Onslow Marine Support Base Stage 2 Capital Dredging Sediment Quality Assessment

CLIENT: OMSB Pty Ltd

STATUS: Revision 0

REPORT NUMBER: 1701010

ISSUE DATE: 24th July 2017

WA MARINE PTY LTD | ABN 84 168 014 819 | www.o2marine.com.au

Important Note

This report and all its components (including images, audio, video, text) is copyright. Apart from fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior written permission of O2 Marine.

This report has been prepared for the sole use of the **OMSB Pty Ltd** (herein, 'the client'), for a specific site (herein 'the site', the specific purpose specified in Section 1 of this report (herein 'the purpose'). This report is strictly limited for use by the client, to the purpose and site and may not be used for any other purposes.

Third parties, excluding regulatory agencies assessing an application in relation to the purpose, may not rely on this report. O2 Marine waives all liability to any third party loss, damage, liability or claim arising out of or incidental to a third party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

O2 Marine waives all responsibility for loss or damage where the accuracy and effectiveness of information provided by the Client or other third parties was inaccurate or not up to date and was relied upon, wholly or in part in reporting.

WA Marine Pty Ltd t/as O2 Marine ACN 168 014 819

Originating Office – Busselton Suite 5 5/18 Griffin Drive, Dunsborough WA 6281 PO Box 1370 Dunsborough WA 6281 T 1300 739 449 | F 61 7 3339 7222 | info@o2marine.com.au

Version Register

Version	Status	Author	Reviewer	Change from Previous Version	Authorised for Release	
					Signature	Date
RevA	DRAFT	T Hurley	R Hanley			
RevB	DRAFT	T Hurley	C Lane			
Rev 0	FINAL	T Hurley	C Lane		Chan	24/07/2017

Transmission Register

Controlled copies of this document are issued to the persons/companies listed below. Any copy of this report held by persons not listed in this register is deemed uncontrolled. Updated versions of this report if issued will be released to all parties listed below via the email address listed.

Name	Email Address	
Andrew Natta	andrew.natta@omsb.com.au	

Table of Contents

1.	Introduction			
	1.1. 1.2. 1.3.	Project Description Objectives Document Purpose	7 7 7	
2.	Preli	minary Site Investigation	10	
	2.1. 2.2. 2.3. 2.4. 2.5.	Site Identification, History and Use Environmental Setting Previous Dredging Programs in Beadon Creek Previous Sediment Investigations Identifying Contaminants of Potential Concern	10 10 11 13 17	
3.	Samp	pling and Analysis Methods	19	
	3.1. 3.2.	Field Sampling Sediment Data Assessment	19 27	
4.	Resu	lts	31	
	4.1. 4.2. 4.3. 4.4. 4.5. 4.6.	Sediment Properties Total Metals and Metalloids Organic Compounds Nutrients Acid Sulfate Soils QA/QC Assessment	31 43 48 49 50 53	
5.	Discu	ussion	59	
	5.1. 5.2. 5.3.	Preliminary Site Investigation Detailed Site Investigation Suitability of Material for Onshore Disposal	59 59 63	
6.	Conc	clusion	65	
7.	References			

Figures

OMSB Stage 2 project area, including proposed capital dredging area and spoil disposal location 9
Sediment sampling locations divided into three (3) areas and the footprint of the capital dredging program
completed days prior to the field investigations 21
Current sediment sampling locations that have been collected within the Berth Pocket/ Turning Circle 22
Field sampling images presenting a) vibracoring using a 6 m, 76.2mm diameter stainless steel tube housing
the flexible shaft from a small concrete vibrator, and b) the deployment of the van veen grab using a pulley
block hung over the side of the vessel 24
Sediment classification based on particle size for samples collected from the berth pocket/turning circle
capital dredge area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse
39
Sediment classification based on particle size for samples collected from the inner channel capital dredge
area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse 40
Sediment classification based on particle size for samples collected from the outer channel capital dredge
area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse 41
Linear regression showing strong positive correlation between concentrations of Aluminium and a)
proportion of muds (clay and silts), b) Cobalt, c) Chromium, d) Copper, e) Iron, f) Nickel, g) Vanadium and
h) Zinc 47

Tables

Table 2Summary of previous contaminant sediment sampling investigations14Table 3Geotechnical test results for engineering geological units (LHZMHILL 2014)15Table 4Sediment sampling locations including coordinates, depth, date, time, method and field quality control20Table 5Dredge area volumes, surface areas and number of sample locations23Table 6Sediment samples and contaminants analysed (A) and preserved (P)26Table 7Reaction observations to determine appropriate rating29Table 8Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.31Table 9Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 3633Table 10Description of the characteristics of sediment Samples taken from the outer channel capital dredge area. 3636Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total organic carbon and moisture content for sediment samples in the berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISGG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel capital dredge areas. S051Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel	Table 1	History of dredging at Beadon Creek	12
Table 3 Geotechnical test results for engineering geological units (CH2MHILL 2014) 15 Sediment sampling locations including coordinates, depth, date, time, method and field quality control 20 Table 5 Dredge area volumes, surface areas and number of sample locations 23 Table 6 Sediment samples and contaminants analysed (A) and preserved (P) 26 Table 7 Reaction observations to determine appropriate rating 29 Table 8 Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area. 31 Table 10 Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 36 Table 11 Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel and nouter channel capital dredging areas 41 Table 13 Total organic carbon and moisture content for sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. 42 Table 14 Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. 42 Table 14 Total metal concentrations, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. 50	Table 2	Summary of previous contaminant sediment sampling investigations	14
Table 5Dredge area volumes, surface areas and number of sample locations20Table 6Sediment samples and contaminants analysed (A) and preserved (P)26Table 7Reaction observations to determine appropriate rating29Table 8Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.31Table 9Description of the characteristics of sediment samples taken from the inner channel capital dredge area.33Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area.36Table 11Description of the characteristics of sediment samples taken from the outer channel capital dredge area.36Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel capital dredge areas.48Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.50Table 15Nutrient concentrations in sediment sampl	Table 3		15
Table 5Dredge area volumes, surface areas and number of sample locations23Table 6Sediment samples and contaminants analysed (A) and preserved (P)26Table 7Reaction observations to determine appropriate rating29Table 8Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.31Table 9Description of the characteristics of sediment samples taken from the inner channel capital dredge area.33Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area. a36Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 12Total organic carbon and moisture content for sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel capital dredge areas. sults above the lob.50Table 13Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. sults above the lob.51Table 14Total Petroleum Hydrocarbons, BTEX and TBT51Table 15Nutrient concentrations in sediment sa	Table 4	Sediment sampling locations including coordinates, depth, date, time, method and field quality cor	ntrol
Table 6Sediment samples and contaminants analysed (A) and preserved (P)26Table 7Reaction observations to determine appropriate rating29Table 8Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.31Table 9Description of the characteristics of sediment samples taken from the inner channel capital dredge area. 3333Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 3636Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel41Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Reb old text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. S050Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. S0Table 16PASS field screening test results.51Table 17			20
Table 7Reaction observations to determine appropriate rating29Table 8Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.31Table 9Description of the characteristics of sediment samples taken from the inner channel capital dredge area.33Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area.36Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel41Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.50Table 14PASS field screening test results.51Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel ca	Table 5	Dredge area volumes, surface areas and number of sample locations	23
Table 8 Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area. 31 Table 9 Description of the characteristics of sediment samples taken from the inner channel capital dredge area. 33 Table 10 Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 36 Table 11 Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel 41 Table 12 Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas 42 Table 13 Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations 44 Table 14 Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel capital dredge areas. 50 Table 15 Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. 51 Table 16 PASS field screening test results. 51 Table 17 Chronium reducible sulfur suite res	Table 6	Sediment samples and contaminants analysed (A) and preserved (P)	26
dredge area.31Table 9Description of the characteristics of sediment samples taken from the inner channel capital dredge area.3333Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area.3636Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel41Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrationsTable 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.Table 16PASS field screening test results.Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.Table 18Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.Table 19Relative percent difference (RPD) values fo	Table 7	Reaction observations to determine appropriate rating	29
Table 9 Description of the characteristics of sediment samples taken from the inner channel capital dredge area. 33 Table 10 Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 36 Table 11 Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel 41 Table 12 Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas. 42 Table 13 Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations 44 Table 14 Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel capital dredge areas. 48 Table 15 Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. 50 Table 16 PASS field screening test results. 51 Table 17 Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. 52 Table 16	Table 8		-
33Table 10Description of the characteristics of sediment samples taken from the outer channel capital dredge area. 36Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channelTable 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areasTable 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrationsTable 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel and outer channel and outer channel and outer channel and outer channel and outer channel and outer channel and outer channel apital dredge areas.Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.Table 16PASS field screening test results.Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.Table 19Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.Table 10Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify v	T 0		-
36Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel41Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.48Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples.	Table 9	Description of the characteristics of sediment samples taken from the inner channel capital dredge	
Table 11Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel41Table 12Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.48Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 19Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above th	Table 10	Description of the characteristics of sediment samples taken from the outer channel capital dredge	
inner channel and outer channel capital dredging areas42Table 13Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.48Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for nutrients in the field quality control samples. Slue shaded cells identify values above the specified RPD.57Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Slue shaded cells identify values above the specified RPD.57 <td>Table 11</td> <td></td> <td>outer</td>	Table 11		outer
channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations44Table 14Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.48Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 17Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57 <tr< td=""><td>Table 12</td><td></td><td></td></tr<>	Table 12		
pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.48Table 15Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for field screening test in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples.58Table 22Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-	Table 13	channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess ISQG-Low values (where provided). Blue shaded cells identify values above the natural backg	of the round
outer channel capital dredge areas.50Table 16PASS field screening test results.51Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded 	Table 14	pocket/turning circle, inner channel and outer channel capital dredge areas. Blue shaded areas pro	esents
Table 17Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-	Table 15		
inner channel and outer channel capital dredge areas.52Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-58	Table 16	PASS field screening test results.	51
Table 18Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples. Blue shaded cells identify values above the specified RPD.54Table 19Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples58Table 22Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-	Table 17		
samples. Blue shaded cells identify values above the specified RPD.56Table 20Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples58Table 22Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-58	Table 18	Relative percent difference (RPD) values for the physical sediment characteristics in the field c	quality
cells identify values above the specified RPD.57Table 21Relative percent difference (RPD) values for field screening test in the field quality control samples58Table 22Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-	Table 19		
Table 22 Dredge Material Categories from the Pilbara Ports Authority Dredging and Spoil Management Plan-	Table 20		
	Table 21	Relative percent difference (RPD) values for field screening test in the field quality control samples	58
	Table 22		

Appendices

- Appendix A Laboratory Chain of Custody Form
- Appendix B Laboratory QA/QC & Analytical Methods
- Appendix C Laboratory Results

Executive Summary

Onslow Marine Support Base Pty Ltd (OMSB) is planning to modify and extend the harbour approach channel, turning circle and berth pockets as part of Stage 2 of the Onslow Marine Support Base Project (herein the OMSB Project). Capital dredging proposed includes a berth pocket to -8.0 m CD, and turning basin and channel to -6.0 m CD. The total volume of dredging is anticipated to be 930,000 m³ and dredging will be undertaken using a medium-sized cutter suction dredge. Dredge material will be disposed of onshore between the area adjacent to Beadon Creek Rd and the airport for future development of the Light Industrial Area in Onslow.

The preliminary site investigation reviewed historical sediment investigations and sources of contaminants and identified that, with the exception of tributyltin (TBT), there are no known contaminants of potential concern within the capital dredge areas. Therefore, all areas were classified as being as *"probably clean"*. An area adjacent to the proposed community boating precinct and the southern boundary of the OMSB wharf was identified with elevated TBT during sampling undertaken in 2012 for Stage 1 capital dredging. The surface 1.5 m to 3.5 m depth of contaminated sediment material from the berth pocket has been removed during Stage 1 capital dredging and sampling previously identified the underlying natural geological materials are relatively clean. Historical sampling has also identified potential acid sulphide soils within creek sediments during investigations in 2009 and 2012. However, all testing predicted that the natural alkalinity of the sediments would neutralise the acidity generated from oxidising the material during onshore disposal.

A detailed site investigation was carried out between 15-18 March 2017. A total of 49 surface and subsurface samples were collected from 26 sediment sampling locations during the field survey. Sediment samples were collected through using a combination of vibracoring, sediment grab and a test pit was dug for sediments at one (1) intertidal site during low tide. Observations and a screening test for PASS was undertaken prior to sediments being homogenised and packed into laboratory containers. Collected sediment samples were sent to a NATA-accredited laboratory for testing of:

- Physical Sediment Characteristics: Particle size analysis (PSA), total organic carbon (TOC), moisture content;
- Inorganic Compounds: Metals and Metalloids (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V and Zn);
- Organic Compounds: Total Petroleum Hydrocarbons (TPH), Benzene, Tolulene, Ethyl benzene and Xylene (BTEX), Poly Aromatic Hydrocarbons (PAH) and Tributyltin (TBT);
- Nutrients (TN, TKN, NH₄, NO₂+NO₃, TP, FRP); and
- Acid sulfate soils (SCr).

Sediments within the upper layers of the capital dredge areas are typically comprised of sandy/ shelly material which is low in moisture and TOC. These properties are typically considered beneficial for engineering grade fill and/or reclamation projects, indicating the bulk of the material is expected to be suitable for proposed future reuse plans to expand and develop the Light Industrial Area in Onslow for the Shire of Ashburton. However, the full volume of the dredge material has not been sampled and further sampling of the final material would be required to prior to reuse. Geochemical laboratory testing for total metals (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V & Zn), organic compounds (TPH, BTEX, PAHs & TBT) and nutrients (TN, TKN, NH4, NO2+NO3, TP, FRP), and subsequent comparison against relevant screening levels for both onshore and ocean disposal, indicate dredging, loading (pumping) and onshore disposal of the sediments to be dredged is unlikely to result in adverse effects to marine living resources, terrestrial living resources and human health. Potential acid sulfate soils (PASS) were detected within the dredge footprint and DER (2015) recommend an acid sulfate soil management plan should be prepared. However, results show that the natural acid neutralising capacity of the sediments provide sufficient buffering for acid-generating processes, indicating the risk of acid sulfate soils is low and the material is not likely to require treatment strategies (i.e. lime dosing neutralisation of ASS) for disposal of the material to land.

1. Introduction

1.1. Project Description

Onslow Marine Support Base Pty Ltd (OMSB) is planning to modify and extend the harbour approach channel, turning circle and berth pocket as part of Stage 2 of the Onslow Marine Support Base Project (herein the OMSB Project). The proposed capital dredging will enable offshore supply vessels to access the newly-constructed OMSB land-backed wharf infrastructure within the Beadon Creek Maritime Facility.

Capital dredging proposed includes a turning basin and harbour approach channel to a declared depth of - 6.0 m CD and a berth pocket to -8.0mCD (**Figure 1**). The total volume of dredging is anticipated to be 930,000 cubic metres and it is expected that dredging will be undertaken using a medium-sized cutter suction dredge over a period of approximately eight (8) months. Current schedule has operations planned to commence in November 2017, subject to planning and approvals.

Dredge material is proposed to be disposed of onshore within surplus land owned freehold by the Shire of Ashburton (SoA) adjacent to the Onslow Airport (**Figure 1**). During dredging, the dredge spoil area will be dewatered to the intertidal flats between the disposal site and the western tributary of Beadon Creek. In accordance with the strategic objectives of the SoA to meet the region's demand for affordable serviced industrial land, the material is proposed for potential future reuse to develop and extend the Light Industrial Area in Onslow.

1.2. Objectives

A sediment quality assessment has been undertaken by O2 Marine and included:

- A preliminary site investigation to provide an initial indication of the contamination status of the material to be dredged and the nature and location of likely sources;
- Determination of an appropriate sampling design and methods for a detailed site investigation;
- completion of a detailed site investigation and analytical program of sediment characterisation in accordance with relevant guidelines applicable to the management and assessment of dredged sediments; and
- Assessment of the suitability of the dredged sediments for disposal at the proposed onshore locations.

1.3. Document Purpose

This document has been prepared by O2 Marine on behalf of OMSB Pty Ltd to demonstrate that the impacts of dredged material loading and disposal have been adequately assessed to support referral of Stage 2 of the OMSB Project to the Environmental Protection Authority under section 38 (Part IV) of the Environmental Protection Act (1986). This document has been prepared with consideration of relevant guidelines for this project which apply to the management and assessment of dredging programs in Western Australia, including but not limited to:

- The Department of Transport (DoT): Maintenance Dredging Environmental Management Framework (EMF) (BMT Oceanica 2016);
- The Department of Environment Regulation (DER): Assessment and Management of Contaminated Sites, Contaminated Sites Guidelines December 2014 (DER 2014);
- National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2011, Volume 2, Schedule B1, Guideline on Investigation Levels for Soil and Groundwater (NEPM 2011);
- National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 3, Schedule B2, Guideline on Site Characterisation (NEPM 2013);

- National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 8, Schedule B5c, Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel and Zinc (NEPM 2013a);
- The Department of Environment Regulation (DER): Identification and Investigation of Acid Sulfate Soils and Acidic Landscapes, June 2015 (DER 2015);
- The National Assessment Guidelines for Dredging (NAGD), 2009 (NAGD 2009); and
- CSIRO Land and Water Science (CSIRO), Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines, 2013 (Simpson et al. 2013).

Figure 1 OMSB Stage 2 project area, including proposed capital dredging area and spoil disposal location

2. Preliminary Site Investigation

2.1. Site Identification, History and Use

Beadon Creek is located approximately 2 km East of the town of Onslow in the Pilbara, within the Shire of Ashburton. Onslow is located 1386 km north of Perth and 360 km south of Karratha. It is ideally located to service offshore locations including the Mackerel Islands, Barrow Island (Gorgon LNG Plant), Exmouth Gulf, and the Carnarvon Basin (oil and gas reserves), as well as inland mines including Rio Tinto's Mesa A site and Pannawonica (OCCI 2016).

The Beadon Creek Maritime Facility was developed in 1964 and is managed by the Department of Transport (DoT). The facility is located approximately 550 m South of the entrance to Beadon Creek and is used as a harbour for both recreational and commercial activities, although has recently transformed from a small facility supporting local and charter fishing activities to a larger facility supporting the myriad of industrial and commercial activities associated with the growing offshore oil and gas industry in the region. The Beadon Creek Maritime Facility covers an area of 15.29 ha and includes ~260 m of wharf face, mooring berths, cyclone moorings, public service wharf, dual public boat ramp, diesel fuelling facilities, public car park and fish cleaning facilities.

In 2014, the DoT developed a land use framework to upgrade the facilities in Beadon Creek to support the growing demand for industrial, commercial and recreational facilities (GHD 2014). The DoT gained relevant environmental approvals to undertake capital dredging of approximately 55,000 m³ to form a new berth pocket and turning basin immediately West of the existing channel, with the material to be used to create an additional land-backed wharf area and preliminary development for a community boating precinct immediately north of the existing lots (BMT Oceanica 2014). The OMSB (Pty Ltd) leased Lot 13 from the DoT and commenced capital dredging and construction of the land-backed wharf in 2016 on behalf of the DoT as part of Stage 1 of the OMSB Project, with the intention of creating a maritime support base to service increasing onshore and offshore demands.

The broader Project area is largely undeveloped with the exception of a solar salt field with offshore loadout facilities to the West of Onslow, the Roller oilfield in shallow coastal waters to the West of Onslow and the Liquified Natural Gas (LNG) plants, Wheatstone and Macedon, with offshore jetty and materials offloading facility (MOF), at Ashburton North Strategic Industrial Area (ANSIA) approximately 12 km southwest of Onslow.

2.2. Environmental Setting

Dredging is proposed within Beadon Creek and in shallow (<6 m) nearshore areas for approximately 2 km to seaward of the mouth of Beadon Creek. The seafloor in this area is generally comprised of unconsolidated silt, sand and gravel. Previous benthic habitat surveys have determined there are no benthic communities comprised of macroalgae, seagrass, sponges, ascidians and hard and soft corals within Beadon Creek, although patches of these community types may be found on the substrate in adjacent nearshore coastal waters (Chevron 2010).

2.2.1. Geology, Geomorphology and Sediment Characteristics

The regional geology consists of Quaternary sedimentary, alluvial, shoreline and aeolian deposits. The hinterland of the Onslow Sector, referred to as the Onslow Plain, is low lying with vast areas of high tidal mud flats and supratidal salt flats. There is a series of rivers and tidal creeks along the coast which are subject to flash flooding and episodically discharge large volumes of freshwater and terrestrial sediments into the coastal zone. The river and creek systems support fringing mangrove habitats (Semeniuk 1993, Chevron 2010a).

The shore is predominantly beach/dune although limestone headlands and barrier islands also occur (e.g. Beadon Point). The coastline is highly dynamic and is characterised by an exposed sandy coast with ongoing constructional and erosional processes. The coastal intertidal habitats comprise sandy beaches and clayey estuarine sediments. Field investigations of these habitats indicate a low diversity of infauna species and an absence of rare or protected species. Sandy beaches with low diversity and productivity levels are representative of the Pilbara coastline (Chevron 2010a).

The coastal geology is described as Precambian and Phanerozoic rocks generally overlain with a veneer of predominantly limestone sediments (Chevron 2010b). Geomorphic elements include:

- The creek and bay lined mangroves backed by extensive tidal salt flats or by beaches and dunes that form a thick cover over limestone. The latter is often exposed to form limestone pavement or reefs in the intertidal or subtidal zones; and
- The gentle slope of the inner shelf to 20 m depth approximately 20 km offshore. The shelf is underlain by limestone that outcrops as local limestone reefs and platforms, islands and shoals, interspersed with a veneer of coarse and medium sands, gravels and shell/coral grit.

The area from Tubridgi Point, at the mouth of Exmouth Gulf, to Coolgra Point, North-East of Onslow, is identified as a single sediment cell extending over 70 km. The features of the sediment cell are the active delta of the Ashburton River, long sandy beaches and dunes and the island chains running parallel to the shore (Chevron 2010b). The net sediment movement within the cell is Easterly, although reversible from time to time due to onshore winds. As a result, sediment in the Eastern sector near Beadon Creek is of fluvial origin and is reworked in the littoral zone as chenier spits migrating Eastwards (Chevron 2010b).

Major sources of sediment in the Onslow catchment include:

- Erosion of saltflats and mudflats by fluvial runoff and tidal creeks after flooding and tidal inundation;
- Erosion of dunes and rocky shores by nearshore processes; and
- Production and reworking of material from the inner continental shelf.

Much of the nearshore region is covered by silt and sand sheets of varying thickness with high silica content overlying Pleistocene limestone. Sediments become increasingly coarse and increase in calcium carbonate content with distance offshore. Sediment resuspension is frequent immediately seaward of the intertidal zone due to wind-driven waves, and leads to considerable turbidity (Forde 1985).

2.3. Previous Dredging Programs in Beadon Creek

A summary of the previous dredging programs undertaken in Beadon Creek is provided in **Table 1**. The Beadon Creek Marine Facility was constructed in 1964 and included capital dredging at the entrance to the creek. Further dredging was carried out in 1968 in conjunction with the construction of a rock training wall on the western side of the creek. During this campaign, the creek was dredged to approximately -0.7 m chart datum (CD) (HGM 1998).

In 1999, the DoT carried out further capital and maintenance dredging works in Beadon Creek with the primary objective of improving safe passage and mooring of vessels during cyclone events (HGM 1999). This included dredging of the sand bar at the mouth of Beadon Creek, the entrance channel (to a minimum depth of -1.6 m CD) and the mooring basin (to a minimum depth of -2.6 m CD). A total of 40,900 m³ of dredged material was removed during these works and deposited on the beach to the west of the rock training wall, and in the old quarry, south of Beadon Creek Road. Other works carried out at the same time included installation of new cyclone moorings and an upgrade of the existing timber wharf.

Maintenance dredging in Beadon Creek was carried out in November 2003, where the bell mouth and the mid-entrance channel were dredged to a minimum depth of -1.6 m CD (JFA 2004) and approximately 9,820 m³ of material was dredged and disposed to the beach immediately west of the rock wall. Maintenance Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment Page 11 OMSB Pty Ltd 16WAU-0008/1701010

dredging in Beadon Creek was also undertaken in 2012 and 2013, to maintain a navigable channel for access to the Maritime Facility. During these maintenance dredging campaigns, ~40,000 m³ of material was dredged from the bell mouth, entrance channel and berth pockets during May to September 2012 and ~13,000 m³ of material was dredged from the entrance channel and cyclone moorings during March to May 2013. The dredged material was disposed to the dune swales to the west of the channel entrance.

Stage 1 capital dredging of a berth pocket and turning basin on the less developed northern end of the Beadon Creek Maritime Facility was undertaken by OMSB Pty Ltd in 2016-2017 and completed immediately prior to undertaking the sediment survey, which is the subject of this report. The requirement for capital dredging was identified by the DoT as part of a planned framework to upgrade and improve the Beadon Creek Maritime Facilities to support the business and recreational needs of the community, particularly in relation to the significant increase in industrial and commercial activities occurring in Onslow since the development of Chevron Australia's Wheatstone LNG/domestic gas Project. OMSB Pty Ltd offered to undertake the planned and approved dredging works for the DoT. The design depth of the berth pocket is - 2.6 m lowest astronomical tide (LAT) and the design depth of the turning basin is -1.6 m LAT. A total volume of ~55,000 m³ was dredged and the material was used to create a land-backed wharf in the previously undeveloped northern end of the Maritime Facility.

Date	Volume (m3)	Depth (m CD)	Disposal Site	Reference	Comments
1964-1968	Unknown	-0.7 m	Unknown	HGM (1998)	Capital dredging
1999	40,900	Bell mouth: - 1.6 m Basin: -2.6 m	Dune swale to the west of the rock wall and quarry	HGM (1999)	Capital & Maintenance dredging
2003	9,820	Bell mouth: - 1.6 m Channel: -1.6 m	Dune swale to the west of the rock wall	JFA (2004)	Maintenance dredging
2011	Unknown	Berth pocket adjacent to Channel	Onshore adjacent to berth pocket	Oceanica (2012c)	Unknown
2012	~40,000	Bell mouth: - 1.6 m Channel: -1.5 m to -2.6 m	Dune swale to the west of the rock wall	BMT JFA (2013)	Maintenance dredging
2013	~13,000	Channel: -1.5 m to -2.6 m Cyclone moorings: -1.5 m	Dune swale to the west of the rock wall		Maintenance dredging
2013	~5,000	Berth pocket adjacent to channel: -1.6 m to -2.65 m	Dune swale to the west of the rock wall		Maintenance dredging
2016-2017	~55,000	Northern end Berth pocket: - 2.5 m Turning basin: - 1.6 m	Northern bank land-backed wharf	BMT Oceanica (2014)	Capital dredging

Table 1	History of dredging at Beadon Creek
---------	-------------------------------------

2.4. Previous Sediment Investigations

2.4.1. Beadon Creek Marine Sediments

Four (4) sediment contamination investigations have recently (2009 and 2016) been undertaken within Beadon Creek. A summary of previous contaminant sediment sampling programs is provided in **Table 2**. The 2009 sampling was undertaken in support of the 2012 and 2013 maintenance dredging (Oceanica JFA 2010). In 2011, samples were tested for acid sulfate soil (ASS) characteristics on material that had been excavated to create a small berth pocket adjacent to the maintenance dredge channel within the creek (Oceanica 2012). Sampling was undertaken at 15 randomly distributed sites from within the proposed berth pocket and turning circle capital dredging area and adjacent to the proposed community boating precinct immediately North of the existing lots and West of the existing channel within the Beadon Creek Maritime Facility in 2012 (BMT Oceanica 2014). A further 13 sediment samples were collected adjacent to the proposed community boating precinct and the Southern end of the berth pocket in 2016, prior to commencement of capital dredging activities (BMT Oceanica 2016a).

Previous sediment surveys in Beadon Creek have investigated the following:

- Particle size distribution (PSD) and settling velocity;
- Total organic carbon (TOC)/total carbonate;
- Nutrients (TKN, TP, NH₄, NO₂, NO₃, FRP);
- Metals (Al, Ag, As, Cd, Cr, Cu, Fe, Hg, Ni, Se and Zn);
- Potential acid sulfate soils (PASS)/Actual acid sulfate soils (AASS);
- Tributyltin (TBT);
- Total petroleum hydrocarbons (TPH);
- Polycyclic aromatic hydrocarbons (PAH); and
- Benzene, toluene, ethylbenzene and xylene (BTEX).

Sediment contaminant concentrations from Beadon Creek capital dredge area were compared to the NAGD (2009) Interim Sediment Quality Guidelines (ISQG) and Ecological Investigation Levels and Health Investigation Levels (EILs and HILs) from NEPM (2013). Contaminant concentrations for nutrients, metals, TPH, PAH and BTEX concentrations from these investigations were below the relevant guidelines (BMT Oceanica 2014).

PASS has been detected within creek sediments during investigations in 2009 and 2012, although all testing predicted that any potential acidity would be effectively neutralised by the natural alkalinity of the sediments (Oceanica JFA 2010, BMT Oceanica 2014). Further testing of disposed material in 2011 validated the conclusion that dredged creek bed material presented a low likelihood of developing acidity following onshore disposal (Oceanica 2012).

Sediment sampling in 2012 found elevated TBT concentrations exceeding NAGD (2009) ISQG-Low values at three (3) sites adjacent to the proposed community boating precinct at the Southern end of the berth pocket, in the surface 0.5 m of sediments at two (2) of the sites, and in the surface 1 m of sediment at the other site (BMT Oceanica 2014). Analysis of deeper core sediments (between 1 m and 2 m) indicated TBT concentrations were below the limit of reporting (LoR). Subsequent elutriate testing of sediments from these sites determined that concentrations from two (2) sites exceeded the ANZECC/ARMCANZ (2000) 90% species protection trigger value in surface sediments and in one sample at 1.5 m depth, that did not originally exceed the ISQG-Low.

Further intensive sampling of the area identified with the risk of high TBT concentrations in 2012, was undertaken in 2016 and involved collection of sediment samples from 11 additional sites and re-sampling of the two (2) elevated sites from the previous sampling event (BMT Oceanica 2016a). Four (4) of the additional sites within the identified area of risk exceeded the ISQG-Low values, with one (1) site showing exceedances Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment Page 13 OMSB Pty Ltd

in both 0.5m and 1 m depth ranges. The samples taken in this 2016 survey of sites where previous (2012 survey) sampling had shown exceedances of the ISQG-Low all recorded levels below ISQG-Low values. The five (5) samples which showed elevated TBT levels were subjected to elutriate testing and two (2) samples exceeded the ANZECC/ARMCANZ (2000) 90% species protection level. The results of both 2012 and 2016 surveys showed no apparent spatial trend or pattern within the body of sediment where some elevated TBT levels were detected.

Between 1.5 m and 3.5 m depth of surface sediment material was removed from this area during the recent dredging program and buried within the wharf land-fill reclamation area to mitigate the potential impacts of TBT. There were no exceedances of relevant guidelines for TBT in water and biota during the Stage 1 capital dredging campaign (Pers comms Louise Synnot, 2017).

Sediment investigations of the dredged sediment material from previous maintenance dredging programs determined it was suitable for disposal to land.

Year	Study	Monitoring Site	Comments
2009	Full Suite	Bell mouth, Basin	There were no exceedances of the relevant guidelines for nutrients, metals, or tributyltin (TBT).
			PASS detected, although neutralised by natural alkalinity of sediment
2011	Disposed material 2011	Berth Pocket	PASS testing indicated no low likelihood of acidity
2012	Full Suite, 15 sites Capital Dredging	Berth Pocket, Turning circle, Community boating precinct	There were no exceedances of the relevant guidelines for nutrients, metals, TPH, PAH and BTEX.
			Three sites exceeded ISQG-Low for TBT in the surface samples, one site also exceeded 0.5-1m sample.
			Elevated elutriate TBT concentrations exceed the Screening Levels in the surface 0.5 m at two sites and to 1.5 m at one site.
2016	13 TBT Samples, Capital dredging	Community boating precinct	Four sites exceeded ISQG- Low for TBT in the surface samples, one site also exceeded 0.5 -1m. Subsequent, elutriate TBT concentrations exceeded at two locations in surface 0.5 m and 1.0 m.

