1	mg/L	66	39	30	79	61
Magnesium - Dissolved	0.1	mg/L	90	58	48	100	38
Sodium - Dissolved	0.1	mg/L	280	150	70	610	150
Aluminium - Dissolved	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Barium - Dissolved	0.01	mg/L	0.02	0.04	0.16	0.04	0.23
Beryllium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Boron - Dissolved	0.01	mg/L	1.0	0.50	0.26	1.4	0.36
Chromium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium - Dissolved	0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper - Dissolved	0.01	mg/L	<0.01	<0.01	0.02	0.04	<0.01
Iron - Dissolved	0.01	mg/L	0.07	<0.01	<0.01	<0.01	<0.01
Lead - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	0.07
Molybdenum - Dissolved	0.01	mg/L	<0.01	0.01	0.01	0.01	0.03
Nickel - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium - Dissolved	0.01	mg/L	0.76	0.41	0.30	1.1	0.52
Tin - Dissolved	0.01	mg/L	<0.01	<0.01	0.02	<0.01	<0.01
Titanium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Vanadium - Dissolved	0.01	mg/L	0.04	0.05	<0.01	0.03	<0.01
Zinc - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Antimony - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic - Dissolved	0.001	mg/L	0.003	0.002	<0.001	<0.001	<0.001
Selenium - Dissolved	0.001	mg/L	0.007	0.003	<0.001	0.003	0.005
Silicon - Dissolved	0.1	mg/L	32	36	30	23	24
Thorium - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium - Dissolved	0.001	mg/L	0.004	0.004	0.020	0.038	0.016

Revision: 00

Metals in Water Sample No: Sample Description:	LOR	UNITS	15-4218-6 RCO81	15-4218-7 Frasers Well	15-4218-8 Yangibana Bore	15-4218-9 Woodsys Bore	15-4218-10 Red Hill 2
Aluminium - Total	0.1	mg/L	1.8	<0.1	<0.1	<0.1	0.9
Iron - Total	0.01	mg/L	2.3	0.02	0.02	<0.01	1.5
Sulphur - Dissolved	0.05	mg/L	35	52	60	79	250
Calcium - Dissolved	0.1	mg/L	60	47	120	110	250
Magnesium - Dissolved	0.1	mg/L	43	40	75	110	130
Sodium - Dissolved	0.1	mg/L	340	550	350	380	620
Aluminium - Dissolved	0.1	mg/L	0.8	<0.1	<0.1	<0.1	<0.1
Barium - Dissolved	0.01	mg/L	0.08	0.04	0.03	0.03	0.07
Beryllium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Boron - Dissolved	0.01	mg/L	0.61	0.83	0.55	0.80	2.1
Chromium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Cadmium - Dissolved	0.002	mg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Copper - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Iron - Dissolved	0.01	mg/L	0.26	<0.01	<0.01	<0.01	0.19
Lead - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Manganese - Dissolved	0.01	mg/L	0.01	<0.01	<0.01	<0.01	0.87
Molybdenum - Dissolved	0.01	mg/L	0.02	0.02	<0.01	<0.01	0.01
Nickel - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Silver - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium - Dissolved	0.01	mg/L	0.58	0.52	0.92	0.82	2.2
Tin - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Titanium - Dissolved	0.01	mg/L	0.02	<0.01	<0.01	<0.01	<0.01
Vanadium - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	0.01	<0.01
Zinc - Dissolved	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Antimony - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Arsenic - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	0.004
Selenium - Dissolved	0.001	mg/L	0.008	0.005	0.005	0.003	<0.001
Silicon - Dissolved	0.1	mg/L	20	24	23	26	31
Thorium - Dissolved	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Uranium - Dissolved	0.001	mg/L	0.014	0.025	0.029	0.009	0.079