 Table 2
 Summary of previous contaminant sediment sampling investigations

Geotechnical sediment investigations of Beadon Creek were carried out in 1968, 1975, 1986, 1999 and 2014. With the exception of 2014, the probes undertaken did not extend below -4 m CD and were reported to have encountered sand and shells at the surface of the creek bed, which were underlain by a hard sand/soft rock

or rock at a relatively shallow depth (CH2MHILL 2014). Eight (8) geotechnical boreholes to -13 m CD depth were collected along the line of the proposed wharf, three (3) boreholes were positioned within the proposed berth pocket to a depth of -4 m CD and one (1) borehole to -7.7 m CD collected on the Western edge of the creek adjacent to the small car park at the northern end of the gravel access road to investigate a proposed fishing platform site (CH2MHILL 2014). The engineering model identified the following engineering geological units:

- Marine/Estuarine Deposits: Typically, loose dark grey or yellow brown silty sand/ gravelly silty sand/ sandy gravel or soft to firm low plasticity silty clay. The depth of these materials varied significantly ranging from -2.9 m to -6.9 m CD and typically between 2 m and 6.5 m thick.
- Tantabiddi Member: A layer of cap rock comprised of yellow/brown low to high strength calcarenite/limestone found along the southern end of the wharf line from a depth ranging from 1 m to -1.6 m CD up to 2.4 m thick.
- Upper Onslow Red Beds: Described as medium dense to dense, orange brown silt sand/ sandy silt with gravel of authigenic nodules of siltstone/ sandstone (cemented silt/ sand) or very stiff orange brown high plasticity silty clay with authigenic nodules of siltstone/ sandstone. The top of the horizon varies between a depth of -1 m to -4 m CD and is typically between 3 m to 6 m thick.
- Lower Onslow Red Beds: Low to medium strength claystone, siltstone of sandstone with minor limestone interpreted as weak rock with low to medium strength. The top of the horizon varies between a depth of -6.2 m to -10 m CD and thickness extends below -13 m CD.

The results of the laboratory test data for each geological unit is presented in **Table 3**.

Tests		Marine/Estuarine Deposits	Tantabiddi Member	Upper Onslow Red Beds	Lower Onslow Red Beds
Top of he	orizon	+1-0 m CD	-1-1.6 m CD	-1-4 m CD	-6.2-10 m CD
Thickness		2-6.5 m	0-2.4 m	3-6 m	Extends below 13 m CD
Moisture	e (%)	16.1-40.8%	N/A	14.5-24%	
TOC (%)		<5%	N/A		
PSD	Gravel	0-27%	N/A	0-39%	0-5%
	Sand	41-95%	N/A	9-74%	28-55%
	Fines	3-45%	N/A	14-71%	42-68%

Table 3 Geotechnical test results for engineering geological units (CH2MHILL 2014)

2.4.2. Nearshore

Sediment quality has been assessed in the vicinity of the dredged area in three (3) previous investigations.

Background Quality of Pilbara Coast Sediments (DEC 2006)

In June 2005, marine sediments were assessed by the Department of Environment and Conservation (DEC) at four locations offshore from Beadon Creek to estimate the background concentrations for selected contaminants (DEC 2006). A primary assumption for this study was that no anthropogenic contamination had occurred in this area, with sediments analysed for TBT, PAHs, TPH, BTEX, organochlorine pesticides and polychlorinated biphenyls (PCBs), and total metals and metalloids (AI, As, Cd, Cr, Co, Cu, Fe, Pb, Hg, Ni, Se, Ag, V and Zn) (DEC 2006). The results of this study confirmed that there was no discernible anthropogenic enrichment of contaminants in sediments offshore of Beadon Creek. All concentrations of TBT, PAHs, TPH,

BTEX, OC pesticides and PCBs were reported as below the laboratory limit of reporting (LoR). The DEC (2006) also estimated natural background concentrations of trace metals in marine sediments, noting that natural background concentrations of arsenic were above the ANZECC/ARMCANZ (2000) Screening Level. All other mean trace metal concentrations in sediments offshore of Beadon Creek were below their relevant ANZECC/ARMCANZ (2000) Screening Levels (DEC 2006).

Wheatstone Pilot Investigation

In February 2009, URS collected surface sediment samples as a pilot investigation for the Wheatstone Project at 17 nearshore sites spanning from Ashburton North to Coolgra Point, to provide a broad understanding of sediment characteristics within and surrounding the Project area (Chevron 2010c). Sediments were analysed for a suite of total trace metals (Al, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Hg, Ni, Pb, Se, V, Zn), TPH, BTEX and TBT. The results of this study generally agreed with those of DEC (2006), with concentrations of TPH, BTEX, TBT and trace metals¹ being below the laboratory LoR or below the relevant NAGD (2009) ISQG-Low. The only exception was Arsenic, which was found to occur in naturally elevated background concentrations during the DEC (2006) survey, but not the URS (Chevron 2010c) survey. Samples from nine nearshore sampling locations from Ashburton North to Coolgra Point were predominantly comprised of sand fractions, ranging from 63% to 94% (mean 78%) (Chevron 2010c).

The URS pilot investigation established strong correlation trace element ratios exist between Aluminium, which is commonly used as a proxy element to represent variations in fine fractions of sediment, and trace metals in sampled whole sediments (Loring and Rantula 1992). Grain size was therefore determined to be the principle factor which controls the metal concentrations in tested sediments, with the exception of Arsenic which did not correlate with Aluminium (Chevron 2010c).

Wheatstone Dredging Program Sediment Quality Assessment

A total of 72 short core, 15 deep core and 64 grab sampling locations were identified for collection of sediments from the Wheatstone Project site, approximately 14 km West of Beadon Creek, and at proposed offshore disposal sites and surrounding areas (Chevron 2010c). Short cores were sampled using a manually driven piston coring device within the dredge footprint, although refusal was encountered at every sample location at a depth of less than 0.4 m, resulting in only one sample per short core location. A van veen grab sampler was used at 11 of the 72 short core sampling locations where a core sample was not obtained due to lack of penetration of the piston corer at these sampling locations (armoured shelly surface and loss of core). Deep cores were sampled to the full depth of dredging (13.5 m CD). Sediments 1 m below the seafloor were sampled for all Contaminants of Potential Concern (COPCs) except TBT and radionuclides (Chevron 2010c). Sediments deeper than 1 m were sampled as part of the geotechnical investigations. Grab samples were collected from the five (5) proposed offshore disposal sites, three (44 sampling locations) of which are located nearshore (Disposal Sites A, B, & C) (Chevron 2010c).

The samples were analysed for:

- Metals:
 - Short Cores: Al, Sb, As, Ba, Cd, Cr, Cu, Pb, Hg, Ni, Zn;
 - Deep Cores: Al, Sb, As, Ba, Cd, Cr, Cu, Pb, Hg, Ni, Zn, Be, Co, Fe, Mn, Mo, Se, Ag, Sn, V;
- TBT (excl Deep Cores & Grab);
- TOC (excl Deep Cores & Grab);
- Moisture Content;
- PSD (19 selected short cores and minimum 2 grab samples in each disposal site);

¹ Although the results of trace metals analysis from the DEC (2006) and URS (Chevron 2010c) surveys were generally consistent, it is noted that the DEC (2006) survey did not include analysis of Ba, Be, Mn, whilst the URS (Chevron 2010c) survey did not include analysis of Ag.

- Carbonate content (CaCO₃) (19 selected short cores and minimum 2 grab samples in each disposal site);
- Radionuclides (five randomly selected short core samples);
- Acid Sulfate Soils (ASS) Screening Test; and
- Chromium Suite Test (Scr).

Sediments within the dredge area were described as dark red to red brown clayey gravelly sands with abundant CaCO₃ shells and shell fragments, with varying mud (silt and clay fraction) contents of between 20%-40% and gravel contents ranging from <5% to 34% (Chevron 2010c). Surficial sediments of the proposed nearshore disposal sites A and B were comprised approximately 60% of sand fraction compared to approximately 52% in near surface sediments from the dredge area. Clay content typically varied between 13% and 16% in surficial sediments among all nearshore samples (Chevron 2010c). Hard armoured surfaces were sampled at numerous locations. TOC content was typically <0.2%. Sediment texture between the three (3) proposed nearshore disposal sites was similar with mud content ranging from 20% to 27% and surficial sediments comprising red brown ferruginous slightly gravelly muddy sands. Sediment colour was increasingly grey greenish colour and higher CaCO₃ content with distance from shore, reflecting the increasing marine influence to the sediment composition and decreasing lithogenic/terrigenous component (i.e. ferruginized clays and silts) (Chevron 2010c).

Concentrations of three of the COPCs (As, Cr and Ni) exceeded the NAGD screening levels for marine sediments. However, this only occurred at a limited number of sites and it was concluded these were naturally occurring concentrations (Chevron 2010c). Higher concentrations of these trace metals generally occurred within fine-grained material close to shore which decreased with distance from shore. The spatial distribution of COPCs in sediments is likely to be driven mainly by a strongly positive correlation between contaminants and fine-grained particles and/or TOC, which is known to increase the absorptive capacity of sediment (Matthai and Birch 2000), rather than proximity of sediments to anthropogenic sediment sources. Examination of this relationship found statistically significant correlations between Al and Cr, Cu, Ni and Zn (r=>0.72, n=136), which confirms the capacity of muds and clays to absorb metals (Chevron 2010c). Results of weak-acid extraction testing support these findings and determined that the extractable portion of As, Ni and Cr in near surface sediments is about 10% of the total extractable concentrations sufficient to have adverse effects on aquatic biota (Chevron 2010c). Geochemical characterisation of two deep core samples to a depth of 13.5 m indicates that the subsurface geochemistry is similar and very homogenous throughout the horizons sampled, although Ni was present in higher levels within deeper core samples (Chevron 2010c).

An assessment of PASS and the carbonate buffering capacity of shallow and deep sediments was also undertaken. Analytical methods used to determine the presence of PASS included the acid sulfate soils (ASS) screening test (based on pH_F and pH_{FOX} values and a reaction rating) and the Chromium Suite Test (Scr). The risk of ASS material was determined to be low. This is indicated by the negligible acid generating capacity of the sediments, or where PASS was encountered, typically in the surficial sediment profile close to the coastline, laboratory testing indicates the sediments have sufficient available carbonate buffering capacity to negate any potential acidity for material that may be placed onshore (Chevron 2010d).

2.5. Identifying Contaminants of Potential Concern

The NAGD (2009) identifies the common metals and metalloids (e.g. Cu, Pb, Zn, Cr, Cd, Ni, Hg, As) are the most widespread pollutants in Australia, being present in most contaminated sediments, sometimes at high levels. Organotin compounds are also common contaminants in ports and harbours and are frequently present at high levels in berths and inner harbour areas. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) are also common but are normally found at elevated levels only in restricted locations.

A review of the potential contaminant sources of the North-West Shelf (NWS) was undertaken in Chevron (2010c). Potential contaminants identified from marine based activities included organic and inorganic contaminants from the oil and gas industry, shipping activities, commercial and recreational fishing activities, aquaculture and tourism. Coastal issues such as domestic waste, e.g. sewage disposal, have been perceived as less significant in this region than elsewhere because of low population density. However, potential pollutants from diffuse sources in the region include metals and antifoulants from shipping, harbour works, shore-based plants and cross-shelf trunklines. A review of contaminant sources, impacts, pathways and effects on the NWS by Fandry et al. (2006) identified the following COPCs in the region, including:

- Metals: (Ba, Cd, Cr, Cu, Pb, Hg and Zn) associated with shipment of minerals and runoff from onshore mining activities;
- TBT: antifoulant on ships
- Nitrogen: Nutrients
- Produced Water from industrial processing;
- Hydrocarbons associated with oil spills and chronic releases such as bilge and tank residues from ships.

Due to the undeveloped nature of the catchment and sparse farming practices it was considered that sources for PAHs and Organochlorine (OC) pesticides would be unlikely to make a substantial contribution to contaminant loads in offshore sediments (Fandry et al. 2006).

Review of available literature from previous sediment investigations and review of potential indicates that with the exception of TBT, there are very few known COPC in the region.

3. Sampling and Analysis Methods

Field investigations were undertaken by two qualified marine scientists between 15-18 March 2017. The following tasks were completed during the sampling event:

- Sediment coring using a vibrocorer at 11 locations;
- Sediment grabs of surficial sediments at 14 locations; and
- Test pit at one (1) location.

A total of 49 surface and subsurface sediment samples were collected from 26 sampling locations during the field survey.

3.1. Field Sampling

3.1.1. Sampling Design

The date, time, water depth, coordinates and sample type of the 26 sediment sampling locations are presented in **Table 5** and shown in **Figure 2**. The sampling design reflects recommendations provided in NAGD (2009), DER (2014) and NEPM (2013). The proposed harbour approach channel for capital dredging was divided into three distinct areas based on the likelihood of potential changes in physical and chemical characteristics:

- 1. Berth pocket/turning circle;
- 2. Inner channel; and
- 3. Outer channel.

Sediment sampling locations were randomly distributed within each area selected for sampling. In accordance with NAGD (2009), the number of sample locations were focussed on the volume of the layer of recent sediments which *could* be contaminated, but does not include the volume of underlying natural geological materials which are, except for the surface 1 m of sediment, expected to be uncontaminated. The indicative gross volume of sediment expected to be dredged and the surface area for the berth pocket/turning circle, inner channel and outer channel are shown in **Table 5**.

Capital dredging of much of the berth pocket had only recently been completed prior to sampling (i.e. within days of the sampling event). Therefore, it has been assumed that sediment sampling was undertaken on the surface 1 m layer previously dredged (**Table 5**), and further capital dredging of the older underlying deposits *could not* be contaminated under the same principles.

Based on available data (see Section 2.0), all three dredge areas were classified as "probably clean". The exception was elevated TBT concentrations detected during the 2012 and 2016 sampling surveys in surface sediments adjacent to the proposed community boating precinct. The identified body of sediment where elevated TBT levels have previously been detected only slightly encroaches into the proposed capital dredge area at the southern end of the proposed berth pocket. However, as described in Section 2.4.1, between 1.5 m and 3.5 m of surface sediment material has since been dredged from the southern end of the berth pocket and buried within the reclaimed wharf land-fill to mitigate the potential impacts of TBT. Intensive sampling of the risk of TBT prior to the recent capital dredging program indicated low TBT concentrations below 1.5 m depth which met ISQG-Low values. An overview of the sampling locations from the Berth Pocket/Turning Circle in 2012 (BMT Oceanica 2014), 2016 (BMT Oceanica 2016) and 2017 sampling locations are presented in **Figure 3**. There were no exceedances of relevant guidelines for TBT in water or biota monitored during the 2016/17 Beadon Creek capital dredging campaign (pers comms Louise Synnot 2017), so it is considered highly unlikely TBT contamination risks are present in dredging the underlying materials.

Sampling Location	Coordi	nates	Depth	Date	Time	Method ²	Field QC ³
Location	Latitude	Longitude	(m CD)				QU
Berth Pocket/ 1	Furning Circle		L				
BP1	21.645657	115.131424	-2.83	15/03/2017	10:20	G	
BP2	21.64643501	115.131393	-3.18	15/03/2017	9:23	G	
BP4	21.64602002	115.13175	-1.77	16/03/2017	7:02	С	
TC1	21.64458001	115.13111	-2.07	15/03/2017	16:36	С	S
TC2	21.64470004	115.132048	-0.12	15/03/2017	11:06	G	R
TC3	21.64517697	115.131982	-1.60	15/03/2017	10:25	G	
TC4	21.64446602	115.131489	-2.25	15/03/2017	13:41	G	
TC5	21.64533597	115.132283	1.71	17/03/2017	10:00	TP	
Inner Channel							
IC1	21.64314997	115.13165	-2.14	18/03/2017	15:30	С	R
IC2	21.64358499	115.131426	-2.52	15/03/2017	13:46	G	
IC3	21.64256299	115.131701	-1.94	16/03/2017	16:49	С	
IC4	21.64004498	115.132835	-0.72	16/03/2017	10:23	G	
IC5	21.64060699	115.132453	-1.08	18/03/2017	9:50	С	
IC6	21.63997801	115.132436	-1.95	16/03/2017	10:26	G	
IC7	21.64412001	115.13124	-2.09	16/03/2017	17:41	С	S
IC8	21.63935096	115.132814	-1.64	18/03/2017	9:25	С	
Outer Channel	•			<u>.</u>			
OC1	21.63464201	115.132844	-2.2	17/03/2017	12:00	С	
OC2	21.62456	115.12868	-4.8	18/03/2017	8:30	С	
OC3	21.63621001	115.13359	-1.2	17/03/2017	8:30	С	
OC4	21.63125496	115.131202	-4.0	17/03/2017	11:20	С	S
OC5	21.62736903	115.129169	-6.0	18/03/2017	14:20	G	
OC6	21.61724	115.12566	-6.5	17/03/2017	15:42	G	
OC7	21.62240996	115.127198	-6.0	18/03/2017	13:41	G	R
OC8	21.61386	115.1237	-8.0	17/03/2017	15:14	G	
OC9	21.61494998	115.12462	-7.5	17/03/2017	15:21	G	
OC10	21.61931997	115.12644	-6.5	17/03/2017	16:16	G	

Table 4	Sediment sampling locations including coordinates	. depth. date. time	. method and field quality control
Table I	seament sampling istations meraaning tool amates	, acpen, aate, enne	, memou unu nelu quanty control

¹ Depths for the berth pocket/turning circle are presented as Chart Datum due to the anchor barge not having a depth sounder. Depths for the outer channel were depths recorded during sampling

² Definitions: C= Core, G= Grab and TP= Test Pit

³ Definitions: R= Field Replicates, S= Field Split Triplicates

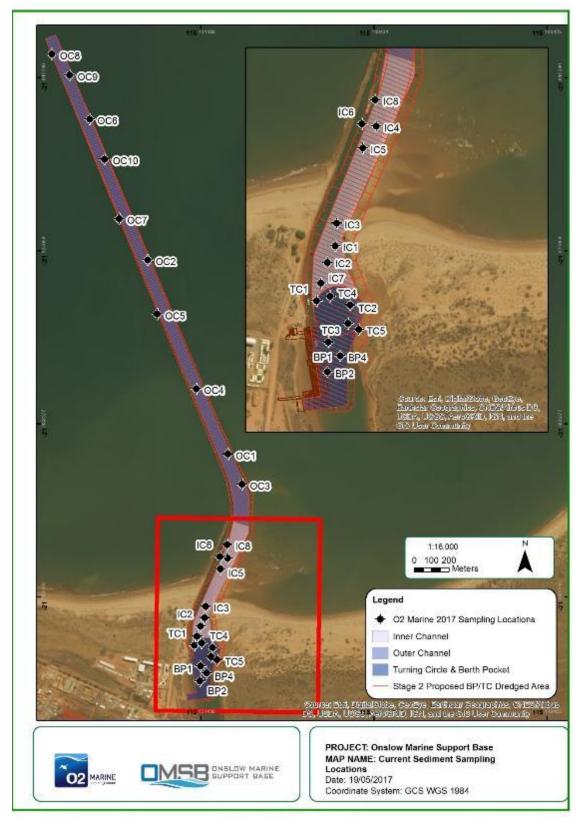


Figure 2 Sediment sampling locations divided into three (3) areas and the footprint of the capital dredging program completed days prior to the field investigations

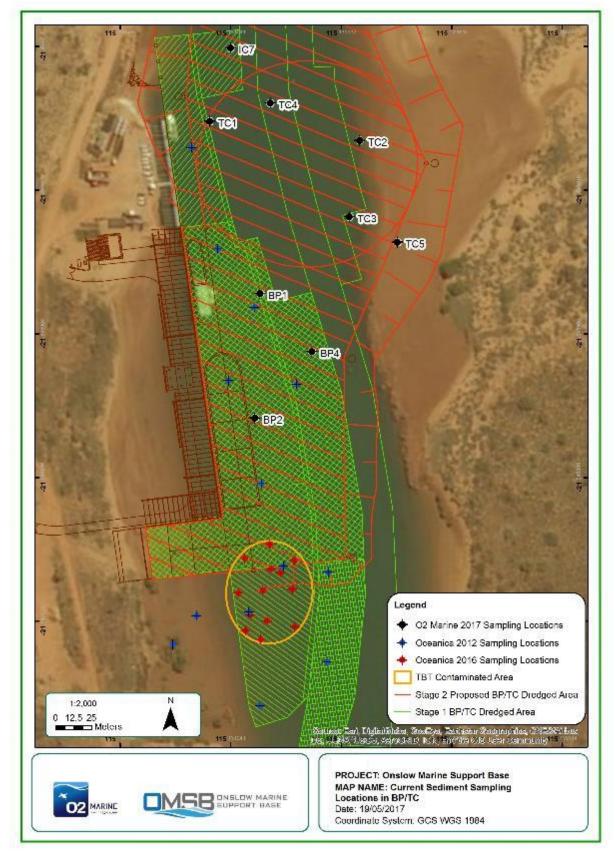


Figure 3 Current sediment sampling locations that have been collected within the Berth Pocket/ Turning Circle

Table 5 Dredge area volumes, surface areas and number of sample locations

Area	Dredge volume (m ³)	Surface Area (m²)	Sample Locations ¹
Outer Channel	514,000	168,500	10
Inner Channel	244,000	73,300	8
Berth pocket/ turning circle	172,000	38,000	6 ²

¹ Assumes sediments are "probably clean"

² Six (6) sites sampled within the capital dredge area in 2012 and a further 13 sites sampled in the TBT contaminated area in 2016. dredging completed days prior to survey

Field Quality Control Samples

Field quality control samples included the following sampling design in accordance with NAGD (2009) and NEPM (2013):

- One trip blank filled with inert chromographic sand;
- Three field replicates (that is, three separate samples taken at the same location) to determine the variability of the physical and chemical characteristics; and
- Three field splits (that is, samples thoroughly mixed then split into three sub-samples with one of the three samples sent to a secondary laboratory) to assess laboratory variation.

Sediments were also collected for elutriate testing at a number of locations in the event samples exceeded ISQG-Low values.

3.1.2. Vibracoring

Vibracoring was undertaken at 11 locations; two (2) locations within the berth pocket/turning circle (BP4, TC1), five (5) locations within the inner channel (IC1, IC3, IC5, IC7, IC8) and four (4) locations within the outer channel (OC1, OC2, OC3, OC4). Vibracoring was selected as the appropriate sampling technique based on piston coring undertaken for Wheatstone Project encountering refusal at 72 sample locations at a depth of less than 0.4 m, resulting in only surficial sediments being collected. Vibracoring is the recommended technique for coarse or firm sediment in NAGD (2009).

A 76.2mm diameter stainless steel tube of 6 m length was fastened to a custom-made bracket which uses the flexible shaft of a small concrete vibrator to penetrate the tube into unconsolidated sediment (**Figure 4**). The tube was suspended from an A-frame/Hiab over the side of the vessel and vibrated into unconsolidated sediment. A plastic liner was used inside the tube to collect the sample and a one-way core catcher was custom made for the tube to prevent losing the sample on recovery. Three-point anchoring was required at all sampling locations.

The tube was recovered using the deck winch, the actual core depth was recorded and the core sample was removed from the tube. The core sample was initially vertically hung to settle sediments prior to being laid out on the deck and a photographic and observation record was taken before packing sediment into laboratory containers. Each sediment core was divided into 0.5 m depth intervals and samples were collected at each interval. The actual core depth recorded was typically deeper than the visual length of the core following removal due to a combination of the compaction of sediments during retrieval and the diameter of the plastic liner being larger (130 mm) than the tube (76.2 mm), creating additional space for sediments to fill at the base of the core once removed. However, due to the amount of sediment required for sampling tests, the core was typically split between into two horizons, as such it is possible that sediment from depths greater than the top 1m may have been sampled.

3.1.3. Sediment Grab

Surficial sediment samples were collected using a van Veen sediment grab (225 x 200 mm) at 15 locations; four (4) locations within the berth pocket/turning circle (BP1, BP2, TC3, TC4), three (3) locations within the inner channel (IC2, IC4, IC6) and six (6) locations within the outer channel (OC5, OC6, OC7, OC8, OC9, OC10).

The van Veen grab (225 mm x 200 mm) is constructed of two stainless steel buckets with zinc plated steel arms which collects a volume sample of 3 litres. The grab is lightweight (13 kg) which enabled deployment by hand using a pulley block hung over the side of the vessel (**Figure 4**). The impact of the grab on the bottom surface triggers a release mechanism to shut the buckets together and collect the sample. On return of the sample to the surface the water was carefully removed and the sediment was emptied into a plastic bucket and a photographic and observation record was taken before packing sediment into laboratory containers. Shell grit and coral rubble was encountered in surface sediments at many grab sites preventing the grab from closing properly and often resulting in more than one grab required at sampling locations. Samples were homogenised where the sediment from more than one grab was used to achieve the sample quantity required. The grab was decontaminated using appropriate decontamination solution (i.e. DECON) between each sampling location.

3.1.4. Test Pit

One test pit sample was collected from the intertidal area of the turning circle during low tide. The pit was excavated by hand with nitrile gloves. Surface sediment removed was packed into laboratory containers.

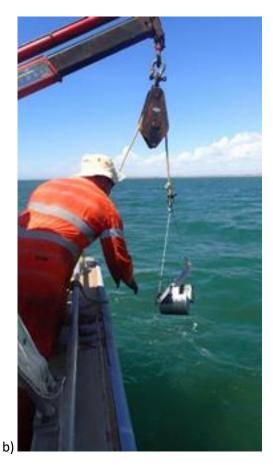


Figure 4 Field sampling images presenting a) vibracoring using a 6 m, 76.2mm diameter stainless steel tube housing the flexible shaft from a small concrete vibrator, and b) the deployment of the van veen grab using a pulley block hung over the side of the vessel

3.1.5. Acid Sulfate Soils Screening Test

The DER Guideline document for acid sulfate soils (DER 2015) describes how to identify PASS risk areas and the subsequent assessment methods, including sampling and reporting for dredge material that is planned to be disposed on land. Landgate's Shared Land Information Platform (SLIP) identified sediments within the proposed capital dredge area are classified as a high probability of PASS occurrence, although with very low confidence. Therefore, the actual and potential acidity of the capital dredge area sediments has been analysed.

PASS screening tests (EA037) were undertaken in the field immediately following collection of sediment samples. The analytical methods selected for the analysis of PASS was undertaken in accordance with methodologies outlined in DER (2015).

PASS screening tests are a measure of pH_f and pH_{fox} (including assessment of reaction rating). The pH_F test measures the existing acidity and is therefore a useful indicator as to whether ASS are present. The pH_{FOX} test (or rapid oxidation) is used to indicate the presence of iron sulphides or PASS.

The test involves adding 30% hydrogen peroxide (H_2O_2) to a sample of sediment (to mimic the natural addition of air to the sediment). If sulphides are present, a reaction with the hydrogen peroxide will occur. The reaction can be influenced by the amount of sulphides in the sample and the presence of organic matter. A more vigorous reaction usually indicates a higher potential for acidity. The value of pH_{FOX} and its relationship to pH_F is also used to identify PASS. A lower final pH_{FOX} value and a greater difference between pH_{FOX} in comparison to pH_F , is indicative of the presence of PASS.

Detailed PASS screening test methodology is further described in Appendix A of DER (2015).

3.1.6. Laboratory Testing

The sediment samples were packed into suitable (laboratory supplied) jars and plastic bags and stored on ice during the field program and transferred to a freezer at the completion of each day. All samples were marked with a unique identifier with the date/time and sampler's name using a 'Wet Write' permanent marker. All samples were listed on an O2 Marine Chain of Custody (CoC) form and that form was included with the samples when transported to the NATA-accredited laboratory for analysis. Copies of the CoC are provided in **Appendix A**.

ALS Global Pty Ltd was selected for this project as the primary laboratory and Advanced Analytical Australia Pty Ltd was selected as the secondary laboratory.

The sediment samples were analysed for the following parameters:

- Sediment Properties: Particle size analysis (PSA), total organic carbon (TOC), moisture content;
- Inorganic Compounds: Total metals and metalloids (Al, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V and Zn);
- Organic Compounds: TPH, BTEX, PAH and TBT;
- Nutrients (TN, TKN, NH₄, NO₂+NO₃, TP, FRP); and
- Acid sulfate soils (SCr).

The analytical procedures used by the laboratory are described in **Appendix B**. ALS Global Pty Ltd has a comprehensive best practice QA/QC program designed to provide highly defensible analytical data in accordance with NEPM (1999), ANZECC/ARMCANZ (2000) and NAGD (DEHWA (2009) guidelines. ALS undertakes Laboratory Control Samples (LCS), Method Blanks (MB), Matrix Spikes (MS), Laboratory Duplicates (Dups) and Surrogates (where applicable), at frequencies at or above the NEPM guidelines – revised 2013.

Previous sediment sampling indicates a low likelihood of contamination of the proposed dredged sediments; therefore, the following risk-based screening approach was used to select samples and analytes for analysis:

- Sample surficial sediments from cores in the turning circle, inner channel and outer channel areas;
- Focus sampling on locations within the berthing pocket/turning circle that were not just dredged during the capital dredging completed in the days prior to sampling;
- Sample deeper cores for at least one site considered to have the highest risk of contamination within each area;
- Test contaminants with the highest risk (i.e. metals, TBT) at the majority of locations with less emphasis on contaminants which historical sampling indicates are lower risk (i.e. nutrients, hydrocarbons);
- Samples selected for chromium reducible sulfur suite testing are based on the results from soil field pH tests;
- Test all split field quality control samples, including samples sent to the secondary laboratory;
- Test one replicate field quality control sample for variability of sediment physical and chemical characteristics; and
- All the remaining samples were stored frozen for further analysis, if required.

A summary of the sediment samples that were analysed and preserved is provided in Table 6.

L.	su				Analytes				QA	QC
Sampling Location	Sediment Horizons	Physical	Inorganic	ТВТ	Other Organics	Nutrients	scr	Elutriate	Replicate	Splits
Berth Pocket/ Turnin	Berth Pocket/ Turning Circle									
BP1	S	Р	Р	Р	Р	Р	А	-	-	-
BP2	S	Р	Р	Р	Р	Р	Р	-	-	-
BP4	0.7m	А	А	А	A	А	Р	2P	-	-
TC1	0.75m	А	А	А	A	А	Р	Р	-	2A
	1.5m	А	А	А	А	А	А	Р	-	2A
TC2	S	А	А	А	А	А	Р	2P	1A/1P	-
TC3	S	Р	Р	Р	Р	Р	А	-	-	-
TC4	S	А	А	А	Р	Р	Р	-	-	-
TC5	S	А	А	Р	Р	Р	А	-	-	-
Total Analyzed/Preserved		6/3	6/3	5/4	4/5	4/5	4/5	0/6	1/1	4/0
Inner Channel										
IC1	0.75m	А	Α	А	А	А	Р	-	1A/1P	-
	1.5m	Р	Р	Р	Р	Р	А	-	-	-
IC2	S	А	А	Р	А	А	Р	Р	-	-
IC3	0.75m	А	Α	А	Р	Р	А	2P		

 Table 6
 Sediment samples and contaminants analysed (A) and preserved (P)

Ę	SI	Analytes					QA/QC			
Sampling Location	Sediment Horizons	Physical	Inorganic	ТВТ	Other Organics	Nutrients	scr	Elutriate	Replicate	Splits
	1.5m	Р	Р	Р	Р	Р	Р	-	-	-
IC4	S	А	А	А	А	Р	Р	-	-	-
IC5	0.75m	А	Α	А	А	А	Р	-	-	-
	1.5m	Р	Р	Р	Р	Р	А	-	-	-
	2.2m	Р	Р	Р	Р	Р	А	-	-	-
IC6	S	А	А	А	Р	Р	Р	-	-	-
IC7	0.6m	А	А	А	А	А	Р	Р	-	-
	1.2m	А	А	Р	Р	Р	Р	-	-	-
IC8	0.6m	А	А	Р	Р	А	А	Р		
	1.2m	Р	Р	Р	Р	Р	Р	-	-	-
Total Analyzed/Pres	served	9/5	9/5	6/8	5/9	5/9	5/9	0/5	1/1	0/0
Outer Channel										
OC1	0.75m	А	Α	Α	А	Α	Α	-	-	2A
	1.5m	Р	Р	Р	Р	Р	Р	-	-	-
OC2	0.5m	А	Α	А	Р	Α	Р	2P	-	-
	1.0m	А	Α	Р	Р	Р	Р	-	-	-
OC3	0.5m	А	А	А	А	А	Р	Р		
	1.0m	А	А	Р	Р	Р	Р			
OC4	0.6m	А	А	А	А	А	А	Р		
	1.2m	Р	Р	Р	Р	Р	А	2P		
OC5	S	А	А	А	A	Р	А			
OC6	S	А	А	А	Р	Р	А			
OC7	S	А	А	А	A	А	А		1A/1P	
OC8	S	А	А	А	Р	Р	Р	Р		
OC9	S	А	А	А	Р	Р	А			
OC10	S	А	А	А	A	А	Р	Р		
Total Analyzed/Pres	served	12/2	12/2	10/4	6/8	6/8	7/7	0/8	1/1	2/0

3.2. Sediment Data Assessment

3.2.1. Comparison of Data to Screening Levels

The results for organic and inorganic compounds were compared to the ISQG-Low, which were developed as part of the ANZECC/ARMCANZ Guidelines for Fresh and Marine Water Quality (ANZECC/ARMCANZ 2000).

Revised sediment quality guidelines were applied where appropriate as detailed in (Simpson et al. 2013). A screening level is exceeded if the upper 95% upper confidence limit of the mean (95% UCL) for a contaminant exceeds the ISQG-Low. The USEPA's ProUCL software is used to calculate and recommend the most appropriate 95% UCL test to apply based on the data size, data distribution and skewness. If the 95% UCL does not exceed the screening level, this means there is a 95% probability that the mean concentration of that contaminant within the material to be dredged will not exceed the screening level. If the 95 UCL of a contaminant exceeds the specified screening level, it is a Contaminant of Potential Concern (COPC) and evaluation should proceed through the decision-tree described in NAGD (2009).

The capital dredge material from the berth pocket/turning circle, inner channel and outer channel will be disposed to land, therefore characterisation of the material and assessment of its compatibility with the receiving environment and associated land uses on a site-specific basis is required in accordance with guidance provided in Schedule B2 of the NEPM. These guidelines consist of Ecological Health Investigation Levels (EILs) and Health Investigation Levels (HILs). Health Investigation Level D for industrial areas was applied, as this material would be disposed to a potential future Light Industrial Area.

Chevron (2010) and DEC (2006) both identified that PSD is a principle factor which determines the concentrations of metals in sediments. Investigations demonstrated strong correlations between Al concentrations and the proportion of mud fractions (clay and silt), as well as Al and the concentrations of metals tested, suggesting Al can be used to normalise the concentrations of other metals in areas with samples of variable PSD. Regression analysis was undertaken on Al concentrations and the proportion of mud fractions of Al and other metals to reveal which results may be influenced by the variability of the particle sizes between samples.

3.2.2. PASS Field Screening Test

The results of field screening tests are presented in a table to present the results of the three (3) combining factors considered in arriving at a 'positive field sulphide identification':

- A reaction with hydrogen peroxide as classified in **Table 7** this reaction should be rated e.g. L = low reaction, M = medium reaction, H = high reaction, X = extreme reaction, V = volcanic reaction.
- The actual value of pH_{FOX} . If the pH_{FOX} <3, and a significant reaction occurred, then it strongly indicates PASS.
- A much lower pH_{FOX} than field pH_F. The lower the final pH_{FOX} value and the greater the difference between the pH_{FOX} compared to the pH_F, the more indicative of the presence of PASS.

A total of 16 samples from the 45 tested were selected for further laboratory analysis using the Chromium Reducible Sulfur Suite method. The selection of samples for further analysis were based on the following conservative results from the PASS Screening Test to indicate the sediment is likely to contain sulfides:

- 'High' or greater reaction rating;
- Actual value of pH_{FOX} <6; and
- Difference in pH_{FOX} and pH_F value of >2 units.

Table 7 Reaction observations to determine appropriate rating	Table 7	Reaction observations to determine appropriate rating
---	---------	---

Reaction Rating	Key	Observations
Low	L	Little to no reaction, languid bubble formation
Medium	М	Languid bubble formation two or more layers
High	Н	Active bubble formation inside test tube, mild effervescence
Extreme	Х	Foaming inside test tube, moderate effervescence, faint sulfuric odour
Volcanic	V	Vigorous foaming & overflow/ eruption, strong effervescence, strong sulfuric odour

3.2.3. Chromium Reducible Sulfur Suite

The chromium reducible sulfur suite method was used, this method involves a series of steps that yield an estimate of the actual and potential acidity, the acid neutralising capacity (ANC) and the total net acidity of a sediment sample. The soil pH, in potassium chloride suspension (pH_{KCI}), gives an estimate of the actual acidity of the sediment. The reduced inorganic sulfur content (S_{Cr}) provides an estimate of the potential sulfidic acidity of the sediment, which is assessed against an Action Criteria (DER 2015). Titratable Actual Acidity (TAA_{KCI}) and/or Net Acid Soluble Sulfur (S_{NAS}) are analysed if pH_{KCI} is <6.5. The ANC provides an estimate of the presence of carbonate material).

The total net acidity is calculated via Acid-Base Accounting (ABA), using the following equation (Ahern et al. 2004):

Net Acidity = Potential Sulfidic Acidity + Existing Acidity -ANC/FF

where:

- Potential Sulfidic Acidity is represented by S_{Cr} (converted from %S to mol H+/tonne by multiplying by 623.7).
- If there is no existing acidity, i.e. the sample has a pH_{KCI} greater than 6.5, the TAA_{KCI} is assumed to be zero and the Existing Acidity term is neglected. If the pH_{KCI} is less than 6.5, the TAA_{KCI} is measured and used for the Existing Acidity term in mol H+/tonne.
- ANC is represented by ANC_{BT} (converted from %CaCO3 to mol H+/tonne by multiplying by 199.8).
- FF is the fineness factor.

As the samples are finely ground in the laboratory, the ANC likely to be experienced in the field could be overestimated and therefore the net acid risk, underestimated. To allow for this, the measurements of ANC are divided by a fineness factor (FF) during ABA. A fineness factor of 1.5 was selected for this study to ensure a conservative calculation of the neutralising capacity for the fine shell and carbonate silts.

3.2.4. QA/QC Assessment

The precision of the sediment analyses was determined by quantifying the differences between the concentrations of analytes in the QA/QC samples, using the method outlined in the NAGD (NAGD 2009).

The relative percent difference (RPD) was calculated for analyte concentrations in the sample splits (both inter-laboratory and intra-laboratory splits) was calculated for analyte concentrations in the field replicates.

The RPD is calculated as follows

 $\mathsf{RPD}(\%) = \frac{(difference\ between\ sample\ splits)\ X\ 100}{(average\ of\ sample\ splits)}$

The RPD of sample splits should be less than ±35% for field splits and ±50% for field replicates, although the guidelines note that this may not always be the case where the sediments are very heterogeneous or greatly differing in grain size (NAGD 2009). If the RPD for a measured analyte fell outside of these limits, the value of the measured analyte was flagged as an estimate rather than a precise value (NAGD 2009).

4. Results

4.1. Sediment Properties

4.1.1. Field Observations

Berth Pocket/Turning Circle

A summary of the observed sediment characteristics of the samples from the berth pocket/turning circle is provided in **Table 8**. Sediment samples from the berth pocket/ turning circle were predominantly composed of brown fine sand. The core at location TC1 achieved a depth of -1.5 m before refusal although BP4 only sampled to -0.7 m. Shelly grit and coral rubble were found in sediment beneath the surface layer, although clay was observed in the deeper section of the core (-1.5 m) collected from TC1, which was recently dredged. A slight odour was detected in replicate samples collected from TC2.

Location	Depth Core (m)	Depth Interval (m)	Sediment Description	Photograph
BP1	S	0-0.3	Dense brown/grey, fine sand, >10% fines	
BP2	S	0-0.3	Dense brown fine sand, 5-10% fines. Some leaves/twigs found in sample	
BP4	-0.7	0-0.7	Loose soft brown medium sand, <5% fines. Gravel beneath surficial sediment layer of shell/ coral grit	

 Table 8
 Description of the characteristics of sediment samples taken from the berth pocket/turning circle capital dredge area.

Location	Depth Core (m)	Depth Interval (m)	Sediment Description	Photograph
		0-0.75	Dense fine/medium brown sand, 10% fines, Shell/ coral grit fragments	
TC1	-1.5	0.75-1.5	Dense brown silty sand, >10% fines, clay concentrations increase at depth	
TC2	S	0-0.3	Loose brown with some dark grey fine sand, 5-10% fines	
TC2 (REP1)	S	0-0.3	Loose brown with some dark grey fine sand, 5-10% fines, slight odour	
TC2 (REP2)	S	0-0.3	Loose brown with some dark grey fine sand, 5-10% fines, slight odour	
TC3	S	0-0.3	Loose brown with some dark grey silty sand, >10% fines	

Location	Depth Core (m)	Depth Interval (m)	Sediment Description	Photograph
TC4	S	0-0.3	Loose brown with some dark grey fine sand, 5-10% fines, slight odour	
TC5	S	0-0.1	Soft red/brown fine sand, <5% fines	

Inner Channel

A summary of the observed sediment characteristics from samples within the inner channel is provided in Table 9. Samples were composed of loose brown medium sand, although surficial sediments at sample location IC7 were composed of noticeably finer material (possible clay fractions). Cores sampled at IC1, IC3, and IC8 achieved a depth of approximately -1.2-1.5 m before refusal, and a deeper sediment core to -2.2 m was collected at IC5. The exception was site IC7 where the sample depth of -1.2 m was terminated due to mechanical failure of the concrete vibrator. Large shells, shelly grit and coral rubble were a common feature of surface and subsurface sediments, although deeper sediments (i.e. >1.5 m) comprised finer fractions and less gravel. A moderate odour was detected from surficial sediments at IC7, a slight odour from samples collected from IC1, IC6, IC7 deep and IC8.

Table 9 Des	ble 9 Description of the characteristics of sediment samples taken from the inner channel capital dredge area.						
Location	Depth Core (m)	Core Interval (m)	Sediment Description	Photograph			
		0-0.75	Loose red/brown medium sand/ gravel, <5% fines	TERMIN'			
IC1	-1.5	0.75-1.5	Loose coarse dark brown sand/gravel, <5% fines, Shell/				

coral grit and rubble common

Location	Depth Core (m)	Core Interval (m)	Sediment Description	Photograph
IC1 (REP1)	-1.5	0-0.75	Loose brown medium sand/gravel, <5% fines, Shell/ coral grit and rubble common, slight odour	
IC1 (REP2)	-1.0	0-0.75	Loose brown medium sand/gravel, <5% fines, Shell/ coral grit and rubble common, slight odour	
IC2	S	0-0.3	Loose red/brown medium sand, <5% fines	
		0-0.75	Loose dark grey/ brown medium/coarse sand, <5% fines. Shell/ coral fragments	
IC3	-1.5	0.75-1.5	Loose dark grey/ brown coarse sand and gravel, <5% fines. Shell/ coral and rubble common	
IC4	S	0-0.3	Dense fine/medium brown sand, 10% fines, Shell/ coral grit fragments	

Location	Depth Core	Core Interval	Sediment Description	Photograph
	(m)	(m)		
		0-0.75	Loose dark brown coarse sand and gravel, <5% fines, Shell/ coral and rubble common	
IC5	-2.2	0.75-1.5	Soft dark brown/grey fine sand with some gravel, 5-10% fines, Shell/ coral grit & wood fragments	0
		1.5-2.2	Dense red/brown silty sands, >10% fines, Small amounts of shell	
IC6	S	0-0.3	Loose brown with some dark grey fine sand, 5-10% fines, slight odour	
107	10	0-0.6	Soft dark brown silty sand, >10% fines (possible clay), moderate odour, large fragments of shell and some shell grit present	
IC7 -1.2	-1.2	Loose red/brown medium to coarse sand, <5% fines, slight odour, Shell/ coral grit fragments		
		0-0.6	Loose light brown medium sand and gravel, 5-10% fines, large fragments of shell and shell grit common, very slight odour	California Cal
IC8 1.	1.2	0.6-1.2	Soft dark brown fine sand, 5- 10% fines, some shell/coral grit, very slight odour	R. B.

Outer Channel

A summary of the observed sediment characteristics of samples from the outer channel is provided in **Table 10**. Sediment samples from nearshore sampling locations within the outer channel predominantly comprised of dense dark brown to greyish fine sand combined with large shell and coral rubble fractions. Sediment characteristics appeared relatively homogenous between surface and subsurface samples collected.

Cores collected from the outer channel ranged from a depth of -1.0 m to -1.5 m. Due to the 6 m length of the stainless steel tube, sample locations in depths below approximately 4 m CD proved difficult to sample. An

attempt to undertake vibracoring at low spring tide (+1.02 m) on 18 March 2017 at sample location OC7 was unable to recover a sufficient volume of sediment, due partly to the sample containing abundant shell and coral rubble (see OC7 image in **Table 10**) and oceanographic conditions (i.e. waves and currents). Therefore, grab sampling was undertaken at all deeper offshore sampling locations. Depth at these sites during grab sampling closer to high tide ranged from 6 m to 8 m. Loose red/brown fine sand and large shells, shelly grit and coral rubble were a very common feature of surface sediments from these samples.

Seagrass rhizomes and fibrous organic material were found in samples at sites OC4, OC7 and OC8. A slight odour was detected from surficial sediments at OC1 and OC6.

Location	Depth Core (m)	Core Interval (m)	Sediment Description	Photograph
		0-0.75	Dense grey/dark brown silty sand, >10% fines, large shell fractions & shell/coral grit, very slight odour	
OC1	-1.5	0.75-1.5	Dense grey/dark brown fine sand, >10% fines, shell/coral grit, very slight odour	
		0-0.5	Dense dark brown fine sand/gravel, <5% fines, large shell & coral rubble fractions	A Star
OC2	-1.0	0.5-1.0	Dense dark brown fine sand/gravel, <5% fines, large shell & coral rubble fractions	
		0-0.5	Dense grey/dark brown fine sand, <5% fines, some shell/coral grit	A-L -
OC3 -1.0	0.5-1.0	Dense dark grey/dark brown fine sand, <5% fines, some shell/coral grit		
OC4	-1.2	0-0.6	Dense grey/dark brown fine sand, <5% fines, large shell fragments at surface, shell/coral grit and seagrass rhizomes present	

 Table 10 Description of the characteristics of sediment samples taken from the outer channel capital dredge area.

Location	Depth Core (m)	Core Interval (m)	Sediment Description	Photograph
		0.6-1.2	Dense grey/dark brown fine sand, <5% fines, some shell/ coral grit	
OC5	S	0-0.3	Soft dark brown fine sand/shell, <5% fines, large shell fragments & shell grit common	
OC6	S	0-0.3	Loose dark brown fine sand/shell, <5% fines, large shell fragments & shell grit common, slight odour	
OC7	S	0-0.3	Loose red/ brown fine sand, 5- 10% fines, large shell & coral rubble fragments & seagrass	
OC7 (REP 1)	S	0-0.3	(<i>Halophila</i> spp.) rhizomes present	

Location	Depth Core (m)	Core Interval (m)	Sediment Description	Photograph
OC7 (REP 2)	S	0-0.3		
OC8	S	0-0.3	Soft red/brown fine sand, 5- 10% fines, shell grit & fibrous organic material	
OC9	S	0-0.3	Loose red/brown fine sand/shell, <5% fines, large shell fragments & shell grit common	
OC10	S	0-0.3	Loose dark brown fine sand, 5- 10% fines, large shell fragments & shell grit common	

4.1.2. Particle Size Distribution

Berth Pocket/Turning Circle

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 5** and descriptive statistics provided in **Table 11**. Further details of the laboratory analysis results for particle size distribution are provided in **Appendix C**.

The PSD analysis of the sediment samples from the berth pocket/turning circle indicate sediments are mainly composed of sand size particles ($\bar{x} = 83.5\%$). The proportion of sand fractions within samples are Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment Page 38 OMSB Pty Ltd 16WAU-0008/1701010

predominantly comprised of very fine to fine sand (\bar{x} = 71%). The proportion of clay or silt sized particles typically range from 0% to 18%. Sampling locations BP4 and TC1 comprise a higher proportion of coarser sediment fractions. Deeper sediments sampled to -1.5 m at TC1 contains a higher proportion of muds (49% clay and silt).

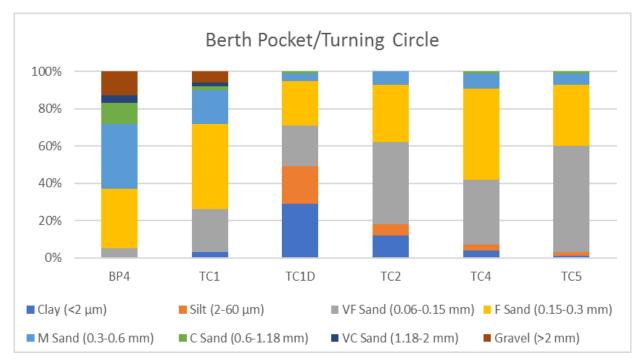


Figure 5 Sediment classification based on particle size for samples collected from the berth pocket/turning circle capital dredge area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse

Inner Channel

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 6** and descriptive statistics provided in **Table 11**. Further details of the laboratory analysis results for particle size distribution are provided in **Appendix C**.

The PSD analysis of the samples from the inner channel indicate sediments are mainly composed of sand size particles ($\bar{x} = 85\%$). The proportion of sand fractions within samples are predominantly comprised of fine to medium sand ($\bar{x} = 65\%$). The proportion of muds (clay or silt sized particles) typically range from 1% to 3% except site IC7, which comprises 16% muds and also contains a significantly higher proportion of very fine sand (45%). Gravel sized particles typically range from 4% to 25% within samples except site IC4, for which particle sizes greater than medium sand are not recorded. Deeper sediments sampled to -1.2 m at IC7 are comparable to the sediment characteristics of surficial samples collected from other inner channel locations with 2% muds and 83% sand, predominantly in the fine to medium size range (63%) and 15% gravel.

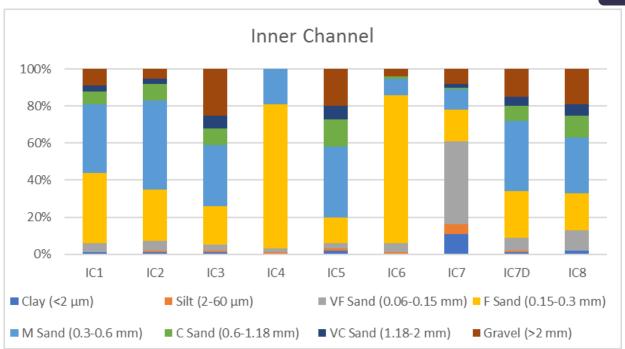


Figure 6 Sediment classification based on particle size for samples collected from the inner channel capital dredge area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse

Outer Channel

Sediment classifications based on the particle size distributions from each sample are shown in **Figure 7** and descriptive statistics provided in **Table 11**. Further details of the laboratory analysis results for particle size distribution are provided in **Appendix C**.

The PSD analysis of the samples collected from the outer channel indicate sediments are mainly composed of sand size particles (\bar{x} = 79.9%). The proportion of sand fractions within samples are predominantly comprising of very fine to fine sand (\bar{x} = 58%). The proportion of muds (clay or silt sized particles) typically range from 4% to 10% except samples OC3 and OC4, which comprise 0% and 18% muds, respectively. Gravel sized particles typically range from 9% to 25% within samples although nearshore sites OC1 and OC3 comprise less gravel (6% and 1%, respectively). Deeper sediments sampled to -1.0 m at OC2 and OC3 are relatively homogenous with the sediment characteristics of surficial samples collected from the same location.

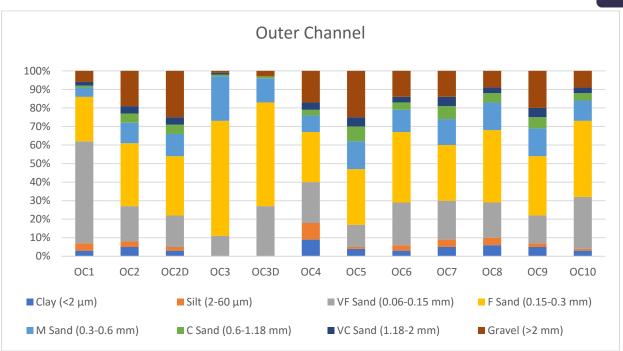


Figure 7 Sediment classification based on particle size for samples collected from the outer channel capital dredge area. Sand Definitions: VF= Very Fine, F= Fine, M= Medium, C= Coarse, VC= Very Coarse

Area	Statistic	Clay (%)	Silt (%)	Sand (%)	Gravel (%)
Berth Pocket/	Min	0	0	51	0
Turning Circle	Max	29	20	97	13
	Mean	8.2	5.2	83.5	3.2
	SD	11.1	7.6	16.7	5.4
	n	6	6	6	6
Inner Channel	Min	0	0	73	0
	Max	11	5	99	25
	Mean	2.1	1.2	85	11.7
	SD	3.4	1.5	9.4	8.5
	n	9	9	9	9
Outer Channel	Min	0	0	65	1
	Max	9	9	99	25
	Mean	3.8	2.8	79.9	13.5
	SD	2.5	2.5	10.8	8.1
	n	12	12	12	12

Table 11 Descriptive statistics of sediment PSD from the berth pocket/turning circle, inner channel and outer channel

4.1.3. Total Organic Carbon and Moisture Content

The TOC and moisture content of sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas are presented in **Table 12** and raw laboratory results are provided in **Appendix C**.

Sediment samples from the berth pocket/turning circle are composed of relatively low percentages of TOC (0.04–0.34%) and moisture content (18%-26.9%), with slightly higher moisture in sediments from sample location TC2 (37.9%). The deeper sample to -1.5 m from TC1 contains lower TOC, but has a comparable moisture content to that recorded for the surface sample.

 Table 12
 Total organic carbon and moisture content for sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredging areas

Area	Location	Total Organic Carbon (%)	Moisture Content (%)		
b	BP4	0.04	19.3		
urnir	TC1	0.33	23.6		
Berth Pocket/Turning Circle	TC1D	0.11	27.8		
Pock	TC2	0.22	37.9		
erth I	TC4	0.06	26.9		
B	TC5	0.07	18		
	IC1	0.02	12		
	IC2	<0.02	21		
-	IC3	<0.02	18.9		
Inner Channel	IC4	0.03	23		
Ch	IC5	0.06	18.4		
nner	IC6	<0.02	18.2		
_	IC7	0.14	31.2		
	IC7D	<0.02	23.3		
	IC8	0.12	17.9		
	OC1	0.11	25		
	OC2	0.05	15.3		
	OC2D	0.06	16		
	OC3	<0.02	22.2		
nel	OC3D	<0.02	23.6		
Outer Channel	OC4	0.66	25.2		
ter C	OC5	0.04	21.8		
no	OC6	0.1	25.6		
	OC7	0.06	17.7		
	OC8	0.08	29.5		
	OC9	0.07	25.4		
	OC10	0.04	26.8		

Sediment samples from the inner channel show very low percentages of TOC (<0.02–0.14%). Seven (7) of nine (9) locations sampled record less than 0.06%, with surface samples from IC7 and IC8 the exceptions. Moisture content of the sediment samples (dried at 103°C) is also low typically ranging from 12% to 23.3%, except the surface sample at IC7 (31.2%). The TOC (<0.02%) and moisture content (23.3%) in the deeper sample to -1.2 m from IC7 is comparable to surficial samples from most inner channel locations.

The percent TOC in samples collected from the outer channel is low, typically ranging from <0.02% to 0.11% except for site OC4 (0.66%). The average moisture content in surficial sediments is 23%, ranging from 15.3% at OC2 to 29.5% at OC8. Deeper sediments to -1.0 m from OC2 and OC3 contains comparable TOC and moisture content to the surface samples collected from the same locations.

4.2. Total Metals and Metalloids

The total metal concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel are presented in **Table 13**, raw laboratory results are presented in **Appendix C**.

The 95% UCL values for all metals within the berth pocket/turning circle, inner channel and outer channel areas are below the ISQG-Low and EIL screening levels with the exception of Arsenic in the outer channel. The 95% UCL for Arsenic exceeds the ISQG-Low (20 mg/kg) in the outer channel (29.5 mg/kg). However, the mean and median values for Arsenic in the outer channel are below the 80th percentile of natural background concentrations.

The arithmetic mean of total metal concentrations is below all HIL(s). The standard deviation of the sample data is less than 50% of the relevant HILs across all metals and no single value exceeds 250% of the relevant HILs.

The concentrations of some metals (i.e. Co, Cr, Cu, Fe, Ni, V, Zn) in a single sample (i.e. TC1D) were observed to be elevated either above the ISQG-Low and/or background concentrations. Arsenic exceeded the ISQG-Low in 10 of 12 individual samples within the outer channel, but all of these concentrations were close to the values recorded as natural background concentrations for offshore waters in this region (DEC 2006; Chevron 2010).

ISQG are not provided for Aluminium, Cobalt, Iron, Manganese and Vanadium. The median concentrations for these metals in all areas sampled are below background concentrations. However, Manganese exceeded the natural background concentrations in two (2) individual samples (OC5, OC7).

Results for the linear regression analysis of concentrations of Aluminium is shown in **Figure 8**. Linear regression shows a positive correlation between Aluminium and:

- a) The proportion of mud (clay and silt) fractions (r²=0.72);
- b) Cobalt (r²=0.63);
- c) Chromium (r²=0.9);
- d) Copper (r²=0.74):
- e) Iron (r²=0.75);
- f) Nickel (r²=0.87);
- g) Vanadium (r²=0.82) and
- h) Zinc (r²=0.87).

The concentrations of Aluminium do not correlate with the results for concentrations of Arsenic ($r^2=0.16$) or Manganese ($r^2=0.18$).