Revision: 00

00

Metals in Water Sample No: Sample Description:	LOR	UNITS	15-4218-11 Dup 1
Aluminium - Total	0.1	mg/L	<0.1
Iron - Total	0.01	mg/L	0.13
Sulphur - Dissolved	0.05	mg/L	110
Calcium - Dissolved	0.1	mg/L	68
Magnesium - Dissolved	0.1	mg/L	93
Sodium - Dissolved	0.1	mg/L	210
Aluminium - Dissolved	0.1	mg/L	<0.1
Barium - Dissolved	0.01	mg/L	0.02
Beryllium - Dissolved	0.01	mg/L	<0.01
Boron - Dissolved	0.01	mg/L	0.91
Chromium - Dissolved	0.01	mg/L	<0.01
Cadmium - Dissolved	0.002	mg/L	<0.002
Cobalt - Dissolved	0.01	mg/L	<0.01
Copper - Dissolved	0.01	mg/L	<0.01
Iron - Dissolved	0.01	mg/L	0.06
Lead - Dissolved	0.01	mg/L	<0.01
Manganese - Dissolved	0.01	mg/L	<0.01
Molybdenum - Dissolved	0.01	mg/L	<0.01
Nickel - Dissolved	0.01	mg/L	<0.01
Silver - Dissolved	0.01	mg/L	<0.01
Strontium - Dissolved	0.01	mg/L	0.71
Tin - Dissolved	0.01	mg/L	<0.01
Titanium - Dissolved	0.01	mg/L	<0.01
Vanadium - Dissolved	0.01	mg/L	0.04
Zinc - Dissolved	0.01	mg/L	<0.01
Antimony - Dissolved	0.001	mg/L	<0.001
Arsenic - Dissolved	0.001	mg/L	0.003
Selenium - Dissolved	0.001	mg/L	0.005
Silicon - Dissolved	0.1	mg/L	33
Thorium - Dissolved	0.001	mg/L	<0.001
Uranium - Dissolved	0.001	mg/L	0.004

ATC Williams Pty Ltd ARL Job No: 15-4218

Revision: 00

Physical Parameters Sample No: Sample Description:	LOR	UNITS	15-4218-1 Edmund HST	15-4218-2 Minga Well	15-4218-3 Contessi Bore	15-4218-4 Edmund Well	15-4218-5 YGBWBI
рН	0.1	pH units	8.6	8.2	8.5	7.9	7.8
Total Dissolved Solids	5	mg/L	1,400	920	600	2,200	870
Total Suspended Solids	5	mg/L	<5	<5	7	17	5
Alkalinity	5	mgCaCO3/L	300	520	360	430	300
Alkalinity to pH9.5	5	mgCaCO3/L	<5	<5	<5	<5	<5
Acidity to pH9.5	5	mgCaCO3/L	82	120	77	130	95

Physical Parameters Sample No: Sample Description:	LOR	UNITS	15-4218-6 RCO81	15-4218-7 Frasers Well	15-4218-8 Yangibana Bore	15-4218-9 Woodsys Bore	15-4218-10 Red Hill 2
pН	0.1	pH units	7.4	8.0	7.5	7.7	7.2
Total Dissolved Solids	5	mg/L	1,300	1,600	1,600	1,800	2,800
Total Suspended Solids	5	mg/L	84	<5	<5	<5	76
Alkalinity	5	mgCaCO3/L	370	410	360	440	440
Alkalinity to pH9.5	5	mgCaCO3/L	<5	<5	<5	<5	<5
Acidity to pH9.5	5	mgCaCO3/L	110	93	120	140	200

Physical Parameters Sample No: Sample Description:	LOR	UNITS	15-4218-11 Dup 1
рН	0.1	pH units	8.6
Total Dissolved Solids	5	mg/L	1,400
Total Suspended Solids	5	mg/L	7
Alkalinity	5	mgCaCO3/L	640
Alkalinity to pH9.5	5	mgCaCO3/L	<5
Acidity to pH9.5	5	mgCaCO3/L	82

Total Phosphorus in Water Sample No: Sample Description:	LOR	UNITS	15-4218-1 Edmund HST	15-4218-2 Minga Well	15-4218-3 Contessi Bore	15-4218-4 Edmund Well	15-4218-5 YGBWBI
Total Phosphorus	0.01	mg/L	0.09	0.12	0.06	0.07	0.13

Total Phosphorus in Water Sample No: Sample Description:	LOR	UNITS	15-4218-6 RCO81	15-4218-7 Frasers Well	15-4218-8 Yangibana Bore	15-4218-9 Woodsys Bore	15-4218-10 Red Hill 2
Total Phosphorus	0.01	mg/L	0.11	0.14	0.04	0.12	0.39