Table 13 Total metal concentrations (mg/kg) for the sediment samples in the Berth pocket/turning circle, inner channel and outer channel capital dredging areas. Red bold text identifies concentrations in excess of the ISQG-Low values (where provided). Blue shaded cells identify values above the natural background concentrations

Total Metals (mg/kg)	AI	Ag	As	Cd	Co	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	v	Zn
LoR	50	0.1	1	0.1	0.5	1	1	50	0.01	10	1	1	0.5	2	1
ISQG-Low	-	1	20	1.5	-	80	65	-	0.15	-	21	50	2	-	200
DEC (2006) ¹	12,600	<0.2	34	<0.1	8.8	31.8	9.5	36,800	<0.01		11.8	5		49.6	20.2
Chevron (2010) ²	10,800		29.7	<0.1	14.3	45.6	16.7	35,300	<0.01	618	20.1	9.1		63.2	32.4
EILs ³			80	-		(III) 540	340		-		680	1,800			17,000
HILs (D)			3,000	800	4,000	(VI) 3,000	250,000		4,000	40,000	4,000	1,500			400,000
Berth Pocket/Turning Circl	e														
BP4	1370	<0.1	16	<0.1	3	10	1.6	9600	<0.01	388	3.1	1.3	<0.5	24	5.2
TC1	3440	<0.1	12.9	<0.1	5	19.7	5.5	14200	<0.01	272	8.6	2.6	<0.5	28.4	13.7
TC1D	7030	<0.1	15.4	<0.1	16.8	52.9	27.6	38100	<0.01	591	26.5	8.7	<0.5	70.3	43
TC2	6300	<0.1	20	<0.1	8.6	32.8	11.5	25600	<0.01	297	13.6	5.4	<0.5	53.8	23.7
TC4	3730	<0.1	14.1	<0.1	5.2	21.1	5.6	16000	<0.01	221	8.7	4.1	<0.5	33.4	14.2
TC5	2540	<0.1	18.6	<0.1	6.2	23	5.3	16700	<0.01	330	8.4	3.3	<0.5	36.1	15.5
95% UCL	5866	<0.1	18.4	<0.1	11.5	38.8	23.6	28484	<0.01	457.4	18.1	6.4	<0.5	55.5	30
Median	3585	<0.1	15.7	<0.1	5.7	22.1	5.6	16350	<0.01	313.5	8.7	3.7	<0.5	34.8	14.9
Mean	4068	<0.1	16.2	<0.1	7.5	26.6	9.5	20033	<0.01	349.8	11.5	4.2	<0.5	41	19.2
Std Deviation	2185	N/A	2.7	N/A	4.9	14.8	9.4	10273	N/A	130.7	8.1	2.6	N/A	17.6	13.1
Inner Channel															
IC1	1300	<0.1	14.4	<0.1	3.5	9	1.7	12000	<0.01	399	3.4	1.3	<0.5	23.3	5.7
IC2	1350	<0.1	13.6	<0.1	3	9	1.8	7780	<0.01	348	3.1	1.2	<0.5	18.5	5.5
IC3	1340	<0.1	15.3	<0.1	3.4	9.7	2	9060	<0.01	433	3.8	1.4	<0.5	22.2	5.6
IC4	1090	<0.1	10.5	<0.1	2.5	9.4	1.5	6460	<0.01	172	3.4	1	<0.5	15.5	5.2

Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment OMSB Pty Ltd 16WAU-0008/1701010

Total Metals (mg/kg)	AI	Ag	As	Cd	Co	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	v	Zn
LoR	50	0.1	1	0.1	0.5	1	1	50	0.01	10	1	1	0.5	2	1
ISQG-Low	-	1	20	1.5	-	80	65	-	0.15	-	21	50	2	-	200
DEC (2006) ¹	12,600	<0.2	34	<0.1	8.8	31.8	9.5	36,800	<0.01		11.8	5		49.6	20.2
Chevron (2010) ²	10,800		29.7	<0.1	14.3	45.6	16.7	35,300	<0.01	618	20.1	9.1		63.2	32.4
EILs ³			80	-		(III) 540	340		-		680	1,800			17,000
HILs (D)			3,000	800	4,000	(VI) 3,000	250,000		4,000	40,000	4,000	1,500			400,000
IC5	1300	<0.1	15.3	<0.1	3.1	8.8	1.8	8330	<0.01	439	3	1.2	<0.5	22.3	4.9
IC6	1190	<0.1	8.44	<0.1	2.7	10.5	1.7	6280	<0.01	160	3.4	1.1	<0.5	14.4	5.9
IC7	7650	<0.1	18	<0.1	11	38.8	16.1	28600	<0.01	379	17.7	6	<0.5	59	26.6
IC7D	1380	<0.1	14.6	<0.1	3.1	9.5	1.9	7680	<0.01	413	3.9	1.3	<0.5	19	5.8
IC8	1530	<0.1	14.7	<0.1	3.4	12.9	2.1	10800	<0.01	304	4.2	1.7	<0.5	25.3	6.1
95% UCL	5090	<0.1	15.6	<0.1	5.6	19.1	10.3	15261	<0.01	404.6	12	4.1	<0.5	32.7	18.1
Median	1340	<0.1	14.6	<0.1	3.1	9.5	1.8	8330	<0.01	379	3.4	1.3	<0.5	22.2	5.7
Mean	2014	<0.1	13.9	<0.1	4	13.1	3.4	10777	<0.01	338.6	5.1	1.8	<0.5	24.4	7.9
Std Deviation	2117	N/A	2.8	N/A	2.7	9.7	4.8	6942	N/A	106.5	4.7	1.6	N/A	13.5	7
Outer Channel															
OC1	3870	<0.1	21.4	<0.1	8	27.8	6.3	23200	<0.01	316	11.1	3.8	<0.50	47.1	16
OC2	3930	<0.1	23.4	<0.1	11.7	24	6.3	20800	<0.01	383	9.8	4	<0.50	44	14.1
OC2D	3220	<0.1	29.2	<0.1	9.6	22.9	3.9	22200	<0.01	435	7.8	3.7	<0.50	46.5	12.2
OC3	1340	<0.1	11	<0.1	3.1	11.2	2	8580	<0.01	196	4	1.4	<0.50	19	7.4
OC3D	1350	<0.1	9.68	<0.1	2.9	11.1	2.2	7460	<0.01	171	4	1.3	<0.50	17.9	6.9
OC4	5440	<0.1	26	<0.1	10.4	34.7	9.2	28800	<0.01	430	12.6	5.6	<0.50	59.7	19.9
OC5	3650	<0.1	38.1	<0.1	11.7	22.9	4.5	24900	<0.01	625	8.2	4.1	<0.50	52.1	14
OC6	3600	<0.1	27.4	<0.1	11.8	26.9	4.1	28300	<0.01	418	9	4.7	<0.50	50.2	14.9

Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment OMSB Pty Ltd 16WAU-0008/1701010

Total Metals (mg/kg)	AI	Ag	As	Cd	Co	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	v	Zn
LoR	50	0.1	1	0.1	0.5	1	1	50	0.01	10	1	1	0.5	2	1
ISQG-Low	-	1	20	1.5	-	80	65	-	0.15	-	21	50	2	-	200
DEC (2006) ¹	12,600	<0.2	34	<0.1	8.8	31.8	9.5	36,800	<0.01		11.8	5		49.6	20.2
Chevron (2010) ²	10,800		29.7	<0.1	14.3	45.6	16.7	35,300	<0.01	618	20.1	9.1		63.2	32.4
EILs ³			80	-		(III) 540	340		-		680	1,800			17,000
HILs (D)			3,000	800	4,000	(VI) 3,000	250,000		4,000	40,000	4,000	1,500			400,000
OC7	4610	<0.1	33.4	<0.1	12.3	29.8	6.4	29900	<0.01	634	10.4	5.4	<0.50	56.5	17.2
OC8	4330	<0.1	27.4	<0.1	13.4	30.5	5	32800	<0.01	435	10.1	5.4	<0.50	53.2	18.1
OC9	3760	<0.1	26.6	<0.1	12.8	25.5	4.3	27100	<0.01	439	9.1	4.9	<0.50	48.4	16
OC10	3290	<0.1	29.2	<0.1	11.3	28.2	3.5	29500	<0.01	401	7.8	4.8	<0.50	51.7	14.2
95% UCL	4148	<0.1	29.5	<0.1	14.4	28.3	5.9	27818	<0.01	478.8	10	4.8	<0.5	52.5	16.3
Median	3705	<0.1	27	<0.1	11.5	26.2	4.4	26000	<0.01	424	9.1	4.4	<0.5	49.3	14.6
Mean	3533	<0.1	25.2	<0.1	9.9	24.6	4.8	23628	<0.01	406.9	8.7	4.1	<0.5	45.5	14.2
Std Deviation	1187	N/A	8.2	N/A	3.5	7.1	2	8081	N/A	138.6	2.6	1.4	N/A	13.4	3.9

¹ Estimated natural background concentrations for Onslow from DEC (2006)

² 80th percentile of nine nearshore (i.e. 2km) sites from Ashburton North to Coolgra Point sampled in the pilot baseline investigation in Chevron (2010)

³ Commercial/industrial = Ecological Investigation Level Calculation Spreadsheet (2010) using cation exchange capacity of 34.5 cmolc/kg dwt recorded from one site, mean pH of 9.75, mean TOC of 0.13% & mean clay content 4.2%. Background concentrations based on Chevron (2010). Aged metal concentrations are presented for EIL values.

y = 374.81x + 534.56 R² = 0.6255

12 14 16 18

20

20

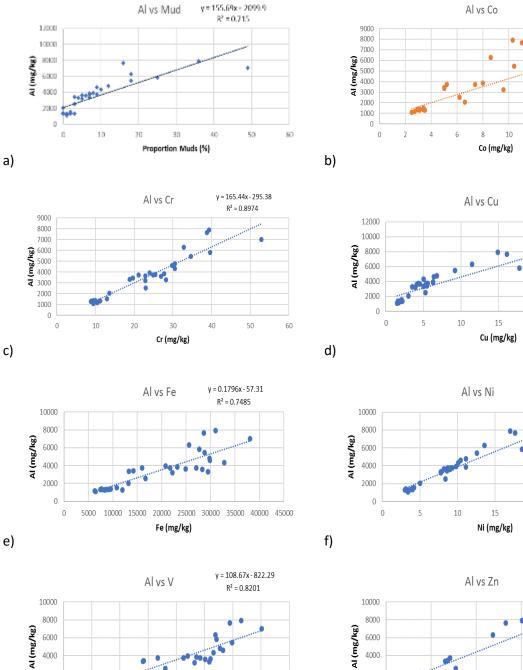
y = 342.1x + 431.14

R² = 0.8677

y = 297.14x + 1625.9

R² = 0.7398

25


25

y = 197.91x+434.94

R² = 0.8696

30

30

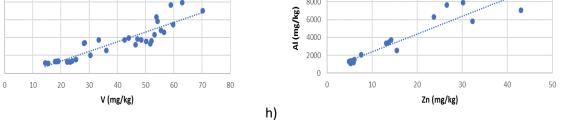


Figure 8 Linear regression showing strong positive correlation between concentrations of Aluminium and a) proportion of muds (clay and silts), b) Cobalt, c) Chromium, d) Copper, e) Iron, f) Nickel, g) Vanadium and h) Zinc

4000

2000

g)

0

4.3. Organic Compounds

4.3.1. Total Petroleum Hydrocarbons

The TPH results for all the samples from the berth pocket/ turning circle, inner channel and outer channel capital dredge areas are shown in **Table 14** and are presented in full in **Appendix C**. TPH results are either below the laboratory LoR (<0.3/0.5 mg/kg), or are recorded at very low concentrations (i.e. <6 mg/kg). Detectable concentrations are only recorded within the C16-C34 carbon fractions. The 95% UCL is below the recommended Sediment Quality Guidelines (SQGs) from Simpson et al. (2013) and ESLs, all calculations are below and HSLs (D) (NEPM 2011).

4.3.2. Benzene, Toluene, Ethylbenzene, Xylene

The BTEX results for all samples from the berth pocket/ turning circle, inner channel and outer channel capital dredge areas are shown in **Table 14** and are presented in full in **Appendix C**. All concentrations in samples are below the LoR and therefore all relevant ESL and HSLs (D) are met.

4.3.3. Tributyltin

The TBT results for all samples from the berth pocket/ turning circle, inner channel and outer channel are shown in **Table 14** and are presented in full in **Appendix C**. Results from all monitoring locations are either at or below the LoR. Two (2) samples recorded TBT concentrations at the limit of reporting (BP4 and OC3). Concentrations at the limit of reporting (0.5 μ g Sn/kg) normalised to 1% TOC create a value of 2.5 μ g Sn/kg, which is below the NAGD (2009) ISQG-Low values.

4.3.4. Polycyclic Aromatic Hydrocarbons

The PAHs results for all parameters are below LoR in all samples tested and below the ISQG-Low concentrations from ANZECC/ARMCANZ (2000), ISQG-Low concentrations from NAGD (2009) and HILs (D) (NEPM 2011). The results are presented in full detail in **Appendix C**.

Table 14 Total Petroleum Hydrocarbons, BTEX and TBT concentrations in sediment samples from the berth pocket/turning circle,
inner channel and outer channel capital dredge areas. Blue shaded areas presents results above the LoR.

Org		TPH (mg/kg)			BTEX	((mg/kg)		TBT		
	C6- C10	C10- C16	C16- C34	C34- C40	Benzene	Toluene	Ethylbenzene	Xylene	(μg Sn/kg)		
LoR	3	3	3	5	0.2	0.2	0.2	0.5	0.5		
ESLs ¹	215	170	17	00	75	135	165	180			
HSLs ¹	260	NL	Ν	L	3			230			
SQG ²		2	80		-	-	-	-	9		
Berth P	Berth Pocket/Turning Circle										
BP4	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	0.5 (2.5) ²		
TC1	<3	<3	3	<5	<0.2	<0.2	<0.2	<0.5	<0.5		
TC1-1	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	<0.5		
TC2	<3	<3	4	<5	<0.2	<0.2	<0.2	<0.5	<0.5		
TC4									<0.5		
Inner C	nner Channel										
IC1	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	<0.5		
IC2	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5			

Org		TPH (mg/kg)			BTEX	(mg/kg)		TBT (μg Sn/kg)
	C6- C10	C10- C16	C16- C34	C34- C40	Benzene	Toluene	Ethylbenzene	Xylene	(µg Shirkg)
LoR	3	3	3	5	0.2	0.2	0.2	0.5	0.5
ESLs ¹	215	170	17	00	75	135	165	180	
HSLs ¹	260	NL	Ν	L	3			230	
SQG ²		2	80		-	-	-	-	9
IC3									<0.5
IC4	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	<0.5
IC5	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	<0.5
IC6									<0.5
IC7	<3	<3	5	<5	<0.2	<0.2	<0.2	<0.5	<0.5
Outer C	hannel								
OC1	<3	<3	5	<5	<0.2	<0.2	<0.2	<0.5	<0.5
OC2									<0.5
OC3	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	0.5 (2.5) ²
OC4	<3	<3	<3	<5	<0.2	<0.2	<0.2	<0.5	<0.5
OC5	<3	<3	4	<5	<0.2	<0.2	<0.2	<0.5	<0.5
OC6									<0.5
OC7	<3	<3	5	<5	<0.2	<0.2	<0.2	<0.5	<0.5
OC8									<0.5
OC9									<0.5
OC10	<3	<3	5	<5	<0.2	<0.2	<0.2	<0.5	<0.5

¹ Management Limits and HSLs for Direct Contact not shown as all values below ESLs and HSLs.

² Revised SQG from Simpson et al. (2013)

 $^{\rm 3}$ The concentration in brackets has been normalised to 1% TOC

4.4. Nutrients

The results for all samples tested from the berth pocket/ turning circle, inner channel and outer channel capital dredge areas are shown in **Table 15** and are presented in full in **Appendix C**. There are no relevant guidelines for total nutrients in sediments. Inorganic forms of nutrients in sediments (NO₂, NO₃, NH₄, FRP) from all samples tested are below the LoR, with the exception of FRP in one (1) sample at OC2 which recorded concentrations at the LoR. The level of total TKN/TN and TP reported is therefore likely to be entirely organically bound and representative of the low total organic concentrations in sediments which must be broken down into inorganic forms to be available for uptake by plants. Concentrations ranging from 30 to 360 mg/kg and 43 to 293 mg/kg, respectively, are similar to low concentrations of organic material reported in previous sampling within Beadon Creek (Oceanica 2010, BMT Oceanica 2014).

Table 15 Nutrient concentrations in sediment samples from the berth pocket/turning circle, inner channel and outer channel capital dredge areas.

Analyte	тос	NH4	NO-2	NO-3	NOx	TKN	TN	ТР	FRP		
LoR	(%)	20	0.1	0.1	0.1	20	20	2	0.1		
Berth Pocket/ Turning Circle											
BP4	0.04	<20	<0.1	<0.1	<0.1	40	40	98	<0.1		
TC1	0.33	<20	<0.1	<0.1	<0.1	50	50	113	<0.1		
TC2	0.22	<20	<0.1	<0.1	<0.1	120	120	126	<0.1		
Inner Channel											
IC1	0.02	<20	<0.1	<0.1	<0.1	30	30	75	<0.1		
IC2	<0.02	<20	<0.1	<0.1	<0.1	50	50	96	<0.1		
IC5	0.06	<20	<0.1	<0.1	<0.1	150	150	162	<0.1		
IC7	0.14	<20	<0.1	<0.1	<0.1	410	410	188	<0.1		
IC8	0.12	<20	<0.1	<0.1	<0.1	100	100	126	<0.1		
Outer Channel											
OC1	0.11	<20	<0.1	<0.1	<0.1	360	360	43	<0.1		
OC2	0.05	<20	<0.1	<0.1	<0.1	140	140	276	0.1		
OC3	<0.02	<20	<0.1	<0.1	<0.1	30	30	84	<0.1		
OC4	0.66	<20	<0.1	<0.1	<0.1	180	180	195	<0.1		
OC7	0.06	<20	<0.1	<0.1	<0.1	200	200	256	<0.1		
OC10	0.04	<20	<0.1	<0.1	<0.1	160	160	293	<0.1		

4.5. Acid Sulfate Soils

4.5.1. Field Screening Tests

The results from the field screening test undertaken on samples from the berth pocket/ turning circle, inner channel and outer channel are presented in **Table 16**. Values across all sites for pH_F range from 7.78 to 8.93 reflecting seawater influence (pH 8.2) and possibly dissolved carbonates typical of sediments in marine systems. Values for pH_{FOX} range from 3.81 to 7.94. One (1) sample from the inner channel (IC5D) and three (3) samples from the outer channel (OC1, OC4, OC4D) record pH_{FOX} values <6. The change in values between pH_F and pH_{FOX} ranges from 0.22 to 3.97. A change of >2 pH units is calculated in three (3) samples from the outer channel (OC1, OC4, OC4D). Reaction ratings are ranked from 'Low' to 'Extreme' across all sites. One (1) sample from the berth pocket/turning circle (TC1D), one (1) sample from the inner channel (IC5DD) and five (5) samples from the outer channel (OC1, OC4, OC4D). Reaction ratings are ranked from 'Low' to with a 'High' or 'Extreme' reaction. One sample collected from the intertidal area within the turning circle was not tested and consequently an evaluation for PASS at this location has not been conducted.

Based on the results and classification used to identify the presence of sulphides, a total of 17 samples from the capital dredge area were selected for further Chromium Reducible Sulfur Suite analysis in the laboratory; five (5) samples from within the berth pocket/turning circle, five (5) samples from inner channel and seven (7) samples from the outer channel.

Table 16 PASS field screening test results.

Location	pH⊧	рН ғох	ΔрН	Reaction ¹	Result ²	Reason
Berth Pocket/	/ Turning Circle			•		
BP1	8.78	6.65	2.13	L	Р	>2 ΔpH
BP2	8.26	6.56	1.7	L	U	
BP4	8.6	7.1	1.5	L	U	
TC1	8.57	6.91	1.66	L	U	
TC1D	8.53	7.01	1.52	Н	Р	H reaction
TC2	8.29	6.56	1.73	L	U	
TC2-R2	8.88	6.67	2.21	М	Р	>2 ∆pH
TC2-R3	7.91	6.82	1.09	М	U	
TC3	8.77	6.7	2.07	L	Р	>2 ΔpH
TC4	8.18	6.68	1.5	L	U	
TC5		١	N/A		Р	Not tested
Inner Channe	1					
IC1	8.6	6.62	1.98	L	U	
IC1 R2	8.72	7.31	1.41	L	U	
IC1-R3	8.76	7.01	1.75	L	U	
IC1D	8.87	6.74	2.13	L	Р	>2 ΔpH
IC2	8.87	7.87	1	L	U	
IC3	8.92	6.72	2.2	L	Р	>2 ΔpH
IC3D	8.9	6.94	1.96	L	U	
IC4	8.32	7.36	0.96	L	U	
IC5	8.3	6.59	1.71	L	U	
IC5D	7.78	3.81	3.97	М	Р	рН _{FOX} <6, >2 ∆рН
IC5DD	7.92	7.28	0.64	Х	Р	X reaction
IC6	8.22	7.32	0.9	L	U	
IC7	8.44	7.3	1.14	L	U	
IC7D	8.58	7.18	1.4	L	U	
IC8	8.73	6.37	2.36	L	Р	>2 ∆pH,
IC8D	8.28	6.78	1.5	L	U	
Outer Channe	el		•	•		
OC1	7.93	5.3	2.63	Н	Р	pH _{FOX} <6 >2 ΔpH, H reaction
OC1D	8.2	6.61	1.59	L	U	
OC2	8.93	7.01	1.92	L	U	
OC2D	8.8	7.08	1.72	М	U	
OC3	8.84	7.11	1.73	L	U	

Location	pH⊧	рН _{FOX}	ΔрΗ	Reaction ¹	Result ²	Reason
OC3D	8.91	7.23	1.68	L	U	
OC4	8.5	5.32	3.18	М	Р	pH _{FOX} <6, >2 ΔpH
OC4D	8.23	5.34	2.89	М	Р	>2 ΔpH, pH _{FOX} <6
OC5	8.47	7.64	0.83	Н	Р	H reaction
OC6	8.5	7.65	0.85	Н	Р	H reaction
OC7	8.16	7.94	0.22	Н	Р	H reaction
OC7-R2	8.15	7.59	0.56	М	U	
OC7-R3	8.33	7.94	0.39	М	U	
OC8	8.19	7.41	0.78	М	U	
OC9	8.56	7.85	0.71	Н	Р	H reaction
OC10	8.43	7.73	0.7	М	U	

1 Reaction ratings: L= Low, M=Medium, H=High, X=Extreme, V=Volcanic

2 Result: P=PASS, U=PASS Unlikely

4.5.2. Chromium Reducible Sulfur Suite

The chromium reducible sulfur suite results from the berth pocket/turning circle, inner channel and outer channel capital dredge areas are presented in **Table 17**, results are presented in full in **Appendix C**. The pH_{KCI} in all the sediment samples is greater than 6.5 and therefore AASS are not present. Four (4) samples from the berth pocket/turning circle, three (3) samples from the inner channel and three (3) samples from the outer channel record sulfur values (%S (S_{Cr})) exceeding the Action Criteria.

To determine the net acidity of the PASS sediment samples, ABA was conducted and the findings presented in **Table 17**. The results indicate that the potential acidity of sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments.

Table 17 Chromium reducible sulfur suite results for sediment samples tested from the berth pocket/turning circle, inner channeland outer channel capital dredge areas.

Location	рНкс∟	TAA (mol H+/t)	%S (S _{Cr})	Potential acidity (mol H+/t)	ANC _{BT} (%CaCO ₃) ²	ANC (mol H+/t)	FF	Net acidity (mol H+/t) ³
Action criteria (%S) ¹			0.03	18				
Berth Pocket/ Turn	ing Circle	e						
BP1	9.6	<2	0.073	45	9.06	1810	1.5	-1162
TC1D	9.4	<2	0.162	101	10.2	2030	1.5	-1252
TC2-R2	9.4	<2	0.105	66	13.5	2700	1.5	-1734
TC3	9.5	<2	0.083	52	11.8	2350	1.5	-1514
TC5	9.9	<2	<0.005	<10				
Inner Channel								

IC1D	9.8	<2	0.005	<10				
IC3	9.9	<2	0.005	<10				
IC5D	9.1	<2	0.489	305	6.10	1220	1.5	-508
IC5DD	9.5	<2	0.052	32	22.1	4410	1.5	-2908
IC8	9.7	<2	0.076	47	40.3	8060	1.5	-5373
Outer Channel								
OC1	9.5	<2	0.191	119	23.5	4700	1.5	-3014
OC4	9.2	<2	0.577	360	31.5	6300	1.5	-3840
OC4D	9.1	<2	0.567	353	18.8	3750	1.5	-2147
OC5	9.8	<2	0.008	<10				
OC6	9.8	<2	0.008	<10				
OC7	9.8	<2	<0.005	<10				
OC9	9.8	<2	0.005	<10				

¹ Values in red exceed the Action Criteria for disturbance of >1000 tonnes of soils (DER 2015). These sediments are classified as PASS. ² ANC is the acid neutralising capacity of the sediments

³ A positive number indicates excess acid. A negative number indicates excess neutralising capacity.

4.6. QA/QC Assessment

4.6.1. Laboratory QA/QC

The laboratory quality control report and the laboratory QA/QC compliance assessment report are provided in **Appendix B**. The findings of these results determined:

- No Method Blank outliers occur;
- No Duplicate outliers occur;
- No Laboratory Control outliers occur;
- Matrix Spike outliers exist;
- Surrogate recovery outliers exist;
- All samples were submitted and tested within analysis holding time compliance; and
- The number of QC samples was tested in accordance with or greater than guidance provided in NEPM (2012).

No results were qualified as unusable during the data review process due to undetermined matrix spike outliers, or to low surrogate recovery outliers.

Matrix spike recoveries were not determined for Aluminium and Iron in two (2) interlaboratory split samples (TC2, OC3D) due to the background level being greater than or equal to four times the spike level. NAGD (2009) recommends matrix spike data should not be reported if the naturally occurring levels in the sample are greater than twice the spiking level. Therefore, the matric spike recoveries for Aluminium and Iron can be omitted from reported results.

Surrogate recovery outliers for the PAH analytes Anthracene and 4-Terphenyl in two (2) (BP4, OC7) and three (3) (TC2, IC7, OC7) samples, respectively, were $\leq 3.1\%$ lower than the ideal recovery rates. Given the minor variance below ideal recovery rates and that these analytes were not detectable above the LoR in any samples, it is considered unlikely that gross errors have occurred during the laboratory testing procedure which has significantly affected interpretation of the results.

4.6.2. Field QA/QC

The sediment vibracoring was selected as the appropriate methodology to collect sediment cores based on review of historical data indicating coarse or firm sediment present and sampling methods undertaken for the Wheatstone Project using a manually driven piston coring device encountering refusal at a depth of less than 0.4 m at 60 locations. The vibracoring method used was found to be limited in the depth due to surface wave action, although was successful in achieving cores to a depth of -2.2 m. Given the large size and abundance of shell grit and coral gravel encountered, which was often observed obstructing the core catcher on retrieval at a few locations, it is unlikely other sampling techniques would have provided the depth of cores recovered using the vibracorer.

Mechanical failure of the concrete vibrator hired in Onslow occurred during coring at some sites (i.e. IC7) where a deeper core may have been achieved. The vibracorer was replaced on the 17 March 2017. The sediment grab was also limited in sampling surface sediments with the shell grit and coral gravel often being caught between the buckets preventing complete closure and samples were lost on retrieval. Multiple grabs were required and samples homogenised to recover a suitable sample size at many locations in the outer channel.

Physical Sediment Characteristics

The RPD results for the physical sediment characteristics data for the field quality control samples are shown in **Table 18**, results are presented in full in **Appendix B**. The RPD of ±35% in field splits and ±50% in field replicates are not met between many split samples for mud (silt and clay), gravel sized fractions and TOC. This difference is likely associated with minor changes in small values calculating a large proportional change. Despite being outside the RPD, results were relatively consistent between the primary and secondary laboratory. The RPD for sand and moisture met the RPD across all samples. No results were qualified as unusable during the data review process due to RPDs not being met. Physical sediment characteristics are commonly used as estimates rather than precise values, so RPDs are not often required for these tested analytes.

Analytes	Clay (<2 µm)	Silt (2-60 µm)	Sand (0.06-2.00 mm)	Gravel (>2mm)	Cobbles (>6cm)	TOC (%)	Moisture (%)
Field Split	Triplicates						
TC1	3	0	91	6	0	0.33	23.6
TC1-T2	3	4	85	8	0	0.08	21.7
TC1-T3	2	2	89	7	0	0.16	19.2
RPD (%)	37.5	100.0	6.8	28.6	0.0	131.6	20.5
TC1D	29	20	51	0	0	0.11	27.8
TC1D-T2	21	9	68	2	0	0.22	22.9
TC1D-T3	22	14	62	2	0	0.42	22.2
RPD (%)	33.3	76.7	28.2	150.0	0.0	124.0	23.1
OC1	3	4	87	6	0	0.11	25
OC1-T2	5	4	84	7	0	0.22	24.7
OC1-T3	4	6	80	10	0	0.33	21.7
RPD (%)	25.0	42.8	8.4	52.2	0.0	100.0	13.9

Table 18 Relative percent difference (RPD) values for the physical sediment characteristics in the field quality control samples.Blue shaded cells identify values above the specified RPD.

Analytes	Clay (<2 µm)	Silt (2-60 µm)	Sand (0.06-2.00 mm)	Gravel (>2mm)	Cobbles (>6cm)	TOC (%)	Moisture (%)
Field Repl	icates						
TC2	12	6	82	0	0	0.22	37.9
TC2-R2	13	12	75	0	0	0.03	39.7
RPD (%)	-8.00	66.7	8.9	0.0	0.0	152.0	4.6
IC1	1	0	90	9	0	0.02	12
IC1-R2	0	0	71	29	0	0.02	11
RPD (%)	200.0	0.0	23.6	105.3	0.0	0.0	8.7
OC7	5	4	77	14	0	0.06	17.7
OC7-R2	7	5	70	18	0	0.08	24.6
RPD (%)	33.3	22.2	9.5	25.0	0.0	28.6	32.6

Metals and Metalloids

The RPD results for metal concentrations from the field quality control samples are shown in **Table 19**, results are presented in full in **Appendix C**.

The RPD of ±35% is not met for Copper from split samples from TC1D (42%) in the berth pocket/ turning circle, and for Nickel also from TC1D (40.4%) as well as OC1 (43.6%) in the outer channel. NAGD (2009) recommends that results which fall outside these limits should be identified as estimates rather than precise values. However, the concentration of silt in sample TC1D (20%) is substantially greater than in split samples (TC1D-T2=9%, TC1D-T3=14%) and it is likely elevated concentrations of Copper and Nickel recorded in split samples at this location are due to differences in grain size. Similarly, Nickel concentrations recorded in OC1 split samples correlates with the proportion of sand size fractions. Closer inspection of the PSD results for split samples from OC1 indicates these differences are largely attributable to the very fine sand grainsizes (0.06-0.15 mm).

The RPD of $\pm 50\%$ is not met for Arsenic (57%), Cobalt (61%) and Copper (55%) from a replicate sample collected from IC1 in the inner channel. The proportion of gravel in sediments between IC1 (9%) and IC1-R2 (29%) is substantially different, indicating minor values higher than the ideal percent differences are likely due to heterogeneity in PSD of replicate samples.

No results were qualified as unusable during the data review process due to RPDs not being met. Results indicate higher than the ideal percent differences are likely due to heterogeneity of PSD in samples. A positive correlation for these metals and fine particle sizes has been demonstrated in **Figure 8**, with the exception of Arsenic. Elevated concentrations of Arsenic found within replicate samples at IC1 are well within the variability of results recorded during natural background concentrations and are likely to be based on natural origin.

Organic Compounds

Almost all results for organic compounds in field quality control samples are below the LoR, except for low values (<7 mg/kg) recorded in the C16-C34 carbon fractions for total petroleum hydrocarbons in samples collected from TC1 (split), TC2 and OC7 (replicates). These results were within the RPD of ±35% and ±50%, respectively. Therefore, the RPD results for organic concentrations are not presented, although results are presented in full in **Appendix B**.

Analytes	AI	Ag	As	Cd	Со	Cr	Cu	Fe	Hg	Mn	Ni	Pb	Sb	v	Zn
Field Split	Triplicat	es													
TC1	3440	<0.1	12.9	<0.1	5	19.7	5.5	14200	<0.01	272	8.6	2.6	<0.50	28.4	13.7
TC1-T2	3350	<0.1	12.6	<0.1	5	18.8	5	13300	<0.01	280	7.8	2.5	<0.50	28.1	13.1
TC1-T3			12.0	<0.1		19.0	5.1		<0.01		6.7	2.6			
RPD (%)	2.7	0.0	7.2	0.0	0.0	3.7	7.7	6.6	0.0	2.9	24.7	0.0	0.0	1.1	4.5
TC1D	7030	<0.1	15.4	<0.1	16.8	52.9	27.6	38100	<0.01	591	26.5	8.7	<0.50	70.3	43
TC1D-T2	5820	<0.1	15.8	<0.1	13.1	39.6	17.8	27700	<0.01	535	18.6	6.7	<0.50	54.2	32.3
TC1D-T3			17.0	<0.1		44	23		<0.01		18	6.7			
RPD (%)	18.8	0.0	10.0	0.0	24.8	29.2	43.0	31.6	0.0	10.0	40.4	27.2	0.0	25.9	28.4
OC1	3870	<0.1	21.4	<0.1	8.0	27.8	6.3	23200	<0.01	316	11.1	3.8	<0.50	47.1	16
OC1-T2	3740	<0.1	19.8	<0.1	7.4	24.9	5.4	21700	<0.01	326	9.3	3.5	<0.50	42.6	15
OC1-T3			20.0	<0.1		24.0	5.7		<0.01		7.1	3.4			
RPD (%)	3.4	0.0	7.8	0.0	7.8	14.9	15.5	6.7	0.0	3.1	43.6	11.2	0.0	10.0	6.5
Field Repl	icates														
TC2	6300	<0.1	20	<0.1	8.6	32.8	11.5	25600	<0.01	297	13.6	5.4	<0.50	53.8	23.7
TC2-R2	7900	<0.1	23.2	<0.1	10.3	39.4	14.9	31000	<0.01	349	17	6.8	<0.50	63	30.2
RPD (%)	22.5	0.0	14.8	0.0	18.0	18.3	25.7	19.1	0.0	16.1	22.2	23.0	0.0	15.8	24.1
IC1	1300	<0.1	14.4	<0.1	3.5	9	1.7	12000	<0.01	399	3.4	1.3	<0.50	23.3	5.7
IC1-R2	2050	<0.1	25.9	<0.1	6.6	13.6	3	13200	<0.01	419	5	2.1	<0.50	30.5	7.6
RPD (%)	44.8	0.0	57.1	0.0	61.4	40.7	55.3	9.5	0.0	4.9	38.1	47.1	0.0	26.8	28.6
OC7	4610	<0.1	33.4	<0.1	12.3	29.8	6.4	29900	<0.01	634	10.4	5.4	<0.50	56.5	17.2
OC7-R2	4790	<0.1	29	<0.1	11.4	30.5	6.8	29800	<0.01	552	11.1	5.6	<0.50	55.5	17.7
RPD (%)	3.8	0.0	14.1	0.0	7.6	2.3	6.1	0.34	0.0	13.8	6.5	3.6	0.0	1.8	2.9

Table 19 Relative percent difference (RPD) values for the total metal concentrations in the field quality control samples. Blue shaded cells identify values above the specified RPD.

Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment

OMSB Pty Ltd 16WAU-0008/1701010

Nutrients

The RPD results for nutrients from the field quality control samples are shown in **Table 20**, results are presented in full in **Appendix B**. The RPD of $\pm 35\%$ in field splits is not met in two (2) samples for TKN/TN (TC1, OC1) and one (1) sample for TP (OC1). The RPD of $\pm 50\%$ in field replicates is not met in one (1) sample (TC2) for TKN/TN. All samples which did not meet RPDs also did not meet the relevant RPD for TOC. There does not appear to be an obvious trend between samples tested from the primary and secondary laboratory, indicating the variability observed is likely reflective of natural variability of test results rather than a laboratory processing error. In accordance with NAGD (2009), these results indicate nutrient concentrations should be identified as estimates rather than precise values.

Analyte	TKN/TN	ТР
Field Splits		L
TC1	50	113
TC1-T2	50	122
TC1-T3	100	140
RPD (%)	75.0	7.2
TC1D	200	216
TC1D-T2	190	212
TC1D-T3	235	250
RPD (%)	21.6	16.8
OC1	360	43
OC1-T2	200	167
OC1-T3	170	190
RPD (%)	78.1	110.3
Field Replicates		
TC2	120	126
TC2-R2	450	182
RPD (%)	115.8	36.4
IC1	30	75
IC1-R2	40	100
RPD (%)	28.6	28.6
OC7	200	256
OC7-R2	260	240
RPD (%)	26.1	6.5

Table 20 Relative percent difference (RPD) values for nutrients in the field quality control samples. Blue shaded cells identify values above the specified RPD.

Acid Sulfate Soils

The RPD results for PASS field screening tests from the field quality control samples are shown in **Table 21**, results are presented in full in **Appendix B**. The RPD of ±50% in field replicates are not met for the change in pH values in samples from TC2 in the turning circle and OC7 in the outer channel. This difference is likely associated with minor changes in small values calculating a large proportional change. However, results for Onslow Marine Support Base: Stage 2 Capital Dredging Sediment Quality Assessment Page 57 OMSB Pty Ltd

the change in pH have been used as estimates rather than precise values and a conservative approach of >2 units was adopted for interpretation of which samples should be investigated further using the chromium sulfer suite tests to characterise the risk of PASS.

Site	TC2	TC2-R2	TC2-R3	RPD	IC1	IC1-R2	IC1-R3	RPD	OC7	OC7-R2	OC7-R3	RPD
pH⊧	8.29	8.88	7.91	11.60	8.6	8.72	8.76	1.84	8.16	8.15	8.33	2.19
рН _{FOX}	6.56	6.67	6.82	3.89	6.62	7.31	7.01	9.89	7.94	7.59	7.94	4.47
ΔрН	1.73	2.21	1.09	66.80	1.98	1.41	1.75	33.27	0.22	0.56	0.39	87.18

Table 21 Relative percent difference (RPD) values for field screening test in the field quality control samples

5. Discussion

5.1. Preliminary Site Investigation

The preliminary site investigation reviewed historical sediment investigations and potential sources of contaminants and identified that, with the exception of TBT, there are no known contaminants of potential concern within the berth pocket/turning circle, inner channel and outer channel areas. Therefore, all areas were classified as being as *"probably clean"*.

Capital dredging for the OMSB Project is undertaken in two (2) stages. In February 2014, BMT Oceanica referred a Capital Dredging Environmental Impact Assessment (DEIA) to the EPA under Part IV of the *Environmental Protection Act 1986* (EP Act) for Stage 1 capital dredging and construction of a land-backed wharf (BMT Oceanica 2014). The EPA provided advice of a decision to not assess the proposal in May 2014. Stage 1 capital dredging commenced in November 2016 and was completed days prior to implementing the field program for the detailed site investigation.

Sediment sampling undertaken in 2012 for Stage 1 collected sediment cores to 3 m from 15 locations within the berth pocket/turning circle and included an area immediately to the south for a proposed community boating precinct. Contaminants in sediments were found to not pose a risk to the local environment except for an area with elevated TBT at the southern boundary of the berth pocket. A more intensive assessment undertaken in 2016 defined the areas of TBT contamination within four (4) areas of the sampling cell to 1.5 m depth (Oceanica 2016). TBT concentrations in samples below 1.5 m depth met ISQG-Low values. It was hypothesised that the elevated TBT is related to a vessel grounding incident that had occurred at this location in 2009 or 2010 (BMT Oceanica 2014a). The management and monitoring program undertaken during Stage 1 capital dredging works included measures to manage the potential impacts of elevated TBT, including: containing known contaminated material in a settlement pond then moving to the reclamation area and capping using clean dredge material, diluting the dredge slurry to ensure dredge return water will meet the 90% species protection level, monitoring the water quality of the supernatant water and Beadon Creek waters, and sentinel oyster monitoring.

The identified TBT contaminated area only slightly encroaches into the proposed Stage 2 capital dredge footprint at the southern end of the proposed berth pocket and was found in surface sediments only within this area. Between 1.5 m and 3.5 m of surface sediment material has since been dredged and buried within the reclaimed wharf land-fill to mitigate the potential impacts of TBT. In addition, elevated TBT in supernatant water, Beadon Creek waters and in tissue of sentinel oysters was not detected during stage 1 dredging works. It is therefore considered sediment sampling undertaken for stage 1 supports the conclusion that the layer of potentially contaminated dredge material has been removed and the underlying natural geological materials are uncontaminated. Dredging of this material is therefore not likely to pose a risk to the local environment. These findings have been considered for development of a sampling design for the stage 2 field program.

5.2. Detailed Site Investigation

A detailed site investigation of sediments within the berth pocket/turning circle, inner channel and outer channel from the proposed Stage 2 capital dredge footprint was undertaken between the 15-18 March 2017. Sediment sampling was conducted under the guidance of the Oceanica (2016), DER (2014), NEPM (2013) and NAGD (2009). The vibracoring method was considered successful in collecting sediment cores down to a depth of -2.2 m in coarse firm sediment in which a manually driven piston corer used for the Wheatstone Project encountered refusal at a depth of less than -0.4 m at 60 locations. However, the coring method was limited in deep areas due to wave action and surface currents. The grab was used as a surrogate technique for sample collection. Sampling was limited by the abundant shell grit and coral gravel in surface sediments,

although sufficient sediment samples were obtained from all sites for testing at the laboratory. A summary of the results from the detailed site investigation is described below.

5.2.1. Sediment Properties

Surficial sediment samples from the berth pocket/turning circle, inner channel and outer channel are predominantly composed of brown fine sand with shelly grit. Sediments within the inner channel generally contain a less proportion of very fine sand and the outer channel samples are typically composed of higher gravel content consisting of shells and coral rubble. Analysis of PSD determined sand comprises an average of 83.5% in the berth pocket/turning circle, 85% in the inner channel and 79.9% in the outer channel. Sediments are typically low in moisture content and organic carbon characteristic of sediments with low fines content.

The samples from the berth pocket/turning circle are predominantly comprised of very fine to fine fractions (71%). Core samples tested at locations which have recently been dredged to 2.6 m CD (BP4, TC1) comprise a higher proportion of coarse sediment fractions in surface sediments (i.e. gravel 13% & 6%, respectively) which were absent from other samples in the berth pocket/turning circle. However, the coring process compared with surface grab samples may have contributed to collecting a higher proportion of coarse sediments at these locations. Higher clay content (21%-27% from split samples) in the deep sample (-1.5 m) at TC1D suggests clay contents may be present in higher quantities in the underlying geologic material. However, similar clay contents found in three (3) borehole samples between 2.5 m to 4.8 m depth from the geotechnical investigation undertaken in the Berth Pocket in July 2014 indicate higher clay contents may be an irregular feature of this sediment layer between the engineering geological units of the Marine/Estuarine Deposits and upper Onslow Red Beds. The core from BP4 encountered refusal at a relatively shallow depth (-0.7 m) on what is possibly low to high strength calcarenite/limestone cap rock consistent with the outcrops of the Tantabiddi Member of Bundera Calcarenite, which has not been found to extend below 2.5 m CD (CH2MHILL 2014). The low moisture and organic content with sandy sediments in samples from Beadon Creek suggest muddy fine sediment inputs are efficiently transported through the channel and are likely deposited at the entrance to the creek, along the bank or in the upper creek bed.

The samples from the inner channel are slightly coarser than sediment from the berth pocket/turning circle, comprising 65% fine to medium sand fractions and typically a lower proportion of muds and very fine sands (i.e. 12% compared to >30%), and higher proportion of gravels (i.e. 12% compared to 3%), including shelly grit, large shells and coral rubble. Samples collected with the grab (IC2, IC4, IC6) generally comprise less coarse sediment and deeper sediment samples (i.e. >1.5 m) comprise finer sand fractions and less gravel (shell grit and shells). However, higher concentrations of muds, fine sand, organic content and moisture are found within sediment samples collected from IC7, indicating this is a depositional area at the entrance to the creek. Refusal occurred at many sites at relatively shallow depths suggesting similar cap rock found in the berth pocket/turning circle on the Eastern bank of Beadon Creek. However, samples were observed to contain large shell grit obstructing the core catcher on retrieval, suggesting refusal may have been caused from a layer of loose large shell and coral rubble on occasions. The depth of -2.2 m at IC7 was terminated due to mechanical failure of the concrete vibrator and a deeper core is considered likely to be possible. Lower moisture, organic content and proportion of fine sand fractions than berth pocket/turning circle samples suggest tidal currents are stronger through the channel at the mouth of the creek, transporting mud (clays and silts) and slightly larger very fine sand fractions, depositing them outside the entrance to the creek, along the creek bank or in the upper creek bed. Although the observation describe loose medium sand, the anchor had difficulty grabbing within the inner channel suggesting the coarse sediment is relatively compact from the scouring of strong tidal currents.

Sediments within samples from the outer channel are typically dark brown or grey, comprising of very fine to fine sand (\bar{x} = 58%) and typically higher gravel fractions (\bar{x} = 13.5%) represented as shelly grit, large shells and coral rubble. Sampling of sediments at locations below 4 m CD depth using the vibracorer is limited and

consequently all outer channel samples at this depth or greater had to be collected using the grab. The depth of dredging in these areas and cores collected indicate homogenous sediment properties within surface sediment layers. Therefore, samples gathered are considered as being representative of the potentially contaminated sediment material to be dredged. Loose red/brown sand sediments are a common feature in samples collected with a grab from the outer part of the channel. The sediment is typically low in moisture and organic content except for location OC4 which records a TOC concentration of 0.66%, possibly representing *Halophila* spp. seagrass rhizomes found in this sample. Seagrass rhizomes are also found in samples OC7 and OC8, although TOC levels remained low possibly indicating organics are not homogenous throughout the sample.

5.2.2. Total Metals and Metalloids

The 95% UCL for concentrations for total metals (Ag, As, Cd, Cr, Cu, Hg, Ni, Sb, Zn) from samples within the berth pocket/turning circle, inner channel and outer channel are below the ISQG-Low and EIL screening levels except for Arsenic. The 95% UCL for Arsenic in the outer channel (29.5 mg/kg) exceeds the ISQG-Low (20 mg/kg). All relevant calculations for metal concentrations are below all HIL(s), and the medians for total metals (Al, Co, Fe, Mn, V) for which ISQG are not provided are below the 80th percentile of natural background concentrations for each area.

In accordance with NAGD (2009), if the 95% UCL of a contaminant exceeds the specified screening level, comparison to natural background concentrations is required. The mean and median values for Arsenic in the outer channel are below the 80th percentile of natural background concentrations. Sediments in Australia commonly have high natural levels of Arsenic (NAGD 2009). Elevated concentrations of Arsenic in Australian sediments have been shown to be of natural origin and related to sediment mineralogy and diagenetic processes (Davies 1979). No ISQG are provided for Aluminium, Cobalt, Iron, Manganese and Vanadium. The median concentrations for these metals in are below the 80th percentile of natural background concentrations. These results indicate dredging and onshore disposal dewatering of the sediment material is unlikely to result in loading of metal contaminants in the marine ecosystem.

Elevated concentrations of metals (Co, Cr, Cu, Fe, Ni, V, Zn) either above the ISQG-Low and/or background concentrations are recorded in sample TC1D. These elevated concentrations at TC1D are due to differences in grain size. The proportion of mud (clay and silt) contents in TC1D (49%) were substantially greater than other sites (0% to 18%) and split samples contained less silt content. Concentrations in split samples and at other sites were lower for almost all metals. The concentrations of Al, which is a proxy analyte to test for grainsize (Loring and Rantala 1992). These findings are consistent with previous sediment sampling which concluded grainsize is likely to be the principle factor which determines the concentrations of metals in sediments of the area (i.e. DEC 2010, Chevron 2010).

Elevated concentrations of metals in sediment were not recorded in any sample from the inner channel.

Arsenic exceeds the ISQG-Low in 10 of 12 samples within the outer channel although only one (1) of these samples exceeded the 80th percentile of natural background concentrations. Manganese exceeds the natural background concentrations in two (2) samples (OC5, OC7) and ISQG are not provided for this element. Isolated elevations above the 80th percentile is not unusual given these values are still likely to be within the statistical distribution of the range of baseline values.

5.2.3. Organic Compounds

Organic compounds including TPH, BTEX, PAHs and TBT are either below the laboratory LoR or are recorded at very low concentrations in samples tested from the berth pocket/turning circle, inner channel and outer channel. Therefore, the 95% UCL is below the ISQG-Low (NAGD 2009), ESLs, and all calculations are below HSLs (D) (NEPM 2011). This is consistent with historical sediment investigations in the area which have

previously recorded all concentrations of TPH, BTEX, and PAHs below the laboratory LoR and TBT was reported below the LoR in previous nearshore investigations (DEC 2010, Chevron 2010, Oceanica 2012). Low levels above the LoR recorded in this investigation for TPH is due to testing against a lower value LoR.

Detectable concentrations of TPH <6 mg/kg are only recorded within the C16-C34 carbon fractions from two (2) locations (TC1, TC2) in the berth pocket turning circle, one location (IC7) in the inner channel and three (3) locations in the outer channel. All samples tested for BTEX and PAHs record levels below the LoR. Traces of TBT, which was identified as a COPC in Stage 1 capital dredging, was recorded at the LoR concentration (0.5 μ g Sn/kg normalised to 2.5 μ g Sn/kg) in one (1) sampling location (BP4) within the berth pocket/turning circle and in one (1) sampling location (OC3) in the outer channel. All remaining samples tested were below the LoR. Results suggest dredging and onshore disposal dewatering of the sediment material is unlikely to result in loading of organic compounds in the marine ecosystem.

5.2.4. Nutrients

Inorganic forms of nutrients in sediments (NO₂, NO₃, NH₄, FRP) from all samples tested from the berth pocket/turning circle, inner channel and outer channel are below the LoR. The level of total TKN/TN and TP is therefore likely to be entirely organically bound and representative of low TOC in sediments which must be broken down into inorganic forms to be available for uptake by plants. Concentrations recorded during this investigation are similar to low concentrations of organic material reported in previous sampling within Beadon Creek (Oceanica 2010, 2014). These results indicate it is highly unlikely elevated nutrient loads will be released from sediments into the water column during dredging or into return waters during disposal.

5.2.5. Acid Sulfate Soils

All samples collected from the berth pocket/ turning circle, inner channel and outer channel were assessed for PASS using the field screening test to select high risk samples for further analysis using the chromium sulfer suite tests in the laboratory.

The pH values recorded during screening tests from all samples were within the expected values for marine waters (pH 8.2). Conservative classification of the screening test results were applied to selection of samples for further testing, which included:

- pH_{FOX} values <6,
- A change of >2 pH units between pH_F and pH_{FOX}; and
- Reaction ratings of 'High' or greater.

A total of 17 samples were selected for further chromium sulfer suite tests in the laboratory; five (5) samples from within the berth pocket/turning circle, five (5) samples from inner channel and seven (7) samples from the outer channel. Four (4) samples from the berth pocket/turning circle, three (3) samples from the inner channel and three (3) samples from the outer channel recorded sulfur values exceeding the action criterion of 0.03%S for managing acid sulfate soils. In accordance with recommendations from DER (2015), if the concentration meets or exceeds the 'action criteria', an acid sulfate soil management plan should be prepared for DER.

To determine the net acidity of the PASS sediment samples, quantitative laboratory analyses for PASS were undertaken to measure the net effect of acid-generating processes in the sediment, balanced against acid-neutralising (or basic) components that may be present. The results indicate that the potential acidity of these sediments are effectively buffered from the acid neutralising capacity (ANC), and therefore there would be a negative net acidity following disturbance of these sediments. These findings are similar to those found in previous investigations in Beadon Creek and the nearshore Onslow sediments (BMT Oceanica 2014, Chevron 2010c).

5.2.6. QA/QC Assessment

Review of the laboratory and field QA/QC outputs identified that no results collected during the detailed site investigation were qualified as being unusable during the data review process.

All laboratory QA/QC compliance assessments met necessary recommendations except matrix spike recoveries and surrogate recovery outliers. Matrix spike recoveries for Aluminium and Iron in two (2) interlaboratory split samples were not determined due to the background level being greater than or equal to four times the spike level. NAGD (2009) recommends that matrix spike data should not be reported if the naturally occurring levels in the sample are greater than twice the spiking level. Surrogate recovery outliers for two (2) PAH analytes were $\leq 3.1\%$ lower than the ideal recovery rates. It was considered unlikely that gross errors have occurred during the laboratory testing procedure which has significantly affected interpretation of the results, particularly as all PAHs are below the LoR, which is consistent with previous investigations.

The RPD of 35% in field splits and ±50% in field replicates are not met in field control samples for many parameters. The sediment properties clay, silt, gravel and TOC were outside the RPD where low values are recorded and minor adjustments in small values result in a large proportional change. However, these sediment properties are commonly used as estimates rather than precise values for interpreting the sediment composition. The RPD was not met in control samples for Copper, Nickel, Cobalt and Arsenic. Results indicate higher than the ideal percent differences are likely due to heterogeneity of PSD in samples identified through regression analysis undertaken during the assessment for Copper, Nickel, Cobalt, whilst results for Arsenic was also considered to be based on natural differences between samples. The RPD was not met for TKN/TN in control field samples which likely reflects natural the variability of test results. Concentrations of TKN/TN were sufficiently low that the results can be interpreted as estimates rather than precise values. Despite being outside the RPD, all results were relatively consistent between the primary and secondary laboratory, indicating it is unlikely that gross errors have occurred during the laboratory testing procedure which has significantly affected interpretation of the results.

Assessment of the PASS field screening test for an RPD of $\pm 50\%$ in field replicates were not met for tested parameters although the classification for further testing is considered suitably conservative to allow for small variations in assessment of results between replicate samples to detect the risk of PASS.

5.3. Suitability of Material for Onshore Disposal

The material to be dredged is proposed to be disposed of at an onshore disposal site located at the back of the Light Industrial Area down to the airport adjacent to the East Arm of Beadon Creek. The material is proposed for future reuse to expand and develop the Light Industrial Area in Onslow as part of a strategic plan for the Shire of Ashburton. This assessment was undertaken to characterise the sediment within the proposed Stage 2 capital dredge area and undertake chemical and physical testing of the potentially contaminated materials to determine the suitability of this material for the proposed onshore disposal site. The assessment was undertaken in accordance with BMT Oceanica (2016), NEPM (2013) and NAGD (2009).

5.3.1. Suitability of Sediment Properties for Onshore Disposal

The Pilbara Ports Authority broadly categorises dredge material into five basic sediment property categories shown in **Table 22** to assist and guide proponents and contractors to manage dredge spoil resulting from capital works and maintenance programmes within Port limits (PPA 2012). Whilst the current project is not proposed to occur within port limits, this assessment of sediment properties was considered appropriate to onshore disposal for the OMSB project. Sediments to be dredged from each area are mainly composed of very fine to medium sands consistent with Category 2 in **Table 22**, which is considered broadly classified to be suitable for use as engineering grade fill and/or reclamation projects (PPA 2012). These results indicate sediment in the upper layers of the dredged material is suitable to be used for the future reuse proposal to expand and develop the Light Industrial Area in Onslow. However, it is acknowledged that the full volume of

the dredge material has not been sampled and further sampling of the final dewatered material would be required to prior to reuse.

Category	Suitable for Recovery and Reuse? ¹	Material Description
1	No	Material unsuitable as engineering grade fill and/or reclamation projects such as high moisture content marine silts and ooze with varying proportions of silts, sand and clay. This may include material with an inherent structural strength (e.g. cut stiff to hard clays, ripped rock or rocklike material granular material with varying percentages of fines) but is discounted due to the propensity of the material to break down into colloidal material when handled causing excess turbidity and environmental concerns. This category may also include material with other properties which make it unsuitable for onshore disposal, such as high potential acid sulphate soils.
2	Yes	Fine to Medium (D_{50} 0.05 – 0.2mm) sands.
3	Yes	Coarse (D ₅₀ 0.2 – 2mm) sands.
4	Yes	Crushed rock and rock-like material.
5	Yes	Boulders and Blasted Rock.

¹ Material with nominal 90%+ coarser than 75 μm. This material is generally suitable for use onshore as a reclamation or engineered fill material.

5.3.2. Suitability of Sediment Contaminants for Onshore Disposal

Geochemical assessment of the material for identified COPCs from the review, including total metals and metalloids, organic compounds and nutrients, were compared to ISQG-Low, EILs, ESLs, HILs (D) and background concentrations for each area in order to inform appropriate marine ecological, terrestrial ecological and human health risk assessment. Testing of sediment from the berth pocket/turning circle, inner channel and outer channel capital dredge areas indicated total metals and metalloids (AI, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V & Zn), organic compounds (TPH, BTEX, PAH & TBT) and nutrients (TN, TKN, NH₄, NO₂+NO₃, TP, FRP) are below the ISQG-Low (NAGD 2009), EILs, ESLs, HILs (D) (NEPM 2011) and background concentrations. These results indicate further investigation of contaminants in sediments is not required and the material is composed of relatively clean sandy sediments. Dredging and onshore disposal of sediments to create the harbour approach channel is therefore unlikely to result in adverse effects to marine living resources, human health and terrestrial living resources, indicating the material is considered suitable for onshore disposal.

5.3.3. Suitability of Acid Sulfate Soils for Onshore Disposal

Acid sulfate soils are naturally occurring sediment that contain iron sulphides which upon disturbance by dredging and exposing it to oxygen through onshore disposal has the potential to cause significant environmental and economic impacts. Landgate's Shared Land Information Platform (SLIP) identified sediments within the proposed capital dredge area are classified as a high probability of PASS occurrence, although with very low confidence. Analysis of acid sulfate soils undertaken during the project determined samples from each area exceed the action criterion of 0.03%S for managing acid sulfate soils, indicating PASS sediments are present within the material to be dredged. In accordance with recommendations from DER (2015), an acid sulfate soil management plan should be prepared for submission to DER for the OMSB Project. However, quantitative laboratory analyses for PASS indicate the natural acid neutralising capacity of the sediment samples provide sufficient buffering for acid-generating processes, and treatment (i.e. lime dosing neutralisation of ASS) for excavated sediment is unlikely to be required. Therefore, the material is considered suitable for onshore disposal.

6. Conclusion

Sediments within the upper layers of the berth pocket/turning circle, inner channel and outer channel are typically comprised of sandy/ shelly material which is low in moisture and TOC. These properties are typically considered beneficial for engineering grade fill and/or reclamation projects, indicating the bulk of the material is expected to be suitable for the proposed future reuse plans to expand and develop the Light Industrial Area in Onslow for the Shire of Ashburton. However, it is acknowledged that the full volume of the dredge material has not been sampled and further sampling of the final dewatered material would be required to prior to reuse.

Geochemical laboratory testing of COPCs in sediments from the capital dredge areas was undertaken for total metals (AI, Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Sb, V & Zn), organic compounds (TPH, BTEX, PAHs & TBT) and nutrients (TN, TKN, NH₄, NO₂+NO₃, TP, FRP). Laboratory results determined that all samples meet screening levels used for both onshore and ocean disposal, indicating dredging, loading (pumping) and onshore disposal proposed for the OMSB Project is unlikely to result in adverse effects to marine living resources, human health and terrestrial living resources. The guidelines for Acid Sulfate Soils (DER 2015) recommend an acid sulfate soil management plan should be prepared and submitted to DER for this project based on the presence of PASS within sediments to be dredged. However, based the natural acid neutralising capacity of sediments provide sufficient buffering for any acid-generating processes and the material is unlikely to need treatment strategies for onshore disposal (i.e. lime dosing neutralisation of ASS).

Results from the sediment quality assessment undertaken for the OMSB Project indicate that sandy clean uncontaminated sediments occur within the proposed capital dredge area which are considered suitable for onshore disposal.

7. References

- Ahern CR, McElnea AE, Sullivan LA (2004) Acid Sulfate Soils Laboratory Methods Guidelines. Queensland Department of Natural Resources, Mines and Energy, Indooroopilly, Queensland
- ANZECC/ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 1: The Guidelines. Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, Canberra, ACT, October 2000
- BMT Oceanica (2014). Beadon Creek Maritime Facility Capital Dredging Environmental Impact Assessment. Prepared for the Department of Transport, 365_01_004/1_Rev6
- BMT Oceanica (2016). Department of Transport Maintenance Dredging Environmental Management Framework. Prepared for the Department of Transport
- BMT Oceanica (2016a). Proposed environmental monitoring and management during the 2016/2017 capital dredging at Beadon Creek. Memorandum to the Office of the Environmental Protection Authority, 1
- CH2MHILL (2014). Evaluation Report of Geotechnical Investigations: Preliminary Wharf Design of Northern Lease Lots, Beadon Creek Onslow Western Australia. Draft Report for Transfield Services (Australia) Pty Ltd, 494460.
- Chevron (2010). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix N12 Survey of Benthic Habitats off Onslow, Western Australia.
- Chevron (2010a). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix N11 Intertidal Habitats of the Onslow Coastline, Western Australia.
- Chevron (2010b). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix N1 Coastal Geomorphology of Ashburton River Delta and Adjacent Areas, Western Australia.
- Chevron (2010c). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix Q5 Sediment Quality Assessment Wheatstone Dredging Program, Western Australia.
- Chevron (2010c). Wheatstone Project Draft Environmental Impact Statement/ Environmental Review and Management Programme, Technical Appendix Q4 Nearshore Acid Sulfate Soils Investigation (Turning Basin and Dredge Channel), Western Australia.
- CSIRO (2010). Ecological Investigation Level Calculation Spreadsheet. Spreadsheet prepared for National Environment Protection Council.
- Davies, P.J. (1979). Marine geology of the continental shelf off southeast Australia. Department of Mineral Resources Bulletin. Canberra, Australia.51pp
- DEC (2006). Background quality of the marine sediments of the Pilbara coast. Department of Environment and Conservation, Marine Technical Report Series, No. MTR 1.
- DER (2014). Assessment and Management of Contaminated Sites: Contaminated Sites Guidelines. Department of Environmental Regulation, Government of Western Australia

- DER (2015). Identification and investigation of acid sulfate soils and acidic landscapes. Department of Environmental Regulation, Government of Western Australia
- PPA 2012. Dredging and Spoil Management Plan Dampier. Pilbara Ports Authority (formerly the Dampier Port Authority).
- Fandry, C. Revill, A. Wenzinker, K. McAlpine, K. Apte, S. Mansini, R. Hillman, K. (2006). Contaminants of Australia's North West Shelf: sources, impacts, pathways and effects – North West Shelf Joint Environmental Management Study, Technical Report No. 13, Western Australian Department of Environment
- Forde, M.J. (1985), Technical report on suspended matter in Mermaid Sound, Dampier Archipelago. Department of Conservation and Environment, Perth, Western Australia.
- HGM (1998) Beadon Creek Sedimentation Modelling. Prepared for Department of Transport by Halpern Glick Maunsell, Report No CM995238, Perth, Western Australia
- HGM (1999) Beadon Creek Marine Facilities Upgrade and Dredging Works Referral Document. Prepared for Department of Transport by Halpern Glick Maunsell, Report No ES995242, Perth, Western Australia, April 1999
- JFA (2004) Onslow-Beadon Creek Maintenance Dredging Works 2003, Contract Close-Out Report Contract No 0220/03. Prepared for Department for Planning & Infrastructure by Jesz Fleming & Associates, Perth, Western Australia, June 2004
- Loring, D. & Rantala, R. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth Science Reviews, 32: 235-283
- Matthai, C. and Birch, G. (2000). Effect of coastal cities on surficial sediments mantling an adjacent highenergy continental margin – central New South Wales, Australia. Marine and Freshwater Research 51:565-576
- NAGD (2009). National Assessment Guidelines for Dredging. Department of the Environment, Water, Heritage and the Arts, Commonwealth of Australia.
- NEPM (2011). National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2011, Volume 3, Schedule B1, Guideline on Investigation Levels for Soil and Groundwater.
- NEPM (2013). National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 3, Schedule B2, Guideline on Site Characterisation.
- NEPM (2013a). National Environment Protection (Assessment of Site Contamination) Amendment Measure (NEPM) 2013, Volume 8, Schedule B5c, Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel and Zinc.
- Oceanica, JFA (2010) Beadon Creek Maintenance Dredging Revised Environmental Impact Assessment. Prepared for Department of Transport by Oceanica Consulting Pty Ltd and JFA Consultants Pty Ltd, Report No 365_002/1, Perth, Western Australia, March 2010
- Oceanica (2012) Beadon Creek Acid Sulfate Soil Analysis Data Report. Prepared for Department of Transport by Oceanica Consulting Pty Ltd, Report No 365_01_001/1, Perth, Western Australia, April 2012
- OCCI (2016). Onslow Business Investment Guide. Onslow Chamber of Commerce and Industry, January 2016.
- Semeniuk, V. (1993). The Pilbara coast: a riverine coastal plain in a tropical arid setting, northwestern Australia. Sedimentary Geology 83: 235-256.

Simpson SL, Batley GB and Chariton AA (2013). Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines. CSIRO Land and Water Science Report 08/07. CSIRO Land and Water.

Appendix A Laboratory Chain of Custody Form

Sara Perkov	Sava Perteny Intouting Ispan Iday 17
From:	Travis Hurley <travis.hurley@o2marine.com.au></travis.hurley@o2marine.com.au>
Sent:	Saturday, 8 April 2017 1:42 AM
To:	Sara Perkov; Lauren Ockwell
ß	Samples Perth; ALS Enviro Perth
Subject:	RE: Onslow Marine Support Base sediment sample testing
Attachments:	SamplingRecord_COC_OMSB_revised.xlsx
Follow Up Flag:	Follow up
Flag Status:	Flagged
Hi Sara/Lauren	
Please can I request the fol	Please can I request the following additional testing of the samples submitted and currently on hold.
 Site TC1-1: TBT, Nu Site TC1-1-T2: TBT, Site TC5: Metais, P3 	Site TC1-1: TBT, Nutrients, Hydrocarbons Site TC1-1-T2: TBT, Nutrients, Hydrocarbons, Metals, PSD/TOC Site TC5: Metals, PSD/TOC, Chromium Reducible Sulphur
I have attached an updated CoC form with sele a separate additional CoC form for these tests.	I have attached an updated CoC form with selected tests highlighted in Red. Please let me know if you would prefer a separate additional CoC form for these tests.

approvals. Please continue to hold additional samples in the event the regulatory authorities require further testing for

Regards

Travis Hurley Principal Marine Ecologist

M: +61 467 593 322 E: travis.hurley@o2group.com.au W: <u>www.o2marine.com.au</u>

🎢 50 Cowcher Way (East), Medina, WA, 6167

Connect with us

form. Any views expressed in this message are those of the individual sender, except where the sender specifically states them to be the views of O2 Marine Pty Ltd. O2 Marine Pty Ltd is a subsidiory of the <u>O2 Group</u> Pty Ltd the intended recipient please delete and do not disclose to another person or use, copy or forward all or any of it in any The information in this e-mail is confidential and may be legally privileged. It is intended solely for the addressee. If you are not

Disclaimer added by CodeTwo Exchange Rules 2010 www.codetwo.com

Telephone : + 61-8-9209 76%5

Subject: RE: Onslow Marine Support Base sediment sample testing Cc: Samples Perth <Samples.Perth@ALSGlobal.com>; ALS Enviro Perth <ALSEnviro.Perth@ALSGlobal.com> To: 'Sara Perkov' <Sara.Perkov@ALSGlobal.com> Sent: Wednesday, 22 March 2017 8:53 PM From: Travis Hurley

Hi Sara

field samples collected' from the CoC form prefilled prior to fieldwork. confirm what samples were there. It was late at night when I was entering the changes required to reflect 'actual Thanks for sending through these clarifications. Believe it or not, we did try to undertake a QA/QC process to

I have provided responses to these clarifications below in red.