ATC Williams Pty Ltd ARL Job No: 15-4218

Revision: 00

Date: 19 June 2015

Date: 10 Galle 2

Total Phosphorus in Water Sample No: Sample Description:	LOR	UNITS	15-4218-11 Dup 1
Total Phosphorus	0.01	mg/L	0.11

lons by Discrete Analyser Sample No: Sample Description:	LOR	UNITS	15-4218-1 Edmund HST	15-4218-2 Minga Well	15-4218-3 Contessi Bore	15-4218-4 Edmund Well	15-4218-5 YGBWBI
Sulphate	1	mg/L	330	110	45	320	73
Chloride	5	mg/L	270	110	95	810	240
Fluoride	0.1	mg/L	1.4	2.3	2.5	2.9	2.1
Nitrate-N	0.01	mg/L	9.0	6.5	0.05	17	11

lons by Discrete Analyser Sample No: Sample Description:	LOR	UNITS	15-4218-6 RCO81	15-4218-7 Frasers Well	15-4218-8 Yangibana Bore	15-4218-9 Woodsys Bore	15-4218-10 Red Hill 2
Sulphate	1	mg/L	100	160	180	250	830
Chloride	5	mg/L	410	570	530	590	710
Fluoride	0.1	mg/L	3.0	3.0	2.2	1.3	4.0
Nitrate-N	0.01	mg/L	21	12	18	13	<0.01

lons by Discrete Analyser Sample No: Sample Description:	LOR	UNITS	15-4218-11 Dup 1
Sulphate	1	mg/L	350
Chloride	5	mg/L	310
Fluoride	0.1	mg/L	1.4
Nitrate-N	0.01	mg/L	9.0

Misc. Inorganics in Water Sample No: Sample Description:	LOR	UNITS	15-4218-1 Edmund HST	15-4218-2 Minga Well	15-4218-3 Contessi Bore	15-4218-4 Edmund Well	15-4218-5 YGBWBI
Hardness	5	mgCaCO3/L	530	340	270	610	310

Misc. Inorganics in Water Sample No: Sample Description:	LOR	UNITS	15-4218-6 RCO81	15-4218-7 Frasers Well	15-4218-8 Yangibana Bore	15-4218-9 Woodsys Bore	15-4218-10 Red Hill 2
Hardness	5	mgCaCO3/L	330	280	610	730	1,200

ATC Williams Pty Ltd ARL Job No: 15-4218

Revision: 00

Date: 19 June 2015

Misc. Inorganics in Water Sample No: Sample Description:	LOR	UNITS	15-4218-11 Dup 1
Hardness	5	mgCaCO3/L	550

Result Definitions

- LOR Limit of Reporting
- [NT] Not Tested
- [ND] Not Detected at indicated Limit of Reporting
- [NR] Analysis Not Requested
- (SS) Surrogate Standard Compound Used for QC purposes. Acceptance Criteria is 60-120%.

CERTIFICATE OF ANALYSIS

Work Order	: EM1611114	Page	: 1 of 6	
Client	: ATC WILLIAMS P/L	Laboratory	Environmental Division Melbourne	
Contact	: JOHN LEAVY	Contact	:	
Address	: 1141 HAY STREET	Address	: 4 Westall Rd Springvale VIC Australia 3171	
	WEST PERTH W.A. 6005			
Telephone	: +61 07 3352 7222	Telephone	: +61-3-8549 9600	
Project	: 112391.03	Date Samples Received	: 21-Sep-2016 15:55	
Order number	:	Date Analysis Commenced	: 28-Sep-2016	
C-O-C number	:	Issue Date	11-Oct-2016 12:33	NATA
Sampler	:		Hac-MRA	NATA
Site	:			
Quote number	:		The state	Accreditation No. 825
No. of samples received	: 2		Accredi	ted for compliance with
No. of samples analysed	: 2			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ben Felgendrejeris		Brisbane Acid Sulphate Soils, Stafford, QLD	
Chris Lemaitre	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC	
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC	
Herman Lin	Laboratory Manager	Melbourne Inorganics, Springvale, VIC	
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Titus Vimalasiri	Metals Teamleader	Radionuclides, Fyshwick, ACT	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- EG035T: Mercury result for EM1611114 #2 has been confirmed by re-preparation and re-analysis.
- TDS by method EA-015 may bias high for EM1611114 #2 due to the presence of fine particulate matter, which may pass through the prescribed GF/C paper.
- Sample was filtered through a 0.45um filter prior to the dissolved metals analysis.
- ASS: EA013 (ANC) Fizz Rating: 0- None; 1- Slight; 2- Moderate; 3- Strong; 4- Very Strong; 5- Lime.
- ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Page	: 3 of 6
Work Order	: EM1611114
Client	: ATC WILLIAMS P/L
Project	: 112391.03