Regards

Travis Hurley Principal Marine Ecologist

M: +61 467 593 322 E: <u>travis.hurley@o2group.com.au</u> W: <u>www.o2marine.com.au</u>

骼 50 Cowcher Way (East), Medina, WA, 6167

Connect with us in

form. Any views expressed in this message are those of the individual sender, except where the sender specifically states them to the intended recipient please delete and do not disclose to another person or use, copy or forward all or any of it in any The information in this e-mail is confidential and may be legally privileged. It is intended solely for the addressee. If you are not be the views of O2 Marine Pty Ltd. O2 Marine Pty Ltd is a subsidiary of the O2 Group Pty Ltd

Disclaimer added by CodeTwo Exchange Rules 2010 www.codetwo.com

Subject: Onslow Marine Support Base sediment sample testing Cc: Samples Perth <<u>Samples.Perth@ALSGlobal.com</u>>; ALS Enviro Perth <<u>ALSEnviro.Perth@ALSGlobal.com</u>> Sent: Wednesday, 22 March 2017 7:07 PM From: Sara Perkov [mailto:Sara.Perkov@ALSGlobal.com] To: Travis Hurley < <pre>travis.hurley@o2marine.com.au>

Good Evening Travis,

I am currently logging the sediment samples from the 'Onslow Marine Support Base' Project (ID17WAU-0008), and I have a few things to bring to your attention:

- be placed on 'hold' We didn't receive a sample for 'OC8-0.5' Should be listed as OC8 in 250ml sample jar for elutriate testing to
- ٠ We received two additional samples not listed on the Chain of Custody; 'OC-05R' and 'IC3R' (250ml jar each) 250ml jars are for elutriate samples so will be placed on 'hold' Should be OC2-0.5R Meant to list 2J for both OC2-0.5 and IC3 which would include the R for each sample. The

- sample as possible to this test. Particle size analysis is considered very important for this program, can you Additionally, there may not be enough sample to perform particle size analysis, but I have allocated as much The jars for sample 'IC8-0.5' had large headspaces; therefore volatile analysis may be compromised. Given 250ml elutriate sample to ensure you have enough required. please use any left over sample from chromium reducible sulphur test or if not enough please use the IC8 (BTEX, TRH, TPH, PAH) on IC8-0.5, and instead conduct volatile organic analysis on samples from IC4? volatile testing may be compromised on sample jar IC8-0.5, can we not undertake volatile organic analysis
- ٠ volatile testing may be compromised on sample jar OC2-0.5, can we not undertake volatile organic analysis The jars for sample 'OC2-0.5' had large headspaces; therefore volatile analysis may be compromised. Given (BTEX, TRH, TPH, PAH) on OC2-0.5, and instead conduct volatile organic analysis on samples from OC5?
- check in the field indicate the Particle Size Distribution Sample (as a minimum) was labelled 'TC1-0.5-T1'. Sample 'TC1-0.5' on the Chain of Custody was labelled 'TC1-0.5-T1'. Yes, correct. My notes from our QC
- able to salvage most of the sample. I'm glad that you were able to salvage the sample igodotSample 'IC7' was broken on arrival; however the bottom of the jar was broken off quite cleanly and I was
- to determine what further sampling will be required, what samples will need to be stored and what samples I have placed all unused samples on hold. Thankyou very much. Once we have the results we should be able can be discarded.

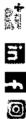
Your ALS workorder is EP1702676 please don't hesitate to contact me should you have any queries about this job.

Kind Regards,

Sara Perkov Sample Receipt Officer Environmental

LAB NEWS: ALS Perth Christmas Closures

<u>D</u> +61 8 9209 7615 <u>T</u> +61 8 9209 7655 <u>F</u> +61 8 9209 7600 <u>sara.perkov@alsglobal.com</u>


10 Hod Way Malaga WA 6090 AUSTRALIA

We are keen for your feedback! Please click here for your 1 question survey

EnviroMail[™] 110 -Identifying Hidden PFAS Chemicals in Environmental Samples and Firefighting Foams

EnviroMailTM 109 - PFOS Trace Analysis to Meet Trace Guideline Requirements

EnviroMailTM 00 - Summary of all EnviroMailsTM by Category

Right Solutions • Right Partner www.alsglobal.com

can be found on the Company's website - www.alsglobal.com. operational activities. All information will be held in accordance with the Company's Privacy Policy which copy, distribute, print or otherwise use the information. Email may be stored by the Company to support must notify the sender immediately by return email and then delete all copies of this email. You must not The information contained in this email is confidential. If the reader is not the intended recipient then you

ALS Group: Click <u>here</u> to report this email as span 3

	1	1	—	1	1	1	<u> </u>	.	1	1	T	1	T	1	1		1	1	1	-	;	<u>~</u>	3					+	!	1			_ · -	1			1		1			ı
Sample Cold (Yes/No):	Received By Lab:	Sampled By:	002-0.5	001-1	OC1-0.5-71	IC5-1.5	IC1-R3	IC1-R2	IC3-1	103-0.5	IC7-1	107-0.5	106	12 12	ICS-0.5	K4	103-1	IC3-0.5	ធ	IC1-1.0	בֿ	103	TC1-T2-1	101-0.5-12	ŤC4	ជ្	ជ	TC1-1	TC1-0,5	TC2-R2	TC2-R1	874	8P3	BP2	BP1	02M Sample ID	OZM Project Manager	Lab Quote No.:			Project:	02 MARINE
																														:						Laboratory Sample ID	Travis Hurfey 0467 593 322	N/A	OMISE PTY Ltg		Onslow	
Sample Con			18/03/2017	17/03/2017	17/03/2017	18/03/2017	18/03/2017	18/03/2017	18/03/2017	18/03/2017	16/03/2017	16/03/2017	16/03/2017	18/03/2017	18/05/2017	16/03/2017	16/03/2017	16/03/2017	15/03/2017	13/03/2017	18/03/2017	17/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	15/03/2017	16/03/2017	15/03/2017	15/03/2017	15/03/2017	Date	Email Address: travis.hurley@o2marine.com	Turnaround Time:	CON DOT		Onslow Marine Support Base	Chain of Custody (CoC) Record
Sample Container Sealed (Yes/No):	Date/Time:	Date/Time:	8:30	12:00	12:00	9:50	16:00	15:45	9:25	9:25	17:41	17:41	10:26	9:50	9:50	10:23	16:49	16:49	13:45	15:30	15:30	10:00		16:36	13:41		11.06	16:36	16:36		! !	7:02	9:28	9;23	10:20	Time	marine.com.	Standard			Sase	n of
			MS	sw	35	SW	МS	š	Ň	Š	š	ŝ	SW	MS	Ň	ŝ	MS	Ň	MS	SW	SW	MS	NtS	SW	MS	MS	SM	MS	sM	MS	NJS.	MS	SW	SW	MS	S-Soil / MS - Merine	e Metri Sedime Air		ANT /			2
			2J, 2P	2J, 2P	21, 2P	¥	21, 2 8	21, 2 P	21, 2P	11, 2P	21, 2P	21, 2P	21, 2P	2J, 2P	2J, 2P	2), 2P	2), 2P	2J, 2P	Ľ, 2P	21, 2P	2J, 2P	2J, 2P	į 2J, 2P	21, 2P	2J, 2P	2), 2P	2J, 2P	21, 2P	₹1, 1P	2J, 2P	2J, 2P	۲, ۲	2J, 2P	2J, 2P	: 21, 2P	Typ B-Bottle / J-Jar / V- Plastic /	ie Vial / G.	Giaus / P-	ß	0.4a	A	Isto
	ļ		4	м	4	4	4	4	*	÷	4	4	4	4	ъ	-	4	4	ţ,u	4	4	4	4	4	4	4	•	4	w	4	А	4	4	4	4	No. of Sa	mples		Containers	Lab. Contact:	Laboratory: Address:	ē
			1100	1100	1100	8	1100	1100	100	88	811 8	1100	1100	1100	1100	10	1100	1100	ğ	1100	1100	1100	1100	1100	1180	1100	1100	1100	006	1100	1100	1100	1100	1100	1100	Total Volu	me (mi)	Ĭ			\sim
			×		×	L		×				×	×		×	×		×			×		×	×	×		×	×	×		×	×			\$	Organoli	18 - TBT					<u> </u>
			×		×			×	1	: ×		×	ļ		×			} 	×		×		×	×			×	×	×		×	×				Nutrients - TN, TK NO3,		14, NO2,			10 Hoo	ň
		Relin			×			×				×			×	×		Ì	×		×		×	×			×	×	×		×	×				STEX. TAH,	TPH, PA	н	Ana	Lauren Ockwell	ALS	
	S	Relinquished By:	×		×			×	-	×	×	×	×		×	×		×	×		×	×	×	×	×		×	×	х		×	×				Frace Metals (Al, Ag, Fe, Hg, Mn, Ni, Pl	As, Cd, 55, 56, 5e	Ca, Cr. Cu - V, Zn)	Analyses		ALS	e de la comercia de l
	Courier:	d By:			×	×		Ì.	: ; ;	×				×				×		×		×				Х		×			×				×	Chromium Reduci	bla Selip	hur Suite			•	8
			×		×			×		×	×	×	×		×	×		×	×		×	×	×	×	×		×	×	×		×	×	ļ			Particle Size Dig	mbutio	n, TOC				5
			Hold untested samples until further advice	Hold All Sample Testing until further advice	Hold untasted samples until further advice		Hold Ali Sample Testing until further advice	Hold All Sample Testing until further advice	Hold All Sample Testing until further advice		Hold untested samples until further advice	Hold All Sample Testing until further advice	Hold untested samples until fur her advice	Hold untested samples until further advice			Hold All Sample Testing until further advice		Hold untested samples until further advice	Hold All Sample Testing until further advice	Hold All sample Testing until further advice	Hold untested samples until further advice	Comments		Project Manager.	- Email Inhoratory analysis results to 00M	Project Manager.	Please Note: Please sign copy on receipt of samples and email sized conv of For record to D3M	Page 1 of 3													

SON

Chain of Custody (CoC) Record

O2M Sample ID Sampled By: Received By Lab: Sample Cold (Yes/No): OC7-R2-0.5 OC1-0.5-T2 004-0,5 02.05 tab Quote No.: 0C10 004-0.5 0C3-0.5 0C3-1 TC1-0.5 105-0.5 FIELDB BP4 101-1 24 000 3 8 8 8 8 22 8 ន្ល ឆ្ក ā ក O2M Project ត្ត Manager Project: Client: ÷ 0467 593 322 OMSB Pty Ltd Laboratory Sample ID Travis Hurley NA **Onslow Marine Support Base** travis.hurley@o2marine.com. Email Address Date/Time: Date/Time: Sample Container Sealed 20/03/2017 17/03/2017 18/09/2017 17/09/2017 Turnaround, Time: 15/03/2017 18/03/2017 17/03/2017 17/03/2017 17/03/2017 18/03/2017 16/03/2017 15/03/2017 15/03/2017 16/03/2017 20/03/2017 17/03/2017 18/03/2017 17/03/2017 17/05/2017 18/03/2017 17/03/2017 17/03/2017 Date 17/03/2017 17/03/2017 17/03/2017 15/03/2017 18/03/2017 18/03/2017 16/03/2017 17/03/2017 Job No.: WA16-0013 Standard Ime 15:30 11:20 11:20 17:41 11.00 12:00 15:14 11:20 16:14 15:14 16:49 11:06 16:36 16:36 10:00 15:30 15:30 15:21 15:42 14:20 13:45 16:16 11:20 8:35 8:30 9:25 9:50 ž 8.3 8:35 Semple Mettle / MS - Marine Sedime W-Wøter / A-Air <u>8</u> 8 8 ŝ š Ň R š š N N N ž ĭ. Ň N N N ž SW ŝ š Μ š M งเง N N ĭ₹ ٥. Type 3 Bottle / J.Jar / Y-Vial / G-Glass / P-Plastic / B-Bag 21, 1P 21, 1P 21, 2**P** 21, 2P F. Laboratory: Address: 2 Elele E 2 ъŚ : e i۲ E. 2 66668 E). Contact: Container (م) ه أ م 4 4 No. of Samples -4 4 ъ 4 ه ا 4 100 1100 250 250 250 50 118 1100 1100 1100 Цõ 1100 1100 1100 1100 1100 100 500 250 250 ğ 250 250 250 Total Volume (ml) × xixix × × × × × Organotine • TBT 10 Hod Wey Malaga Nutrients - THL TKN, TP. × × × × × × NH4, NO2, NO3, FRP Buren (X) ٩ Relinquis × × × × × ~ BTEX, TRH. TPH, PAH R Trace Metals (AL Ag, As, Cd, Co, Cr, Cu, Fa, Hg, Min, × × ×× × × × × × × × Counter: shed By: Ni, Pb, Sb, Se, V, Zui Chromium Reducible × × ×× 2 Sulphor Suite Paniicle Size Distribution × × l× × × × × × × TOC Hold All Sample Testing until further advice Hold All Sample Testing until further advice Hold All Sample Testing until further advice ¹Hold All Sample Testing until further advice Hold All Sample Testing until further advice Hold untested samples until further advice Please Note: Please sign copy on receipt of samples and email signed copy of CoC record to O2M Project Manager. Hold All Sample Testing until further advice Hold untested samples until further advice Hold untested samples until further advice Hold untested samples until further advice Email laboratory analysis results to O2M Project Manager. Hold All Sample Testing until further advice Hold untested samples until further advice Hold All Sample Testing until further advice Hold untested samples until further advice Hold untested samples until further advice Comments Page 2 of 3

(Yes/No):

Chain of Custody (CoC) Record

Comments		Ekarila 	S-Soil / (/\ B-Botti G-Giss No Tota	Time	Date	Laboratory Sample ID	OZM Sample ID
		ite \$	icannys WS	marine.com,	Manager 0467 598 322 travis.hurley@o2marine.com	0467 593 322	Manager
		anapi	Mar Mar Star Jar Mar Jar Sam Sam		Email Address:	O2M Project Travis Hurley Email Address:	O2M Project
Email laboratory analysis results to 02M Project Manager.		le - TBA	Notria Ine Sedi / A Air - V-Vial / Nice / B Nice / B	Standard	Tumaround Time:	N/A	Lab Quote No.:
		Analyses	Containers				
Project Manager.	-	Lauren Ockwel	Lab, Contact	IND NO WATE-0013	Inh No.		
Please sign copy on receipt of samples and email signed copy of CoC record to O2M		10 Hod Way Malaga	Address:		Onslow Manne Support Base	Onslaw	Project:
Please Note:		ALS	Laboratory:				
Page 3 of 3							in the second second

		40]:	Sample Container Sealed (Yes/No):	Sample Cold (Yes/No):
	Courier:		Date/TI	Received By Lab:
	Relinquished By:	me	Date/Ti	Sampled By:
				•
				· · · · ·
		· ·		

									:	ner Saskad	Sample Container Sealed		Sample Cold
	-71	Courier:								Date/Thne:	٥		Received By Lab:
		Relinquished By:	Inquisi	æ						Date/Thre:			Sampled By:
X Hoki untested samples until further advice		-	×	h -). ×	X 0011	* 12	21, 3P	MS.	3 :30	18/02/2017	33	0(2-0.5
Hold All Sample Testing until further advice	<u> </u>	u	F	;	┝	100	۰۰ بر	2J, 2P	ß	12:00	17/03/2017	5 	0C1-1
X Hold untested samples until further advice		×	. ×	×		1100 X	4	21, 2P	ŝ	12:00	17/20/17	2	OC1-0.5-T1
	·····	×	<u> </u>	-	-) 8	4	÷	ß	9:50	18/03/2017	б О	105-1.5
Hold All Sample Testing until further advice			┢──	-		DOLL	• E	21,28	Ŗ	16:00	18/03/2017	<u>د</u> م ه	IC1-R3
X Hold All Sample Testing until further advice		-	×.	×	<u>×</u>	X 0011	4	22 12 12 12 12 12 12 12 12 12 12 12 12 1	ß	15:45	18/03/2017	28	IC1-R2
Hold All Sample Testing until further advice	┢╌╴	L		ŀ	┢	1100	*	21, 2P		9:25	18/03/2017	<u>_</u>	
×	<u> </u>	×	×		×	9 5 0		11, 7P	5	9:25	18/03/2017	16	IC8-0.5
	+		×		 	lig	*	21, 2P	₹	17:41	16/03/2017	25	<u>5</u>
X Hold untested samples until further advice		+	. ×				1	2, 2P	ŝ	17;41	16/03/2017	4,	107-0.5
X Hold untested samples until further advice		-	-l·			1	1	1, 12	M	10:26	16/03/2017	: 0	ß
Hold untested samples until further advice				┢	1-			, <u>1</u> , 14	3	9:50	18/03/2017	; ~	ឝ្
X Hald untested samples until surther advice	┢	+-			× 		▲ ⊢	21,28	S.	9:50	18/03/2017		105-0,5
X Hold untested samples until further advice	Ť.	1	+	-	+	- <u>-</u> -	1	23, 24	N.	10:23	16/03/2017	6	₽ ₽
Hold All Sample Testing until further advice	+	_	+-		<u>-</u>	-		, <u>,</u>	1	16:49	16/05/2017	בן י ניין י	
* Hold untested samples until further advice	+	-		·	+			, 24	ł	15:49	16/03/2017		103-0,5
	- -		<u> </u>		- 					13:45	15/05/2017		٦ ٦
	-† ·					5	_	* :	N	06201	TOZISAIET	ة <mark>دَ</mark>) [1-1-0
		- 🛉		_	را 	-1-		2	z i	12:30	rtorienist		
Hold All Sample Testing until further advice	+		 e	~ · <	×	-1-	•	2 J 2 J	s i	1000	1 Th 2 Head of T	Ā	
How All sample lesting until further advice		+	┉┿╸	-	_ -	<u>s</u>		27 72	×.	10.50			
	-+-	_ <u> </u> .	┉┼╍	+	_			24. 29 24. 29		10.00		≂ ;	
A Hold untested samples until further advice				<u> </u>	×) > ×			21. 2P	g la	13:41	1102/20141	ה	
j		_ <u>-</u> }		-	-	-F		- - -		c7:m	1102/00/01	= (¢	
-+-	1		•		-+-			36 16	A I	00.77	thor lenter	5	1
_	+	· 🕂		<u> </u>	×	-		21, 2P	MS	11.05	15/03/2017	ی ا	
X Wold instant complete	+	<u>~</u>	×		_	90EE	4	2J, 2P	MS.	16:36	15/03/2017	5 9	TC1-1
× '		Â	×	×	× 	906	CU)	21, 1P	MS	16:36	15/03/2017	1	TC1-0.5
Hold All Sample Testing until further advise		-		<u> </u>		1100	-	21, 2P	M5	11:06	15/03/2017	5	TC2-R2
×) - ×		×	×	1100	*	21, 2P	SW -	11:06	15/03/2017	S	TC2-R1
× Hold untested samples until further advice			~ ×	× 	×	110 B	*	2,28	ñ	7:02	16/03/2017	 	BP4
Hold All Sample Testing until further advice	<u></u>		\vdash		╞	1100	•	۲, ۲	Ŋ	9:23	15/03/2017		Êdê
Hold All Sample Testing until further advice	ļ			<u> </u>	!	1100	▲	21, 2P	¥	. 9:23	15/03/2017	~	BF 2
Hold untested samples until further advice	Ĺ	×	i–	L	┢	Цġ	4	21, 2P	. X	10;20	15/03/2017	-	BP1
Particle Size D	<u> </u>	Fe. Hg. Mn, Hi, Ohroméum Radu	Trace Metals (A), A		Organo Nutrients - TH, T		No. of	#Bottle/I-lar/1	Sem S-Soll / MS - Marin	Time	Date	Laboratory Sample ID	OZM Sample ID
stribution		'b, Sb, Se		FRP	ins - TBT CN, TP, ND	erne (ml.	iarap ha	ipe •Viel / G- / B-Bag	pla Matri o Sedima A-Air	arine.com	Email Address: travis_hurley@o2mathe.com	Travis Husley 0467 593 322	Manager Manager
Pioject Manager,		, V, Zn)	Ca, C7, Cu,		H4, NO2.) 		Gass/P-		Standard	Ternaround		Lab Quote No.:
		10	Analyses	Lauren Ockwell Analyses	$\left \right _{-}$!	Contialners	S	Ť	17WAU-0008	Joh No.:	OMSB Ply Ltd	Client
Project Manager.		•		1		•	vrtact:	Lab. Contact:	ĺ				
Please sign copy on receipt of samples and		8	Way Mal	10 Hod Way Malaga	5		Address:	Ad	Ţ	۶,	Onslow Marine Support Base	Onslow.	Project
			•					le ha					

Environmental Division Perth Work Order Reference EP1702676

٠,

All Onulow Marke Support Base Laboratory: All All Onulow Marke Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A Three Support Base Intermediate 10 Hold Way Marked All N/A N/A N/A N/A N/A N/A All N/A N/A N/A N/A N/A N/A N/A All N/A N/A N/A	Adversary Laboratory Adversary Adversary Adversary Adversary Onclow Metric Support Bare International Adversary 10 High Wy Markage Adversary 10 High Wy Markage Adversary Times Support Bare Times Support Bare International Adversary 10 High Wy Markage Adversary Times Support Bare Times Support Bare International Adversary 10 High Wy Markage Adversary Times Support Bare Times Support Bare International Adversary 10 High Wy Markage Adversary Times Support Bare Times Support Bare Times Support Bare High My Markage Adversary Times Support Bare Times Support Bare Time Support Bare High My Markage Adversary Times Support Bare Time Support Bare Time Support Bare High My Markage Adversary Time Support Bare Time Support Bare Time Support Bare High My My Markage Adversary Time Support Bare Time Support Bare High My My Markage High My My My Markage Adversary Time My							ļ		 [iner Sealed	Sample Container Sealed		Sample Cold	
Light Product Support Base Light Product Support Base Adverse in 10 How Young Product Support Base At Onlow Wate Support Base Adverse in 10 How Young Product Support Base Free all Control of Target Support Base State International Support Base Adverse in 10 How Young Product Support Base Free all Control of Target Support Base State International Support Base International Support Base International Support Base Free all Control of Target Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base International Support Base International Support Base State International Support Base International Support Base Inter	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ទ្ខ							Date/Time:			Received By Lab:	
Alternative Support Base Advances Advances Notice Winter Support Base Advances The Winter Support Base Advances Notice Winter Support Base Advances The Winter Support Base Advances The Winter Support Base The Winter Support Base Advances The Winter Support Base Advances The Winter Support Base The Winter	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ę.	quished	Retin			_			bate/Time:			Sampled By:]	
Advises Advises Advises Advises Advises Advises The a	International constraints International constraints Notice Notice Support Gate All constraints Notice N												•	:	
Advances Advances Advances Advances The Advances Prevention of the term of the term of te	Alternation: Alternation: Alternation: Alternation: Alternation: NIX Planes flotte: Alternation: Alternation: Alternation: NIX Alternation: Alternation: NIX Planes flotter: Alternation: Alternation: Planes flotter: NIX Planes flotter: Planes flotter: Planes flotter: Alternation: Alternation: MIX Planes flotter: NIX Nixternation: MIX Planes flotter: Alternation: Nixternation: MIX Nixternation: Nixternation: Nixterna	Hold All Sample Testing until further					8	-	2	MS	11:20	17/03/2017	32	004-3.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hold All Sample Testing until further advice					8		۲	RS	16:15	17/03/2017	F F	0010	
Advances	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hold All Sample Testing until further				+.	8	1 2:	E	Ř	15:14	17/03/2017		003	
Altoremy: Prove three Provetthree <th col<="" td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>Hold All Sample Testing until further</td><td></td><td></td><td></td><td></td><td>8</td><td>.<u> </u></td><td><u>ب</u></td><td>MS</td><td>11:20</td><td>17/03/2017</td><td>i</td><td>004-0.5</td></th>	<td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>Hold All Sample Testing until further</td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>.<u> </u></td> <td><u>ب</u></td> <td>MS</td> <td>11:20</td> <td>17/03/2017</td> <td>i</td> <td>004-0.5</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Hold All Sample Testing until further					8	. <u> </u>	<u>ب</u>	MS	11:20	17/03/2017	i	004-0.5
Address Add	Alternative Laternative Alternative Rease Notice Alternative Rease Notice Rease Notice Alternative Rease Notice Provide and output of an and output of an provide and output of an an an anal state and an angles output of an and outpu	Hold All Sample Testing until further				+	8		Ľ	MS	8:35	17/03/2017	1	6 00	
Light converties for the support face Light converties for the support face Address Address Consolver Multice Support face Address NUA NUA The mound Support face Support face NUA The mound Support face	All Onlinew Munite Support Base Laternanov Advises Advises Dirick Way Mulling Advises Advises Dirick Way Mulling Advises Provide Total Advises	Hold All Sample Testing until further					8	1	-	MS	8:30	18/05/2017	33	002-0.5	
Adv Online Water Support Base Adv Online Water Support Base d_{c} Online Water Support Base Same fragment Adverse Solution d_{c} Online Water Support Base Same fragment Same fragment Same fragment d_{c} N/A Three Support Base Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment Same fragment Same fragment Same fragment d_{c} Same fragment Same fragment	Alt Onlow Make Support Base Laterrany (Make Make	Hold All Sample Testing until further		Ĺ			18	┢	e	MS	13:45	15/03/2017		ធី	
Children Wither Support Base Laboratory Mathematical Support Base Laboratory Mathematical Support Base Laboratory Mathematical Support Base Laboratory Mathematical Support Base No. Presses Bibles R Ovide Pry Lid Lob No. 10, 40, 40, 50013 Times Support Base Lob Outloar Mathematical Support Base Lob Outloar Mathematical Support Base Lob Outloar Mathematical Support Base Presses Bibles N/X Times Support Base Times Support Base Support Base Support Base Final Base Support Base Presses Bibles N/X Times Support Base Times Support Base Times Support Base Support Base Final Base Support Base Presses Bibles N/X Times Support Base Times Support Base Times Support Base Times Support Base Times Support Base Presses Bibles Support Base Times Support Base Times Support Base Times Support Base Times Support Base Times Support Base Final Base Final Base Support Base Times Support Base Times Support Base Times Support Base Times Support Base Final Base Final Base Support Base Times Support Base Times Support Base Times Support Base Final Base Final Base Final Base Support Base Times Support Base Times Support Base	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Kuki Ali Sample Testing until fusiher				+	18	┢	1	a S	9:25	15/05/2017		G	
Art On low Water Support Base Ladersony Als Address In Hadrony Als Art On low Water Support Base In Hadrony In Hadrony <td< td=""><td>Adverse for the support Base Adverse for the support Base Onlinew Marke Support Base Sademann The support Base Adverse for the support Base 0: N/A The support Base Sademann The support Base Final Baber Baye 0: N/A The support Base Sademann The support Base Final Baber Baye 10 The support Base Sademann Sample Mediat Sample Mediat Final Baber Baye 10 The support Base Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 10 The support Base Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Sample Mediat 11 Sample Mediat Sample Mediat Sample Mediat</td><td>Hold All Sample Testing until further</td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>: E</td><td>Mÿ</td><td>17:41</td><td>16/03/2017</td><td>4</td><td>0</td></td<>	Adverse for the support Base Adverse for the support Base Onlinew Marke Support Base Sademann The support Base Adverse for the support Base 0: N/A The support Base Sademann The support Base Final Baber Baye 0: N/A The support Base Sademann The support Base Final Baber Baye 10 The support Base Sademann Sample Mediat Sample Mediat Final Baber Baye 10 The support Base Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 10 The support Base Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Final Baber Baye 11 Sample Mediat Sample Mediat Sample Mediat Sample Mediat Sample Mediat 11 Sample Mediat Sample Mediat Sample Mediat	Hold All Sample Testing until further	+						: E	Mÿ	17:41	16/03/2017	4	0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Adverse Later transport Adverse Presses (or record to the presses (or rec	Hold All Sample Testing Until Turther	_	-		+-	8		: =	3	05:6	18/03/2017	17	105-0.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	All Consider Nation of the support Base Nation of the support Base <td>Rold All sample resurg undi turner</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>⊥</td> <td></td> <td>Ň</td> <td>16:49</td> <td>16/03/2017</td> <td>2</td> <td>ធ</td>	Rold All sample resurg undi turner		_				⊥		Ň	16:49	16/03/2017	2	ធ	
Alson makes Alson makes Please Note: At Onsilon Marine Support Base Sandald Sandald Balantizary: Alson a_i Onsilon Marine Support Base Sandald Ison Marine Support Base Ison Marine Support Base <td>Landratory: Also function: Also function: Also function: Also function: Numerican function: Address: ID Higd Way Malage Reset for a sign corporation of sample transfer NUA Time: NUA Time: Contracter Lab. Contracter Uniter colspan="2">Address: NUA Time: Mail Contracter Time: Contracter Time: Contracter Time: Contracter Contracter Time: Contracter Contracter Contracter Contracter Time: Contracter Contracter Contracter Contracter Contracter Contracter Contracter Contracter Contracter <th colspan<="" td=""><td></td><td>+</td><td></td><td></td><td>╉</td><td>5 8</td><td>-</td><td></td><td></td><td>1.00</td><td>Trazlenier</td><td></td><td>Î Î</td></th></td>	Landratory: Also function: Also function: Also function: Also function: Numerican function: Address: ID Higd Way Malage Reset for a sign corporation of sample transfer NUA Time: NUA Time: Contracter Lab. Contracter Uniter colspan="2">Address: NUA Time: Mail Contracter Time: Contracter Time: Contracter Time: Contracter Contracter Time: Contracter Contracter Contracter Contracter Time: Contracter Contracter Contracter Contracter Contracter Contracter Contracter Contracter Contracter <th colspan<="" td=""><td></td><td>+</td><td></td><td></td><td>╉</td><td>5 8</td><td>-</td><td></td><td></td><td>1.00</td><td>Trazlenier</td><td></td><td>Î Î</td></th>	<td></td> <td>+</td> <td></td> <td></td> <td>╉</td> <td>5 8</td> <td>-</td> <td></td> <td></td> <td>1.00</td> <td>Trazlenier</td> <td></td> <td>Î Î</td>		+			╉	5 8	-			1.00	Trazlenier		Î Î
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Att Oniow Marke Support Base Laboratory: Market N Att Att Prease Note: Name of an performance of an performan	Kold All Semple Testing until further					Ξļ		2	M	11-12	15/03/2017		COL	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Att Onition Muthe Support Base Laboratory: Address: Att Press (Normalized) At Onition Muthe Support Base Address: 10 Hod Way Malag Press (Normalized) Att International International International Press (Normalized) Att Threason Bote: Threason Bote: Threason Bote: Press (Normalized) Att Threason Bote: Threason Bote: Threason Bote: Press (Normalized) Att Threason Bote: Threason Bote: Threason Bote: Pres	Hold All Sample Testing until further		-			3		۳ ۲	NS :	16:36	15/03/2017	3	1-121	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	At Oniow Muthe Support Base Later Turner Address NA Please Note: $a_1^{(1)}$ Oniow Muthe Support Base Address 10 Hod Way/Malega Please Sign corp on receipt of sample for the support foot record to the support	Hold All Sample Testing until further					5	L	2	MS	16:35	15/03/2017	S	TC1-0.5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hold All Sample Testing until further advice			••••	<u> </u>	18	Ŀ	2	Ň	7:02	16/03/2017		BP4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		 		- -	+.	- 	<u>با</u>	2	~			v v	FIELDE	
Att Onslow Mathe Support Base Laboratory; Att Att 0:: N/A Job No. WA15-0013 Address: 10 Hot Way Malaga 0:: N/A Turner Support Base Samdard Contact: Laboratory; Att 0:: N/A Turner Support Base Samdard Contact: Lauran Contact: <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hold All Sample Testing until further advice			.~		.8		1, 1P	63 	11:00	20/03/2017	t,	052	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Hold All Sample Testing until further			ľ	╞	18		21, 1P	64	10:00	20/03/2017	ť	DS1	
Att Description Laboratory: Address: Att Prease Note: Prease Vign copy on receipt of samp Project Manage: Project Manage	Laboratory: Alsonatory: Preses lips orby:	Hold untested samples until further a	×	×	×	┿╌	L	┢	21, 2P	MS	12:00	17/03/2017	£	OC1-0.5-T2	
At Onclow Marine Support Base Laboratory: Address: At Prease Note: Prease Vign copy on receipt of samp Project Manage nt Onclow Marine Support Base Io hod ways Io hod ways Prease Vign copy on receipt of samp Project Manage nt Onclow Marine Support Base Io hod ways Io hod ways Prease Vign copy on receipt of samp Project Manage nt N/A Threatound Standard Io hod ways Project Manage N/A Threatound Standard Containers Analytes Email algority on receipt of samp Project Manage N/A Threatound Standard Time Standard Project Manage Sample ID Date Time Standard Date Project Manage Sample ID Date Time Standard Project Manage Sample ID Date Time Standard Time Sample ID Date Time Standard Standard Sample ID </td <td>Att Onslow Marke Support Base Lakeratory: Atts Please Bits cit Onslow Marke Support Base Io Hont Survey Io Hont Way Malaga email signed copy of CoC record to Survey cit N/A Turne Sundard Sundard Io Hont Way Io Hont Way rine Sundard Time Sundard Io Hont Way Project Manage: rine Sundard Time Sundard Io Market Io Market rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Project Manage: Project Manage: rine Sundard Sundard Project Manage: Project Manage: rine Sundard Sundard Sundard Project Manage:<td>Hold All Sample Testing until further</td><td></td><td></td><td></td><td>┢</td><td>8</td><td>1.</td><td>21, 2P</td><td>MS</td><td>15:30</td><td>18/03/2017</td><td>ц6</td><td>OC7-R3-0.5</td></td>	Att Onslow Marke Support Base Lakeratory: Atts Please Bits cit Onslow Marke Support Base Io Hont Survey Io Hont Way Malaga email signed copy of CoC record to Survey cit N/A Turne Sundard Sundard Io Hont Way Io Hont Way rine Sundard Time Sundard Io Hont Way Project Manage: rine Sundard Time Sundard Io Market Io Market rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Io Market Project Manage: rine Sundard Time Sundard Project Manage: Project Manage: rine Sundard Sundard Project Manage: Project Manage: rine Sundard Sundard Sundard Project Manage: <td>Hold All Sample Testing until further</td> <td></td> <td></td> <td></td> <td>┢</td> <td>8</td> <td>1.</td> <td>21, 2P</td> <td>MS</td> <td>15:30</td> <td>18/03/2017</td> <td>ц6</td> <td>OC7-R3-0.5</td>	Hold All Sample Testing until further				┢	8	1.	21, 2P	MS	15:30	18/03/2017	ц6	OC7-R3-0.5	
Laboratory: Als Press flore: Control Result Press flore: Press flore: <th col<="" td=""><td>Address: Address: Annives: Freese big nocy: Presse big nocy: P</td><td>Hold untested samples until further:</td><td> ×</td><td>×</td><td>×</td><td>\vdash</td><td></td><td></td><td>2), 2P</td><td>MS</td><td>15:30</td><td>12/03/2017</td><td>45</td><td>OC7-R2-0.5</td></th>	<td>Address: Address: Annives: Freese big nocy: Presse big nocy: P</td> <td>Hold untested samples until further:</td> <td> ×</td> <td>×</td> <td>×</td> <td>\vdash</td> <td></td> <td></td> <td>2), 2P</td> <td>MS</td> <td>15:30</td> <td>12/03/2017</td> <td>45</td> <td>OC7-R2-0.5</td>	Address: Annives: Freese big nocy: Presse big nocy: P	Hold untested samples until further:	 ×	×	×	\vdash			2), 2P	MS	15:30	12/03/2017	4 5	OC7-R2-0.5
Als Als Prease Note: At: Onslow Marine Support Base Address: 10 Hop Mary Malaga Prease lign copy on neelint of samp ends lign copy of neelint of samp ends	Att Onalow Wathe Support Base Lake Ontact: Att Att Address: 10 Hod Way Malaga email and converted samples and samples and samples and samples and samples unally in receipt of samples and samples and samples and samples unally in receipt of samples unall in the samples unally in receipt of samples unall in receipt of samples unall in receipt of samples una	Hold untested samples until further:	×	×	×	<u> </u>			2J, 2P	Mŝ	16:16	17/03/2017	<u>+</u> +	0010	
At: Onclow Mathine Support Base Laboratory: At: Press Press 0:: N/A Lob No:: Wa15-0013 Lab. Contract: 10 Hod Way Malaga Press it in copy or receipt of samp email signed copy of CoC record to mail signed copy of CoC record to Time: 0:: N/A The manufold Sample Matrix 10 Hod Way Malaga Press it is contract: 0:: N/A The manufold Sample Matrix Lab. Contract: Lauren Ockwell 0:: N/A The manufold Sample Matrix Lab. Contract: Lauren Ockwell 0:: N/A The manufold Sample Matrix Lab. Contract: Lauren Ockwell 1: Lab. Contract: Lab. Contract: Lauren Ockwell Press it is contract. 1: N/A The manufold copy of CoC record to Time: Sample Matrix Analyses 2: Mathematic Sample Matrix Analyses Project Manage: 2: 17(05/2017) 8:35 MS 21, 2P 4 1100 2: 17(05/2017) 11:20 MS 21, 2P 4 1100 X X X 4: 17(05/2017) 15:42 MS 21, 2P 4 1100 X X X 4: <td< td=""><td>At: Onslow Marine Support Base Laboratory: At: At: Prease Note: 0:: N/A Iob No.: WA15-0013 Idd. Contract: Iourn Octivel 0:: N/A Time: Sandard Containers Iourn Octivel 0:: N/A Time: Sandard Containers Iourn Octivel 0:: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 11: Iourn Commission Sandard Mark Not Marker Project Manager: 11: Time: Sandard Mark Not Marker Project Manager: 12: Mark Not Marker Time: Sandard Marker Project Manager: 13: Sandard Marker Mark Not Marker Project Manager: Project Manager: 14: Organismus - Tot Sandard Marker Marker Not Organismic - Tot 15: Sandard Marker Marker Not Organismic - Tot Not Organismic - Tot 15: Sandard Marker Marker</td><td>Hold untested samples until further</td><td>×××</td><td>×</td><td>!</td><td>-</td><td>1</td><td></td><td>21, 29</td><td>ŝ</td><td>15:21</td><td>17/03/2017</td><td>43</td><td>600</td></td<>	At: Onslow Marine Support Base Laboratory: At: At: Prease Note: 0:: N/A Iob No.: WA15-0013 Idd. Contract: Iourn Octivel 0:: N/A Time: Sandard Containers Iourn Octivel 0:: N/A Time: Sandard Containers Iourn Octivel 0:: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 10: N/A Time: Sandard Containers Analyses 11: Iourn Commission Sandard Mark Not Marker Project Manager: 11: Time: Sandard Mark Not Marker Project Manager: 12: Mark Not Marker Time: Sandard Marker Project Manager: 13: Sandard Marker Mark Not Marker Project Manager: Project Manager: 14: Organismus - Tot Sandard Marker Marker Not Organismic - Tot 15: Sandard Marker Marker Not Organismic - Tot Not Organismic - Tot 15: Sandard Marker Marker	Hold untested samples until further	×××	×	!	-	1		21, 29	ŝ	15:21	17/03/2017	43	600	
Att Onslow Marine Support Base Laboratory: Att Att Please Note: nt: Onslow Marine Support Base Address: 10 Hox Way Malaga Place sign copy or receipt of samp nt: ONSB Py Ltd Job No.: WAL6-0013 Lab. Containers: 10 Hox Way Malaga nt: NUA Turnariound Standard Lab. Containers: Job Hox Way Malaga oc: NUA Turnariound Standard Lab. Containers: Job Hox Way Malaga odd7: 293 322 Itoration Standard Standard Job Hox Way Malaga Standard Hurley Exal Address: Job Hox Way Malaga Project Manager: Standard Hurley Exal Address: Job Hox Way Malaga Project Manager: Standard Hurley Exal Address: Standard Job Hox Way Malaga Standard Hurley Exal Address: Standard Job Hox Way Malaga Standard Hurley Exal Address: Standard Job Hox Way Malaga Standard Hurley Exal Address: Standard Job Hox Way Malaga Standard Hurley Iso Kanadard Standard Job Hox Way Malaga Standard Hurley Iso Kanadard Standard Job Hox Way Malaga Standard Hurley Iso Kanadard Kanadard </td <td>At: On:low Marine Support Base Laboratory: At: At: Please Note: nt: On:low Marine Support Base I on the Marine Support Base I on the</td> <td>Hold untested samples until further.</td> <td>` ×</td> <td>×</td> <td></td> <td></td> <td></td> <td>1 1 1</td> <td>1), 2P</td> <td>ß</td> <td>15:14</td> <td>17/03/2017</td> <td>47</td> <td>000</td>	At: On:low Marine Support Base Laboratory: At: At: Please Note: nt: On:low Marine Support Base I on the	Hold untested samples until further.	` ×	×				1 1 1	1), 2P	ß	15:14	17/03/2017	47	000	
At: Onslow Marine Support Base Lakerstory: At: At: Please Night copy of CoC receipt of samp nt: ON/SB Pry Ltd Lob No.: WA15-0013 Lak. Omfact: Law Iten Oddress: 10 Hod Way Malaga Please Night copy of CoC receipt of samp N/A Turneround Samdard Containers Law Iten Oddress: 10 Hod Way Malaga Please Night copy of CoC record to N/A Turneround Samdard Containers Law Iten Oddress: Law Iten Oddress: Null Hod Way Malaga Please Night copy of CoC record to N/A Turneround Samdard Sambarot Containers Mark Nations Sammet./ Mark Nations Sammet./ Null Hod Way Malaga Presset Note: Please Night copy of CoC record to N/A Turneround Samdard Sammet Mathix Sammet Mathix Samples Email laboratory analysis results to N/A Turneround Sample ID Date Time Samples Email Nations Sammet./ Mark Nod, Nod, SRP Sample ID Date Time Sample ID Samples Lay 20 Ns Lay 20 Press Night Samples Email Nations Samples Sample ID Lay 20,7037 Stat 21, 2P A Lay 20 Ns Lay 20 Ns Lay 20 Ns <t< td=""><td>At: Onslow Marine Support Base Laboratory: Ats Please Note: nt: Onslow Marine Support Base Address: 10 Host Way Malaga email alged copy on receipt of samp email alged copy of CoC record to the Containers Prease sign copy on receipt of samp email alged copy of CoC record to the Containers nt: ONSE Pry ttd Lob No.: WA16-0013 Lab. Containers John Host Way Malaga email alged copy of CoC record to the Containers using of CoC record to NUA Time: Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Fire IN Array Malaga email algoratory analysis results to the Containers Sample ID Time: Sample ID Sample ID Sample ID Fire IN Array Malaga Project Manage: Sample ID Date Time: Sample ID Marray Malaga Project Manage: Fire IN Array Malaga Sample ID Date Time Sample ID Marray Malaga Project Manage: Fire III allocation y analysis results to Sample ID Date Time Sample ID Marray Malaga Project Manage: Sample ID Date Time Sample ID Organisau - Tati Fire III allocation y analysis results to Sample ID Sample ID Samage ID Malaga Project Manage:</td><td></td><td>× : ×</td><td>×</td><td>×</td><td></td><td></td><td>:</td><td>2,2</td><td></td><td>15:30</td><td>18/03/2017</td><td>Ē</td><td>2</td></t<>	At: Onslow Marine Support Base Laboratory: Ats Please Note: nt: Onslow Marine Support Base Address: 10 Host Way Malaga email alged copy on receipt of samp email alged copy of CoC record to the Containers Prease sign copy on receipt of samp email alged copy of CoC record to the Containers nt: ONSE Pry ttd Lob No.: WA16-0013 Lab. Containers John Host Way Malaga email alged copy of CoC record to the Containers using of CoC record to NUA Time: Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Fire IN Array Malaga email algoratory analysis results to the Containers Sample ID Time: Sample ID Sample ID Sample ID Fire IN Array Malaga Project Manage: Sample ID Date Time: Sample ID Marray Malaga Project Manage: Fire IN Array Malaga Sample ID Date Time Sample ID Marray Malaga Project Manage: Fire III allocation y analysis results to Sample ID Date Time Sample ID Marray Malaga Project Manage: Sample ID Date Time Sample ID Organisau - Tati Fire III allocation y analysis results to Sample ID Sample ID Samage ID Malaga Project Manage:		× : ×	×	×			:	2,2		15:30	18/03/2017	Ē	2	
Als Onsilow Marine Support Base Laboratory: Als Please Note: nt: ONSB Pty Ltd Lob No.: WA15-0013 Lab. Contract: 10 Hod Way Malaga Please sign copy on receipt of samp nt: ONSB Pty Ltd Lob No.: WA15-0013 Lab. Contract: Lourn Dodwell Please sign copy on receipt of samp nt: ONSB Pty Ltd Lob No.: WA15-0013 Lab. Contract: Lourn Dodwell Project Manager. nt: N/A Turnaround Standard Contract: Lourn Dodwell Project Manager. ot: N/A Turnaround Standard Standard Contract: Lourn Dodwell uboratory Date Time Standard Standard Firstill aboratory analysis results to the Way Malaga stand Hew Vieward / Address Time Standard Firstill aboratory analysis results to the Way Malaga stand Time Standard Firstill aboratory analysis results to the Way Malaga Firstill aboratory analysis results to the Way Malaga stand Time Standard Firstill Address Firstill Address stand Time Standard Firstill Address Firstill Address stand Time Standard Firstill Address Firstill Addre	Att Onslow Marine Support Base Laboratory: Address: Att Please Note: net: Onslow Marine Support Base Address: 10 Hox Way Malaga Please Note: net: Onslow Marine Support Base Address: 10 Hox Way Malaga Please Note: net: N/A Turneround Standard Lab. Contarter Lauren Odwell no:: N/A Turneround Standard Contarter Lauren Odwell N/A Turneround Standard Standard Analytee taboratory Time Standard Standard Project Manage: taboratory Immet Standard Standard Standard Project Manage: taboratory Time Standard Standard Project Manage: 3/C 17/05/2017 8:35 Mis 21, 2P 4 1100 3/C 17/05/2017 112.20 Mis 21, 2P 4 11	Hold Untested samples using further		: `> -		$\frac{1}{1}$	÷		1		13:42	17/05/2017	đ	005	
At: Onslow Marine Support Base Laboratory: Ats Please Note: or.: N/A Job No.: WA16-0013 Address: 10 Hod Way Malaga Please sign copy or receipt of samp or.: N/A Thematound Sample ID Containers 10 Hod Way Malaga Presse sign copy or receipt of samp or.: N/A Thematound Sample ID Containers 10 Hod Way Malaga Presse sign copy or receipt of samp or.: N/A Thematound Sample ID Containers Address: 10 Hod Way Malaga eff Travis Hurley Basel Address: Containers Analytees Email laboratory analysis results to samp sample ID N/A Time Sample ID/Adv Malaga Presse sign copy or receipt of sample: Sample ID Base Mater Base Mater Base Mater Email laboratory analysis results to the sample: Sample ID Date Time Sample ID/Adv Malaga Presse sign copy or receipt of sample: Sample ID Base Mater Email Sample: Malages Email Sample: Presse sign copy or cor receipt of sample: Sample ID Base Mater Sample ID/Adv Presse sign copy or cor receipt of sample: Email Sample: Presse sign copy or cor receipt of sample: <t< td=""><td>At: Onslow Marine Support Base Lakerstony: At: At: Please None: nt: OM38 Pry Ltd Job No.: WA15-0013 Userstony: Address: 10 Hod Way Malaga Please Nign copy on receipt of samp nt: OM38 Pry Ltd Job No.: WA15-0013 Userstony: Address: 10 Hod Way Malaga Please Nign copy on receipt of samp or: N/A Timeround Sample Index 10 Hod Way Malaga Please Nign copy on receipt of samp containers Timer Sample Index Containers Lauren Codwell Project Manager. containers Timer Sample Index Containers Enables Sample Sadment/ sample ID Date Time Sample Index Frail Laboratory analysis results to the Samples Sample ID Date Time Sample Index Frail Laboratory Time Sample ID Date Time Sample Index Frail Laboratory Time Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Sample Index</td><td></td><td>÷</td><td>× [:</td><td>;</td><td></td><td></td><td></td><td>3</td><td>5 </td><td></td><td>rtor/color</td><td>; ; ;</td><td></td></t<>	At: Onslow Marine Support Base Lakerstony: At: At: Please None: nt: OM38 Pry Ltd Job No.: WA15-0013 Userstony: Address: 10 Hod Way Malaga Please Nign copy on receipt of samp nt: OM38 Pry Ltd Job No.: WA15-0013 Userstony: Address: 10 Hod Way Malaga Please Nign copy on receipt of samp or: N/A Timeround Sample Index 10 Hod Way Malaga Please Nign copy on receipt of samp containers Timer Sample Index Containers Lauren Codwell Project Manager. containers Timer Sample Index Containers Enables Sample Sadment/ sample ID Date Time Sample Index Frail Laboratory analysis results to the Samples Sample ID Date Time Sample Index Frail Laboratory Time Sample ID Date Time Sample Index Frail Laboratory Time Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Date Time Sample Index Frail Vision Receipt of Containers Sample ID Sample Index		÷	× [:	;				3	5 		rtor/color	; ; ;		
Als Onslow Marine Support Base Laboratory: Address: Als nt: Onslow Marine Support Base Address: 10 Hpd Way Malaga email signed copy of CoC record to Travis Hurley nt: OMSE Pry Ltd Job No.: WA16-0013 Laboratory: nt: OMSE Pry Ltd Job No.: WA16-0013 File nt: OMSE Pry Ltd Job No.: WA16-0013 File time Standard: Laboratory: Job No.: WA16-0013 time Standard: Laboratory: Address: Joh Hpd Way Malaga eff Travis Hurley Email Address: Containers Analytes eff Travis Hurley Email Address: Standard: Lauren Ockwell eff Travis Hurley Email Address: Standard: Laboratory ubbolder/Har/Syg 2017 Standard: Standard: / Standard: Email Jaboratory Stangle ID Date Time Stangle Matrix File Stangle ID Email Stangle: Email Stangle: Email Stangle: Ubbolder/Har/Syd 2017 Stangle: Stangle: File Stangle: Difficitude: Email Stangle: File Stangle: Difficitude: Email Stangle: File	At: Onslow Marine Support Base Laboratory: At: At: Onslow Marine Support Base Address: 10 Hod Way Malaga At: Ibb No.: WA15-0013 Haboratory: At: Ibb No.: WA15-0013 Ibb No.: Ibb No:: Ibb No.: WA15-0013 Ibb No:: Ibb No:: Ibb No:: Ibb No:: Ibb No::	Hold underland samples satisfier.	•	×	×				2 J. 2P	3	14-34	18/02/20112	200		
At: Onslow Marine Support Base Laboratory: At: At: At: Onslow Marine Support Base Ideoratory: At: Please Fight copy of receipt of samp At: ONSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: At: Ideoratory: Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Job No.: WA15-0013 Ideoratory: At: Int: OMSE Pry Ltd Ideoratory: Containes: Job Hot Way Mailagta Ideoratory: Intra- Sample Matrix At: Project Manager: Ideoratory: Intra- Sample Matrix Base Email Ideoratory analysis results to: Ideoratory: Intra- Sample Matrix Project Manager: Email Project Manager: Ideoratory: Intra- Sample Matrix Project Manager: Email Project Manager:	At: Onslow Marine Support Base Laboratory: At/ At: Onslow Marine Support Base Address: 10 Hod Way Mallega Provide the Support Base Isboratory: At/ At: ON38 Pry Ltd Job No.: WA15-0013 Int: International state Isboratory: Isboratory: Int: ON38 Pry Ltd Job No.: WA15-0013 Int: Isboratory: Isboratory: Isboratory: Int: N/A Time: Sandard: Int: N/A Time: Sandard: Int: No. of Semples Analytees Int: State Time: Sandard: Int: State The Isboratory analysis results to: Int: No. of Semples Fread Volume teril) Int: State The Isboratory analysis results to: Int: State The Isboratory analysis results to: Int: State The Isboratory analysis results to: <tr< td=""><td>Hold untested samples land further</td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>21, 2P</td><td>MS</td><td>11 20</td><td></td><td>22</td><td>004-4</td></tr<>	Hold untested samples land further				+			21, 2P	MS	11 20		22	004-4	
At: Onslow Marine Support Base Laboratory: Ats Please Note: nt: Onslow Marine Support Base Address: 10 Hod Way Malaga Please Sign copy or receipt of samp email signed copy of CoC record to the Containers Please Sign copy on receipt of samp email signed copy of CoC record to the Containers nt: OM38 Pry Ltd Job No.: W415-0013 Containers 10 Hod Way Malaga nt: OM38 Pry Ltd Job No.: W415-0013 Containers Address: nt: OM38 Pry Ltd Job No.: W415-0013 Containers Analyses eff Trait Hurley Benall Address: Time: Sample Malatx Analyses sample ID Date Time: Sample Malatx Analyses Email aboratory analysis results to the Marages: Sample ID Date Time Sample Malatx Analyses Email aboratory analysis results to toc Sample ID Date Time Sample Malatx Toc Fred Videms (A), Ng AS Sample ID Date Time Sample Malatx Email Address (Continents Sample ID Date Time Sample Malatx Fred Videms (A), Ng AS Sample ID Date Time Sample Malatx Fred Videms (A), Ng AS Sample ID Da	Att Onslow Marine Support Base Laboratory: Atts Please Note: Address: Onslow Marine Support Base Address: 10 Hod Way Malaga Please Jgn copy on receipt of samp email signed copy of CoC record to University 2007 Please Jgn copy on receipt of samp email signed copy of CoC record to University 2007 N/A Turner: Sample Industry Lab. Confact: Lauren Odwell N/A Turner: Sample Industry Analytees eft Travis Hulley Bozonanine.com Sample Industry Analytees Sample Industry Date Time Sample Industry		·· •	×	×	_			2J, 2P	₹	11:20	17/03/2017	نہ 7	004-0.5	
At: Onslow Marine Support Base Laboratory: At: Please Note: At: Onslow Marine Support Base Address: 10 Hod Way Mailaga Please Note: At: Onslow Marine Support Base Address: 10 Hod Way Mailaga Please Sign copy on receipt of sample copy of CoC record to N/A Turner Ound Sample Maintes 10 Hod Way Mailaga email signed copy of CoC record to N/A Turner Ound Sample Maintes Analytees Email Laboratory analysis results to: N/A Turner Ound Sample Maintes Analytees Email Laboratory analysis results to: N/A Turner Ound Sample Maintes Analytees Email Laboratory analysis results to: N/A Time Sample Maintes Analytees Email Laboratory analysis results to: N/A Time Sample Maintes Analytees Email Laboratory analysis results to: N/A Time Sample Maintes Analytees Email Laboratory analysis results to: N/A Time Sample Maintes Analytees Email Laboratory analysis results to: N/A No. of Samples Frank Hultey, No. Sample Frank Hultey, No. Sample Maintes, No.	Att Onslow Marine Support Base Laboratory: Atts Please Note: Address: Onslow Marine Support Base Address: 10 Hod Way Mallega Please sign copy on receipt of sample from the sector of	Hold untested samples until further.	X :	×		-	8		21, 2P	NS	8:85	17/05/2017	36	0C3-1	
Als Onslow Marine Support Base Laboratory: Als Please Note: 0: N/A Lob No.: WA15-0013 Address: 10 Hod Way Malaga 0: N/A Turneround Sandard Contact: Laboratory: 0: N/A Turneround Sandard Contact: Laboratory: 0: N/A Turneround Sandard Contact: Lauren Ockwell 0: N/A Turneround Sandard Contact: Lauren Ockwell 0: N/A Turneround Sandard Contact: Lauren Ockwell 0: N/A Turneround Sandard Enail signed copy of CoC record to 0: N/A Turneround Sandard Enail Not New Malaga 0: No. of Semples Anal Yees Enail Not New Malaga Enail Not New Malaga 0: Tavits Hurley Bootavary Sandard Enail Not New Malaga	Att Onslow Marine Support Base Laboratory: Atts Please Note: Address: Onslow Marine Support Base Address: 10 Hod Way Malaga Please Upn copy on receipt of samp Address: Iob No.: WA15-0013 Laboratory: Address: 10 Hod Way Malaga Iob No.: WA15-0013 Lab. Contact: Lauren Octive Press Upn copy on receipt of samp Iob No.: WA15-0013 Lab. Contact: Lauren Octive Press Upn copy of CoC record to Iob No.: WIA Threatonic south for the sample is basenet. Iob No.: Press Upn copy of coC record to Iob No.: WiA Time: Sample Malatr Lab. Contact: Lab. Contact: Iob No.: WiA Time: Sample Malatr Iob No.: Project Manage: Iob No:: Nine Marine south Contacts: Iob No.: Project Manage: Iob No:: Nine Marine south Iob No.: Project Manage: Project Manage: Iob No:: Nine Name Project Manage: Project Manage: Iob No.: Iob No:: Nine Name Project Manage: Iob No.: Project Manage: Iob No:: Nine Name Iob No.: Project Manage: Iob No.: Iob No:: Nine Name <td< td=""><td>Hold untested samples until further</td><td>×</td><td>×</td><td>×</td><td>_</td><td></td><td></td><td>21, 2P</td><td>Мŝ</td><td>8:35</td><td>17/03/2017</td><td>35</td><td>0(3-0.5</td></td<>	Hold untested samples until further	×	×	×	_			21, 2P	Мŝ	8:35	17/03/2017	35	0(3-0.5	
Als Please Note: Onslow Marine Support Base Laboratory: Als Please Note: Onslow Marine Support Base Address: Intervision Intervision Intervision Sample Metrix Sample ID Turneround Intervision Sample Metrix Sample ID Turneround Intervision Sample Metrix Sample ID Turneround Sample ID Sample Metrix Sample ID Turneround Sample ID Sample Metrix Sample ID Sample Ide Size Sample ID Committing	Att Onslow Marine Support Base Laboratory: Atts Please Note: Conslow Marine Support Base Contact: In Hot Way Malaga Please Upn copy on receipt of samp Co.: N/A Turnero ound Sample Mabb/s Sample Mabb/s Co.: N/A Turnero ound Sample Mabb/s Co.: N/A Turnero ound Sample Mabb/s Co.: N/A Turnero ound Sample Mabb/s Containers Containers Analytees Eet Transf. Hurley Containers Analytees Filme Sample Mabb/s Encill aboratory analysis recults to Sample ID Date Time Sample ID Date Time Sample ID Distribution The Press Containers Comments Sample ID Comments	Hold untested samples until further .	×	×			8		23, 2P]	SW	8;30	18/03/2017	34	002-1	
Image: Construction Support Base Image: Construction Support Base Image: Construction Base Image: Construction Support Base Image: Construction Base Image: Construction Base Image: Construction Base Image: Construction Base Image: Construction Base Image: Construction Base Image: Construction Base Image: Constru	1 1 <td>Comments</td> <td></td> <td>Ni.</td> <td></td> <td>Nutri</td> <td></td> <td></td> <td>B-Bolt Glass</td> <td>5-507)</td> <td>Time</td> <td>Date</td> <td>Laboratory Sample ID</td> <td>OZM Sample 10</td>	Comments		Ni.		Nutri			B-Bolt Glass	5-507)	Time	Date	Laboratory Sample ID	OZM Sample 10	
1 Onslow Marine Support Base Laboratory; A1S Please Note: 1 Onslow Marine Support Base Laboratory; A1S Please Note: 1 Oh/SB Pry Ltd Job No.: WA16-0013 Lab. Contartert: 10 Hod Way Malaga Please Note: 1 N/A Turnaround Standald Lab. Contartert: Lauren Ockwell Project Managet. 1 Turnaround Standald Lab. Contartert: Lauren Ockwell Project Managet. 1 Times: Standald Lab. Contartert: Lauren Ockwell Project Managet. 1 Times: Standald Lab. Contartert: Lauren Ockwell Project Managet. 1 Times: Standald Project Managet. Project Managet.	Image: Support Base Laboratory: A1S Please Note: Image: Support Base Address: 10 Hod Way Malaga Please sign copy on receipt of samp Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Image: Standard Containers Analytes Image: Standard Image: Standard Image: Standard Project Manager. Image: Standard Image: Standard Image: Standard Project Manager. Image: Standard Image: Standard Project Manager. Project Manager.		Seliphur Ie Size D	, (r, Cu, Ph. 55. 5	X, "AH, 1	ents - Th			la/Her	MIS-IN	۲	itmeis.hurley@o2ma	0467 593 322	JaBeuejui Dofiniu MZO	
Image: Standard tx standard Laboratory: ALS Please Note: Image: Standard tx standard Image: Standard tx standard Image: Standard tx standard Image: Standard tx standard	Image: Standard Image: Standard <th< td=""><td></td><td>Suh İstril</td><td>ie, i Su M</td><td>IPH,</td><td>4, TK</td><td></td><td></td><td>14</td><td>arin</td><td></td><td></td><td>Territo Linebri.</td><td></td></th<>		Suh İstril	ie, i Su M	IPH,	4, TK			14	arin			Territo Linebri.		
Image: system in the system is a system in the system is system in the system in the system is system in the system in the system is system in the system in the system is system in the system in the system is system in the system in the system is system in the system in the system is system in the system in the system in the system is system in the system in the system is system in the	Image: Support Base Laboratory: Als Please Note: Image: Support Base Address: 10 Hod Way Malaga Please Sign copy of receipt of samp Image: Support Base Address: 10 Hod Way Malaga Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy on receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy on receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy on receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp Image: Support Base Image: Support Base Image: Support Base Please Sign copy of receipt of samp	Project Manager.		Kg, Min. . 201	ран	IN, TP,			Vial / G B-Bag	e Seder		Turnaround: Time:	N/A	Lab Quete No.:	
Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system Image: system	Image: Support Base Laboratory: Als Please Note: Image: Support Base Address: 10 Hod Way Malaga Please Sign copy or receipt of samp Image: Support Base Address: 10 Hod Way Malaga Please Sign copy or receipt of samp Image: Support Base Address: 10 Hod Way Malaga Please Sign copy or receipt of samp Image: Support Base Image: Support Base Image: Support Base Image: Support Base	Email laboratory analysis results to C		yees	Ana		$\left \right $	alners	Cont	ent/	2200 0710				
2. Onslow Marine Support Base Address: 10 Hod Way Malaga email signed copy of receipt of samp	CIIGILLOLCUSCUY COC NCCIA Please Note: Laboratory: Als Please Note: Address: 10 Hod Way Malaga Prase Sign copy of CoC record to	- Fraject Maryenet.		well	ren Od	<u>ام</u>		fact;	tab. Con		W416-R013			(Tent:	
Doublow Marine Support Base Address: At Please Note: Please Note: Please Note: .		email signed copy of CoC record to C		Malaga	d Way I	10 Ho									
Laboratory:: A1S Please Note:		Please sign copy on receipt of sample							Add		ñ 	r Marine Support Bay		Projecto	
•				İ	ē			202		ĺ					
,	_				•		•	•							

.