Sub-Matrix: SLUDGE (Matrix: SOIL)		Clie	ent sample ID	19516	 	
	Cli	ent sampli	ing date / time	[21-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	EM1611114-001	 	
				Result	 	
EA009: Nett Acid Production Potentia						
Net Acid Production Potential		0.5	kg H2SO4/t	2.3	 	
EA011: Net Acid Generation						
pH (OX)		0.1	pH Unit	8.0	 	
NAG (pH 4.5)		0.1	kg H2SO4/t	<0.1	 	
NAG (pH 7.0)		0.1	kg H2SO4/t	<0.1	 	
EA013: Acid Neutralising Capacity						
ANC as H2SO4		0.5	kg H2SO4	1.1	 	
			equiv./t			
ANC as CaCO3		0.1	% CaCO3	0.1	 	
Fizz Rating		0	Fizz Unit	0	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1	%	16.2	 	
ED007: Exchangeable Cations						
Exchangeable Calcium		0.1	meq/100g	1.0	 	
Exchangeable Magnesium		0.1	meq/100g	0.3	 	
Exchangeable Potassium		0.1	meq/100g	<0.1	 	
Exchangeable Sodium		0.1	meq/100g	1.3	 	
Cation Exchange Capacity		0.1	meq/100g	2.8	 	
ED040N: Sulfate - Calcium Phosphate	Soluble (NEPM)					
Sulfate as SO4 2-	14808-79-8	50	mg/kg	<50	 	
ED042T: Total Sulfur by LECO						
Sulfur - Total as S (LECO)		0.01	%	0.11	 	
ED093S: Soluble Major Cations						
Calcium	7440-70-2	10	mg/kg	<10	 	
Magnesium	7439-95-4	10	mg/kg	<10	 	
Sodium	7440-23-5	10	mg/kg	140	 	
EG005T: Total Metals by ICP-AES						
Aluminium	7429-90-5	50	mg/kg	3350	 	
Antimony	7440-36-0	5	mg/kg	<5	 	
Arsenic	7440-38-2	5	mg/kg	<5	 	
Barium	7440-39-3	10	mg/kg	300	 	
Beryllium	7440-41-7	1	mg/kg	7	 	
Boron	7440-42-8	50	mg/kg	<50	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	

Page	: 4 of 6
Work Order	: EM1611114
Client	: ATC WILLIAMS P/L
Project	: 112391.03

Sub-Matrix: SLUDGE (Matrix: SOIL)		Clie	ent sample ID	19516						
	Clie	ent sampli	ng date / time	[21-Sep-2016]						
Compound	CAS Number	LOR	Unit	EM1611114-001						
				Result						
EG005T: Total Metals by ICP-AES - Continued										
Chromium	7440-47-3	2	mg/kg	334						
Cobalt	7440-48-4	2	mg/kg	12						
Copper	7440-50-8	5	mg/kg	46						
Iron	7439-89-6	50	mg/kg	112000						
Lead	7439-92-1	5	mg/kg	144						
Manganese	7439-96-5	5	mg/kg	953						
Molybdenum	7439-98-7	2	mg/kg	13						
Nickel	7440-02-0	2	mg/kg	156						
Selenium	7782-49-2	5	mg/kg	<5						
Strontium	7440-24-6	2	mg/kg	19						
Vanadium	7440-62-2	5	mg/kg	34						
Zinc	7440-66-6	5	mg/kg	149						
EG020T: Total Metals by ICP-M	S									
Thorium	7440-29-1	0.1	mg/kg	41.4						
Uranium	7440-61-1	0.1	mg/kg	10.6						
EG035T: Total Recoverable Me	ercury by FIMS							-		
Mercury	7439-97-6	0.1	mg/kg	<0.1						

Page	5 of 6
Work Order	: EM1611114
Client	: ATC WILLIAMS P/L
Project	: 112391.03

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		19616	 	 	
	Cl	lient sampli	ng date / time	[21-Sep-2016]	 	
Compound	CAS Number	LOR	Unit	EM1611114-002	 	
				Result	 	
EA015: Total Dissolved Solids dried	d at 180 ± 5 °C					
Total Dissolved Solids @180°C		10	mg/L	4690	 	
EA025: Total Suspended Solids drie	ed at 104 ± 2°C					
Suspended Solids (SS)		5	mg/L	584	 	
EA251: Radium 226 and Radium 22	8 Activity					
Radium 226		0.05	Bq/L	0.34	 	
Radium 228		0.08	Bq/L	0.82	 	
ED041G: Sulfate (Turbidimetric) as			•			
Sulfate as SO4 - Turbidimetric) as	14808-79-8	1	mg/L	108	 	
	14000-79-0		ing, E			
ED093F: Dissolved Major Cations	7440 70 0	1	mg/l	2 2		
Calcium	7440-70-2	1	mg/L	31	 	
Magnesium	7439-95-4		mg/L		 	
Sodium	7440-23-5	1	mg/L	291	 	
Potassium	7440-09-7	1	mg/L	6	 	
EG020F: Dissolved Metals by ICP-M						
Aluminium	7429-90-5	0.01	mg/L	0.03	 	
Antimony	7440-36-0	0.001	mg/L	0.002	 	
Molybdenum	7439-98-7	0.001	mg/L	0.180	 	
Strontium	7440-24-6	0.001	mg/L	0.032	 	
Thorium	7440-29-1	0.001	mg/L	<0.001	 	
Uranium	7440-61-1	0.001	mg/L	0.022	 	
Iron	7439-89-6	0.05	mg/L	0.92	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	34.3	 	
Arsenic	7440-38-2	0.001	mg/L	0.045	 	
Boron	7440-42-8	0.05	mg/L	0.12	 	
Barium	7440-39-3	0.001	mg/L	6.07	 	
Beryllium	7440-41-7	0.001	mg/L	0.033	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0018	 	
Cobalt	7440-48-4	0.001	mg/L	0.081	 	
Chromium	7440-47-3	0.001	mg/L	0.107	 	
Copper	7440-50-8	0.001	mg/L	0.229	 	
Manganese	7439-96-5	0.001	mg/L	14.0	 	
Nickel	7440-02-0	0.001	mg/L	0.151	 	
Lead	7439-92-1	0.001	mg/L	1.42	 	

Page	: 6 of 6
Work Order	: EM1611114
Client	: ATC WILLIAMS P/L
Project	: 112391.03

Sub-Matrix: WATER (Matrix: WATER)		Client sample ID		19616						
	Cl	lient sampli	ng date / time	[21-Sep-2016]						
Compound	und CAS Number LOR Unit		Unit	EM1611114-002						
				Result						
EG020T: Total Metals by ICP-MS - Continued										
Selenium	7782-49-2	0.01	mg/L	0.10						
Vanadium	7440-62-2	0.01	mg/L	0.20						
Zinc	7440-66-6	0.005	mg/L	0.732						
Iron	7439-89-6	0.05	mg/L	95.1						
EG035T: Total Recoverable N	EG035T: Total Recoverable Mercury by FIMS									
Mercury	7439-97-6	0.0001	mg/L	0.0001						

APPENDIX G

Point Load	Index Calc	ulations												
as per AS 41														
Borehole	Тор	Bottom		Moisture	D	W	L	Р	Test type	D _e	I _s	I _{s50}	Strength Class	Demonstra /Community
	Depth (m)	Depth (m)	Rock Description	Condition	(mm)	(mm)	(mm)	(kN)		(mm)	(MPa)	(MPa)	to AS1726-1993	Remarks/Comments
CTBH-04	2.50	2.70	GRANITE	INSITU	53.2		200.0	13.40	DIAMETRAL	53.2	4.73	4.87	VH	
CTBH-04	8.70	8.94	GRANITE	INSITU	58.9		240.0	16.33	DIAMETRAL	58.9	4.72	5.07	VH	
PLBH-01	5.60	5.74	GRANITE	INSITU	60.0		140.0	0.62	DIAMETRAL	60.0	0.17	0.19	L	
PLBH-01	14.30	14.40	GRANITE	INSITU	60.0		100.0	0.39	DIAMETRAL	60.0	0.11	0.12	L	
PLBH-01	20.90	21.10	GRANITE	INSITU	60.1		200.0	0.23	DIAMETRAL	60.1	0.06	0.07	VL	
PLBH-01	23.60	23.82	GRANITE	INSITU	60.0		220.0	0.28	DIAMETRAL	60.0	0.08	0.08	VL	
CTBH-01	2.80	3.00	GRANITE	INSITU	60.4		200.0	10.90	DIAMETRAL	60.4	2.99	3.25	VH	
CTBH-01	5.00	5.25	GRANITE	INSITU	60.3		250.0	2.53	DIAMETRAL	60.3	0.70	0.76	M	
CTBH-01	17.00	17.25	GRANITE	INSITU	60.4		250.0	13.51	DIAMETRAL	60.4	3.70	4.03	VH	
CTBH-01	29.60	29.90	GRANITE	INSITU	57.2		300.0	30.52	DIAMETRAL	57.2	9.33	9.91	VH	
PLBH-05	4.00	4.20	GRANITE	INSITU	59.7		200.0	16.18	DIAMETRAL	59.7	4.54	4.92	VH	
CTBH-05	2.00	2.20	GRANITE	INSITU	59.7		200.0	6.19	DIAMETRAL	59.7	1.74	1.88	Н	
CTBH-05	8.50	8.65	GRANITE	INSITU	59.9		150.0	14.72	DIAMETRAL	59.9	4.11	4.45	VH	
PLBH-02	7.65	7.78	GRANITE	INSITU	55.8		125.0	25.28	DIAMETRAL	55.8	8.12	8.53	VH	
PLBH-03	2.20	2.30	GRANITE	INSITU	55.2		100.0	1.51	DIAMETRAL	55.2	0.50	0.52	M	
PLBH-03	7.70	7.80	GRANITE	INSITU	58.0		100.0	0.34	DIAMETRAL	58.0	0.10	0.11	L	
PLBH-04	2.40	2.51	GRANITE	INSITU	57.2		110.0	5.69	DIAMETRAL	57.2	1.74	1.85	н	
PLBH-04	4.40	4.52	GRANITE	INSITU	57.0		120.0	5.13	DIAMETRAL	57.0	1.58	1.67	н	
Legend:				<u> </u>	-	L	1	1 1	L > 0.5D				Strength Class	I _{s(50)} Range (MPa)
W- Width(Only	use for irre	ular/block too	tc)		T	A)		 Minimum cross section 	Loading	D _e		EL	≤ 0.03
L - Length of sa		uidi / Diock les	(5)				L > 0.5D		area of plane through platen points (A)	Louding	-e		VL	≥ 0.03 >0.03 ≤ 0.1
-		tance betweer	contact points after	breaking)	1 1	7				Diametral	$D_e = D$			>0.1 ≤ 0.3
D _e - Equivalent				01		DIAME	TRAL TEST	W	0.6W <d<w< td=""><td>Axial</td><td></td><td>A-D- 1</td><td>M</td><td>>0.3 ≤ 1.0</td></d<w<>	Axial		A-D- 1	M	>0.3 ≤ 1.0
		lump tests) = (4A/p)0.5		F	D	0.6 W < D < W				$D_{\rm e} = \sqrt{\frac{4A}{\pi}}$	$A = D \times L$	н	>1 ≤ 3
A - Minimum C	-				- D/	2		OTHER SHAPES	TEST	Other shapes	ν π	$A = D \times W$	VH	>3 ≤ 10
P - Load at Fail	ure					A VIIIIIIII	rea of plane through laten points			P~1000		(D)0.45	ЕН	>10
I _s - Uncorrecte I _{s(50)} - Point Loa		-				A	XIAL TEST			$I_{\rm s} = \frac{P \times 1000}{D_{\rm e}^2}$	$I_{s(50)} = I_{s(50)}$	$T_{\rm s} \times \left(\frac{D_{\rm e}}{50}\right)^{0.45}$		
					ATC Williams Pty Ltd			HASTINGS TECHNOLOGY METALS LIMITED						
					1141 Hay St West Perth,WA 6005 T +61 8 9213 1600 F +61 8 9486 7441				YANGIBANA RARE EARTH PROJECT					
ATC Williams				perth@atcwilliams.com.au www.atcwilliams.com.au				Date:	Date: 7/12/2016 112391.11 FIGURE ##			FIGURE ##		