. .

.

The selected samples for each job are listed below: TBH4A	Hì Marnie	From: Travis Hurley [mailto:travis.hurley@o2marine.com.au] Sent: Monday, 15 May 2017 5:34 PM To: Marnie Thomsett <marnie.thomsett@alsgiobal.com> Subject: RE: Sediment Cation Exchange Capacity Tests</marnie.thomsett@alsgiobal.com>	Right Solutions - Right Partner www.alsglobal.com	EnviroMail [™] 00 - Summary of all E	9 0	We are keen for your feedback) <u>[</u> EnviroMail ^m 111 - Analysis of VO(Malaga WA 6090 AUSTRALIA	ALS Marnie.thomsett@alsglobal.com	T +61 8 9209 7655 F +61 8 9209 7600		Marnie Thomsett Client Services Officer	Kind Regards,	Thanks	For Job: EP1702676 can we please test sample OC4-0.5 for: Cation exchange capacity	A re-batch as described below.	Η,	Categories:	Follow Up Flag: Flag Status:	From: Sent: To; Subject:	, Jessica Walker
) are listed below: 1		.hurley@o2marine.com.au] PM omsett@ALSGюbal.com> าange Capacity Tests		Summary of all EnviroMails [™] by Category	EnviroMait ^m 110 – Identifying Hidden PFAS Chemicals in Environmental Samples and Firefighting Foams EnviroMait ^m 109 – PFOS Trace Analysis to Meet Trace Guideline Regulrements	We are keen for your feedback! <u>Please click here for your 1 question survey</u> EnviroMail ^m 111 - Analysis of VOCs by Thermal Desorption Analysis	1 eney-house		isgtobal.com		Penn Work Order Reference	Environmental Division			e test sample DC4-0.5 for:			URGENT attention	Follow up Flagged	Marnie Thorrsett Tuesday, 16 May 2017 10:37 AM Samples Perth FW: Sediment Cation Exchange Capacity Tests	FI/20/01 FS:01

Environmental Ervision Perth Work Order Reterance EP1702676

L

X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold All Sample Testing until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold untested samples until further advice X X X Hold All Sample Testing until further advice X X X Hold All Sample Testing until further advice X X X Hold All Sample Testing until further advice X X Hold All Sample Testing until further advice X X Hold Untested samples until furt			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 12,22 14	M M M M M M M M M M M M M M M M M M M	15:90 16:46 16:46 10:23 9:50 9:50 9:50 10:28 9:50 9:50 9:25 9:25 9:25 15:45 15:45 15:45 15:45 15:45 15:45 15:45 15:45 15:40 12:00		3222258	OCI-0.5-11 DCI-1 OCI-0.5 Sampled By: Sampled By: Received By: Lab:
× × × × × × × × × ×	│_┞·····			┃		15:90 16:46 16:46 10:23 10:26 9:50 9:50 9:55 17:41 17:		<u>%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</u>	
x x <th></th> <th></th> <th></th> <th>╏═┈╎┄╴┟──┧──┧──┼╼━━┷╼┅┼╍╌╀──┼╴┅┥╓╍╌┞╾╾┝╶──╨─┼╶┼╼┸╋──┤</th> <th></th> <th>15:90 16:49 16:49 10:28 10 10:28 10 10:28 10 10 10:28 10 10 10:28 10 10 10 10 10 10 10 10 10 10 10 10 10</th> <th>15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 13/03/2017</th> <th>\$\$\$\$\$\$\$\$\$\$\$ \$\$</th> <th>-</th>				╏═┈╎┄╴┟──┧──┧──┼╼━━┷╼┅┼╍╌╀──┼╴┅┥╓╍╌┞╾╾┝╶──╨─┼╶┼╼┸╋──┤		15:90 16:49 16:49 10:28 10 10:28 10 10:28 10 10 10:28 10 10 10:28 10 10 10 10 10 10 10 10 10 10 10 10 10	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 13/03/2017	\$\$\$\$\$\$\$\$\$\$\$ \$\$	-
x x <td>╌╌╎╌╎─┼╾┽╌╂╴┥╌┉╌╴╎╌╎╌┽╾╓╴╏╶┤</td> <td></td> <td></td> <td>╵╵╹╴╴╏╴╴┨╶╌╎╼═╧╼┅┥╌╴╬╴╌╎╴╍┅┥┉╍┉╠═╼╾┝╶╶┈╨╶┼╶┼╼╌╂──┤</td> <td></td> <td>15:90 16:49 16:49 10:23 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10 10:25 10 10 10:25 10 10 10:25 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017</td> <td>122222225</td> <td></td>	╌╌╎╌╎─┼╾┽╌╂╴┥╌┉╌╴╎╌╎╌┽╾╓╴╏╶┤			╵╵╹╴╴╏╴╴┨╶╌╎╼═╧╼┅┥╌╴╬╴╌╎╴╍┅┥┉╍┉╠═╼╾┝╶╶┈╨╶┼╶┼╼╌╂──┤		15:90 16:49 16:49 10:23 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10:25 10 10 10:25 10 10 10:25 10 10 10:25 10 10 10 10 10 10 10 10 10 10 10 10 10	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017	122222225	
x x <td>╵─┤─┼━┽╌╂╴┟╌┉──│─┼╍┿━┯┅┼╶╽</td> <td></td> <td></td> <td>┟╴╏╴┨╌╎╍╾╸┥╴╄╌╎╴┅┥┉┈┞╾╸┟╴┈┙╴┼╶┼╼╂╼┤</td> <td></td> <td>15:90 16:49 16:49 10:25 9:50 9:50 9:50 9:50 9:50 10:28 10 10:28 10 10:28 10:28 10 10 10:28 10 10 10:28</td> <td>15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017</td> <td>322225</td> <td></td>	╵─┤─┼━┽╌╂╴┟╌┉──│─┼╍┿━┯┅┼╶╽			┟╴╏╴┨╌╎╍╾╸┥╴╄╌╎╴┅┥┉┈┞╾╸┟╴┈┙╴┼╶┼╼╂╼┤		15:90 16:49 16:49 10:25 9:50 9:50 9:50 9:50 9:50 10:28 10 10:28 10 10:28 10:28 10 10 10:28 10 10 10:28	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017 18/05/2017	322225	
x x	┼╶┾━┽╌╂╴┫╌┉╌╎╌┼╍┿━┿┸┨╶╽╴	┿ ╴╋╺╞╼╞┥╍╏ ╌┝╌┈┝┈╹╷╢╖╖╞╧┝╧╖┝╧ ╖╞╶╖ ╽┈╖╷┝┈┍		┨ <u>╴┨╶┼╍╍┥╍╶╀</u> ╌┼╶┅┥┅╍┡ ╍╼ ┝╶╌╨ <u>┤</u> ╶┼ <u></u> ┹╋┯┽	┼┈╍┦━╍┫━╍┥═╾┥╴╴┥╴╾╍┫╼╍┫━╍┠╌╴╽┈┍┥╾╼┅╖┅╵┅╴╶┤╴	15:90 16:49 16:49 10:23 10:23 10:25 9:50 9:50 9:50 10:26 10 10:26 10 10:26 10 10:26 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10:26 10 10 10 10 10 10 10 10 10 10 10 10 10	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/09/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017	32522	
x x x x x x x x x x x x x x x x x	┝━╾┼──╂╴┫╌┅┄╌│─┤╌┥━━┲┅╴┨╶┨╴	╋╼╾┿╼╾┿╌┅┧╌╌┾┄╦┈┝┈╶╷╢┉┈╍┝╼═┝╼┈╢╼╩╍┢╸┇╍╢╶┈╖╢╴┅┉╷╧╝┤		┨──┼┯━━╬━┅┿╍╌╫──┼╴╍┉┥┉╍┉┞━╼╾┟╴─┈┩╴┼╶┼╶╾┨╾╾┤		15:9C 16:49 16:49 10:23 10:23 10:23 10:23 10:23 10:26 10:26 10:26 10:26 10:26 10:26 10:26 10:26 10:26 10:26 10:23 10 10 10 10 10 10 10 10 10 10 10 10 10	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017 18/03/2017	3255	10541.5
× × × × × × × × × × × × × × × × × × ×	╞═╂╴┫═╍╌╎╌╎╾╅━╤┷╂╴┫╴			┾╍━╤╼┅┿╍╌╬╌╌╎╴╍┥┉╍╌┡━╼╾┟╴╴┈┩╴┼╶╴┼	╉╍╍┫═╾┥╴╴┥╴╴╾╴╉╼╾╋╼╍╊╶╌╎┈┍╺╽╾╼╍╗╍╴╴╸	15:90 16:46 10:29 9:50 9:50 10:26 9:50 10:26 10:26 10:26 10:26 10:26 10:26 10:26	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 16/03/2017 18/03/2017 18/03/2017 18/03/2017	22	iC1-R3
× × × × × × × × × × × × ×	╉╴┫─┅┈┤─┤╼╋━╤┅╂╶┫╴			╤━╍┽╾╶╬╾╌┼╴╍┥┉╾┡━╍╾┞╴╴╶┇╴╴┼╴╴┼╶╾╂╼╌┽	┫━┙┤──┥──╋━━╋┈╴╽┈┍┥╾═┑┑┑╴╵╸╴	15:90 18:45 16:46 10:23 9:50 9:50 10:26 10:26 10:26 10:26 10:26 10:26 10:26	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017 16/03/2017 16/03/2017 18/03/2017	31	IC1-R2
× × × × × × × × × × × × × × × ×	┨─┅┉──┤──┼╍┥━━╦┅╌┨╶┥╴			┿ ╴┍╶╷╴╎╴╻┥╓╍╶┡╾╼ ┝╴ <u>╶</u> ╶┥──┼ ──╂──┤	┥──┼───╋━━╋━╍┠┈╴┟┈┍┥╾━╍╗╍┈╵┅┈╷┈┝──	15:90 16:49 10:23 9:50 9:50 10:26 9:50 10:26 9:50 10:26 10:26	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017	26	
× × × × × × × × × × × × × × × × × × ×				╬──┼╴╍┥┉┉┞━━┝╴╴┈┥─┼┼╶╾╂╾╾┼	┤ <u></u> ┥	15:90 16:49 16:49 10:23 9:50 9:50 9:50 10:26 10:28 10:28	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 16/03/2017 16/03/2017		IC8-0.5
× × × × × × × × × × × × × × × × × × ×				╌┼╴╺ ╍┥ ┅ ╍╌┞═╍═ ┟╴ <u>╶</u> ┈┩──┼ <mark>──╂──┼</mark>	····	15:9C 18:45 16:49 10:23 9:50 9:50 9:50 10:26 10:26	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/08/2017 18/08/2017 18/08/2017	12	IC7-1
× × × × × × × × × ×	╎╌┿━╤┅╎╎╶╽╴			┉┥┉┉┉┞━╍━┞╴╴┈┩──┼┼──╂──┼	╉━╋━╊┈┟┈┍┟╸╸╗╖╷┆┈╶╞╴	15:90 18:49 10:23 9:56 9:56	15/03/2017 16/03/2017 16/03/2017 16/03/2017 16/03/2017 18/08/2017 18/08/2017	` Ŧ	107-0.5
× × × × × × × × × × × × × × × × × × ×		·····	·····	┉┞━╍━┞╴╴┈┩──┼┼──╂──┼	╋━╍╊╌╍┟╍┍┥╾╼┑╗╍╍┷╍╶┥	15.90 18:45 16:49 10:23 9:50 9:50	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017 18/03/2017	: ::	106
× × × × × × × × × × ×	;		┤╴──┤╾╍┅╴╼━┝━╍┛┫╸╸╍╽	≉	╋┈╴┟┈┍┟╾╾┑╗	15;90 18:45 16:49 10:23	15/03/2017 16/03/2017 16/03/2017 16/03/2017 18/03/2017	יין ייקי 	Ē
× × × ×				· · · · · · · · · · · · · · · · · · ·		15:90 16:49 16:49	15/03/2017 16/03/2017 16/03/2017 16/03/2017	2	5050
× × ×			·	┼┼╼╋╼┥	<u>8</u> 8 8 8	15:90 18:45 16:49	15/03/2017 16/03/2017 16/03/2017	ර්	ي م
× × × × ×				╎─╂─┤	<u>8</u> 8 8	15:9C 16:45	15/03/2017 16/03/2017	فت 	ā
× ×	<u> </u>			╉	N N	15:90 18:45	15/03/2017	5	103-0.5
	×	i	-		N.	15;90			ā
X i Hold untested samples until further advice			110	21, 2P	1		12/02/2017	5	JC1-1.0
X X Hold untested samples until further advice	×	×	4 1100	+	MS	15:30	18/03/2017	- 	ē
	<u> </u>	-			MS	10:00	17/03/2017	Ē	105
Hold All Sample Testing until furtner advice		1				16:36	15/03/2017	7 3	TC1-T2-1
X X X Hold untested samples until further advice	×	×		-[16:35	15/03/2017	5 7	TC1-0.5-T2
×	+		_ _	· {–		13:41	15/03/2017	5	104
* *	1			+		10:25	15/09/2017	: (đ
·	_ _			-+	5	an:TT	TOZIENÍCT	5	1
	·+ ×	<u>~</u>	_	Ŧ	5	11-76	10,000,0017	ام •	
X X High intertal encoder intil funktion and		<u> </u>	00Tt	2J, 2P	SW	16:36	JS/03/2017	8	TC1-1
× ×	×	×	3 000	21, 1P	SW	16:36	15/03/2017		TC1-0.5
Hold All Sample Testing until further advice	-	e.	4 1100	21, 2P	MS	11:06	15/03/2017	5	10.82
x x x x	×	×	4 1100	21, 2P	SW	11:06	15/03/2017	N	TC2-R1
×××	×	×	4 1100	2, 2P	Ň	7.02	16/09/2017	; • •	BP4
Hold All Sample Testing until further advice		0	4 1100	21, 2P	ΥĞ	85.6	15/03/2017		893
Hold All Sample Testing until further advice		6	4 1100	21, ZP	MS		15/03/2017	i N	892
X Hold untested samples until further advice		6	4 1100	2J, 2P	Ň	10:20	15/03/2017		891
NO3. BTEX, THIL Fee, Hg, MG, NJ, F Protide Size Of Particle Size Of Dromium Radiuc	Nutrients - TN, TR NO3.	Ürganot	No. of S	Ty 8-Bottle / J-Jar / Y Plastic,	3-Sol / M5- Marin	- ជី៣e	Date	Laboratory Sample ID	O2M Sample ID
ТРЧ, РАН , АI, Cd, Q b, Sb, Se, 1 ble Sidphi		ias - Tiest	entiples 	Viel / G-G	As Matufx s Sedimen A-Air	imarine.com	Email Address: travis.hu/ley@o2mari.re.com	Travis Hurley 0467 593 322	O1M Project Manager
u Sulte	1, NO2,	i		leas / P-	t / W-Wat	Standard	Tumaround Time:	N/A	Lab Quoke No.:
		-	Containers	Cont	er /				
Lauren Ockwell Project Manager.	Laure		<u>R</u>	Lab. Contact:			Inh No.	Divest Phy ind	Client
10 Hox! Way Malaga Please sign copy on receipt of samples and email signed one of for according took	10 Hod		1995	A00			or allow Millingia Contractions		
ALS Please Note:			07	Laboratory	1		Marine Summer i		Proiect

O2 MARINE

2

Chain of Custody (CoC) Record

02	*/
MARINE	

.

_

Chain of Custody (CoC) Record

										ainer Sealed	Sample Container Sealed		Sample Cold
		Courier:								Date/Time:	- - -		Received By tab:
	BY:	Reliaquished By:	Reliaqu			Γ				Date/Time:			Sampled By:)
		_		_								- - 	! : :
Hold All Sample Testing until further advice						500	2	Ľ	MS	11:20	17/03/2017	ц К	004-1.0
Hold All Sample Testing until further advice		_				250	-	브	N	16:16	17/03/2017	f	0010
Hold All Sample Testing until further advice						250		е	ŝ	15:14	17/03/2017	с	003
Hold All Sample Testing until further advice		_				250		Ľ	ŝ	11:20	17/08/2017	3	004-0.5
Hold All Sample Testing until further advice		_				250	-	E	Ř	8:35	17/03/2017	26	8
Hold All Sample Testing until further advice	_					250		14	¥	2:20	18/03/2017	33	002-0.5
Hold All Sample Testing until furthe advice		-				250	, ,,	ੲ	MS	13:45	15/03/2017		ធ
Hold All Sample Testing undi further advice	-					15	_	堆	N.	9:25	18/03/2017		ī,
Hold All Sample Testing until further advice						Ş		E	Ŗ	17:41	16/03/2017	4	9
Rold All Sample Testing until further advice	_	-	Ĺ					: 2	3	9:50	18/03/2017	12	105-0.5
Rold All Sample Testing until further advice		_	_			250		6		16:49	16/03/2017:	23	ធ
Rold All Sample Testing until further advice						500	-	2	S.	11:05	15/03/2017) 7	TC2
Hold All Sample Testing until further advice		+			-		- ·	: =	M	16:35	15/03/2017	25	701-1
Hold All Sample Testing until further advice		┝				Ľ		: 4	MS	16:35	15/03/2017	S	TC1-05
Hold All sample Testing undi further advice		_				Į		2	3	7:02	16/03/20171	f	Bby
	Ì	+				l te	· •	1			-	-	FIELDO
Rold All Sample Testing until further advice		·				ġ	- b	2, JF		. 11:00	20/03/2017	ר (DS2
Hold Ail Sample Testing until further advice					T	50	-	ar 'r		10:00	20/03/2017	£	150
Hold untested samples until further advice	×	×	×		×	1100	4	2J, 2P	a.	12:00	17/03/2017	ځ.	001-0.5-12
Hold All Sample Testing until further advice					7	1100	4	21, 2P	ĩ	15:30	18/03/2017	μ 6	0C7-R3-0.5
Hold untested samples until further advice	×	×	×	×	×	1100	- · 4	2J, 2P	MS.	15:30	18/03/2017	ť	OC7-R2-0.5
Rold untested samples until further advice	×	×	×	×	×	1100	[··	21, 2P	3	16:15	17/03/2017	ب ب	000
Hold untested samples until further advice	×	!×	i T	;	×	110	4	2J, 2P	Z	15:21	17/05/2017	43	80
Hold untested samples until further advice	 	· · ·	•••		•••			2,27		15:14	17/03/2017		003
	÷	- † -	د 	,	<		 	: :	5	19.00	11/17/c0/0T	; <u>+</u>	5
The distance of the sinil dist in the second	•	- [× .	•	i		 •	2.1	z ! ;	10.00	crowing of	7	
Hold instacted samples until further advic		·				110	-	21.20	1	15.43		ç.	2
Hold untested samples until further advice	XX	×	×		Х	0071	4	2J, 2P	SN	14:20	18/03/2017	ور م	64
Hold untested samples until further advice	×		-			0011	 4	21, 2P	3	11:20	17/03/2017	53 53	004-1
	×	×	×	×	×	1100	 	2J, 2P	3E	11:20	17/03/2017	ω L	004-9.5
Hold untested samples until further advice	×	×				1100	 	21, 2P	ž	S5:8	17/03/2017	36	003-1
Hold untested samples until further advice	×	×	×	×	×	1100		21, 2P	ŝ	8:35	17/03/2017	32	0C3-0.5
Hold untested samples until further advice	×	× 	 			1100	ь	21, 2P	SN.	06:8	18/03/2017	34	0021
Comments		Cd, Cd 	1190		-	T:	1		ક-કંભી	lîme	Date	Sampie ID	O2M Sample ID
	5eiphur	a, Cr. Cu, J ^a la, S <u>b.</u> S	ex, max, a e Metalsi	ients - Th 4, NO2, P	Nganalia	tai Vafer	No. of Se		IND M	naríne.com.	triali Address travis hurley@o2marine.com	0467 593 322	Managar Managar
Project Manager.	Suite istrikwilloj	fe, Hg, M ie, V, Za) kedualbie	AL AL AS	i. Ticil, Th 109, FRP	5 1181T	ne (mi.)		/V-Yhk/ Kc/8-La	n Malufa Britte Sødi en / A-Ale	Standard	Times	N/A	Lab Quote No.:
Email laboratory analysis results to O2M			Analytes			- 2	Containers	- 2	in in il.				
and an an an an an an an an an an an an an		Ē	Lauren Ockwel]	-	Lab. Contact:	F	'	Job No.:: WA16-0013	Job No.	OMSB PIN Ltd	
ermall signed copy of CoC record to O2M Protect Manager.		a de la	afterterat Atexas coord of	to pag									
Please sign copy on receipt of samples and				10			Address			8	Onslow Marine Support Base	Onslow	Projectz

r.

.

A17/1096

Chain of Custody (CoC) Record

	Project:	Onsio	w Marine Support 8	ase			Idress	12		7 For	rest A	nalytica venue VA 6004			Page 1 Please Note: Please sign copy on receipt of samples and email signed copy of CoC record to O2M
	Client:	OMS8 Pty Ltd	Job No.:	17WAU-0008	-	Lab. Co				Jan	e Stru				Project Manager
	Lab Quote No.:	TBA	Turnaround Time:	Standard	the strates / J	4/14/19	itaine	ers.		NO2	Ana	Hyses ਟੁੱਟ	Suite	705	Email laboratory analysis results to O2M Project Manager.
	O2M Project Manager O2M Sample ID	0467 593 322 Laboratory	Email Address: travis.hurley@n2gre Date	oup.com.au Time	Sample Matrix M5: Mume Sedetunt / Air	Type 1/11er / V.Var/ G.Gla Plavic / 8-5ee	No. of Samplers	Total Volume (mt.)	Giganotina TBT	 TW_TEN_TP_Net4_1 WOX_DR 	BTEN, TRIH, TRH, PAH	dals (As. Cd. G. Gu, N., Higi	սու Դոժս է ֆու Տալքի ար	ate Discontant.	
		Sample ID			A / Post S	B.Betti				Nutrier	_	Tace for	Chenne	Partice	Comments
	TC1-0.5-T3		15/03/2017	16:36	MS	ZGJ, 2PB	4	1000	×	x	×	×		x	
	OC1-0.5-T3		17/03/2017	12:00	MS	2GJ, 2PB	4	1100	x	x	x	x		x	
	TC1-T3-1		15/03/2017	16:36	M5	2GJ, 2PB	4	1000	×	x	x	x		x	
				_											
_									-						
j	Sampled By: Received By Lab: Sample Cold	ACA Daw	Strack) Sample Conta	Date/Time:	22/3	NASI	>				Reling	uished Cou	By: Irier:		

Appendix B Laboratory QA/QC & Analytical Methods

QUALITY CONTROL REPORT

Work Order	: EP1702676	Page	: 1 of 14	
Client	: WA MARINE PTY LTD	Laboratory	: Environmental Division Perth	1
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell	
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA Au	stralia 6090
Telephone	:	Telephone	: 08 9209 7606	
Project	: 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017	WIIII.
Order number	:	Date Analysis Commenced	: 23-Mar-2017	
C-O-C number	:	Issue Date	: 04-Apr-2017	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: EP/814/15			Accreditation No. 825
No. of samples received	: 56			Accredited for compliance with
No. of samples analysed	: 37			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Amanda Conkie	Organic Chemist	Brisbane Organics, Stafford, QLD
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics, Malaga, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Malaga, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Malaga, WA
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Malaga, WA
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Peter Keyte	Newcastle Manager	Newcastle - Inorganics, Mayfield West, NSW
Satishkumar Trivedi	Acid Sulfate Soils Supervisor	Brisbane Acid Sulphate Soils, Stafford, QLD
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA033-A: Actual Ac	idity (QC Lot: 806422)								
EP1702676-001	BP1	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.00	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.00	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	9.6	9.6	0.00	0% - 20%
EP1702676-037	OC4-0.5	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.00	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.00	No Limit
		EA033: pH KCl (23A)		0.1	pH Unit	9.2	9.2	0.00	0% - 20%
A033-B: Potential	Acidity (QC Lot: 80642	2)							
EP1702676-001	BP1	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.073	0.076	4.03	0% - 50%
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	45	48	4.94	No Limit
		(a-22B)							
EP1702676-037	OC4-0.5	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.577	0.559	3.17	0% - 20%
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	360	348	3.26	0% - 20%
		(a-22B)							
EA033-C: Acid Neut	tralising Capacity (QC I	_ot: 806422)							
EP1702676-001	BP1	EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	9.06	9.06	0.00	0% - 20%
		EA033: sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	2.90	2.90	0.00	0% - 20%
		(s-19A2)		10	mole H+ / t	1810	1810	0.00	0% - 20%
		EA033: acidity - Acid Neutralising Capacity (a-19A2)		10		1810	1010	0.00	0% - 20%
EP1702676-037	OC4-0.5	EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	31.5	31.6	0.190	0% - 20%
		EA033: sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	10.1	10.1	0.297	0% - 20%
		(s-19A2)							
		EA033: acidity - Acid Neutralising Capacity		10	mole H+ / t	6300	6310	0.199	0% - 20%
		(a-19A2)							

ub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%	
EA033-E: Acid Base	Accounting (QC Lot:	806422) - continued								
EP1702676-001	BP1	EA033: Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	0.00	No Limit	
		EA033: Net Acidity excluding ANC (sulfur units)		0.02	% S	0.07	0.08	13.3	No Limit	
		EA033: Liming Rate		1	kg CaCO3/t	<1	<1	0.00	No Limit	
		EA033: Liming Rate excluding ANC		1	kg CaCO3/t	3	4	28.6	No Limit	
		EA033: Net Acidity (acidity units)		10	mole H+ / t	<10	<10	0.00	No Limit	
		EA033: Net Acidity excluding ANC (acidity units)		10	mole H+ / t	45	48	6.45	No Limit	
EP1702676-037	OC4-0.5	EA033: Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	0.00	No Limit	
		EA033: Net Acidity excluding ANC (sulfur units)		0.02	% S	0.58	0.56	3.51	0% - 20%	
		EA033: Liming Rate		1	kg CaCO3/t	<1	<1	0.00	No Limit	
		EA033: Liming Rate excluding ANC		1	kg CaCO3/t	27	26	3.77	0% - 20%	
		EA033: Net Acidity (acidity units)		10	mole H+ / t	<10	<10	0.00	No Limit	
		EA033: Net Acidity excluding ANC (acidity units)		10	mole H+ / t	360	348	3.39	0% - 20%	
A055: Moisture Co	ontent (QC Lot: 807401)								
EP1702676-004	BP4	EA055-103: Moisture Content (dried @ 103°C)		1	%	19.3	18.4	4.75	0% - 50%	
EP1702676-018	IC3-0.5	EA055-103: Moisture Content (dried @ 103°C)		1	%	18.9	16.8	11.8	0% - 50%	
A055: Moisture Co	ontent (QC Lot: 807402									
EP1702676-035	OC3-0.5	EA055-103: Moisture Content (dried @ 103°C)		1	%	22.2	21.4	3.71	0% - 20%	
EP1702676-045	OC7-R2-0.5	EA055-103: Moisture Content (dried @ 103°C)		1	%	24.6	24.5	0.594	0% - 20%	
G005-SD: Total Me	etals in Sediments by I	CP-AES (QC Lot: 810872)								
EP1702676-004	BP4	EG005-SD: Aluminium	7429-90-5	50	mg/kg	1370	1350	1.36	0% - 20%	
		EG005-SD: Iron	7439-89-6	50	mg/kg	9600	9740	1.48	0% - 20%	
EP1702676-020	IC4	EG005-SD: Aluminium	7429-90-5	50	mg/kg	1090	1040	5.11	0% - 20%	
	-	EG005-SD: Iron	7439-89-6	50	mg/kg	6460	6120	5.35	0% - 20%	
G005-SD: Total Me	etals in Sediments by I	CP-AES (QC Lot: 810876)			0.0					
P1702676-035	OC3-0.5	EG005-SD: Aluminium	7429-90-5	50	mg/kg	1340	1300	2.85	0% - 20%	
11102010-033	000-0.0	EG005-SD: Iron	7439-89-6	50	mg/kg	8580	8670	1.01	0% - 20%	
EP1702676-047	OC1-0.2-T2	EG005-SD: Aluminium	7429-90-5	50	mg/kg	3740	3710	0.785	0% - 20%	
	0010.212	EG005-SD: Adminian	7439-89-6	50	mg/kg	21700	24900	13.7	0% - 20%	
G020-SD: Total Mo	otals in Sodimonts by I	CPMS (QC Lot: 810873)	1100 00 0	00	ilig/itg	21100	21000	10.1	070 2070	
P1702676-004	BP4	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
1 1702070-004		EG020-SD: Caumum EG020-SD: Selenium	7782-49-2	0.1	mg/kg	1.0	1.2	19.3	0% - 50%	
			7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit	
		EG020-SD: Silver	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit	
		EG020-SD: Antimony	7440-38-0	0.5	mg/kg	3.0	3.1	0.00	No Limit	
		EG020-SD: Cobalt EG020-SD: Arsenic	7440-48-4	1	mg/kg	16.0	16.2	0.00	0% - 50%	
			7440-38-2	1	mg/kg	10.0	9.6	3.78	0% - 50%	
		EG020-SD: Chromium	7440-47-3	1	mg/kg	1.6	9.6	0.00	No Limit	
		EG020-SD: Copper	7439-92-1	1	mg/kg	1.0	1.8	0.00	No Limit	
		EG020-SD: Lead	1409-92-1	1	iiig/kg	1.0	1.3	0.00		

Page	: 4 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 810873) - continued							
EP1702676-004	BP4	EG020-SD: Zinc	7440-66-6	1	mg/kg	5.2	5.4	3.95	No Limit
		EG020-SD: Manganese	7439-96-5	10	mg/kg	388	397	2.41	0% - 20%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	24.0	23.7	1.28	0% - 50%
EP1702676-020	IC4	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Selenium	7782-49-2	0.1	mg/kg	0.6	0.5	0.00	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	2.5	2.3	6.53	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	10.5	10.0	4.31	0% - 50%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	9.4	8.7	8.41	No Limit
		EG020-SD: Copper	7440-50-8	1	mg/kg	1.5	1.4	0.00	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	1.0	<1.0	0.00	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	3.4	3.1	8.91	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	5.2	4.8	7.89	No Limit
		EG020-SD: Manganese	7439-96-5	10	mg/kg	172	163	5.38	0% - 50%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	15.5	14.4	7.24	No Limit
EG020-SD: Total M	etals in Sediments by IC	CPMS (QC Lot: 810877)							
EP1702676-035	OC3-0.5	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Selenium	7782-49-2	0.1	mg/kg	0.7	0.8	0.00	No Limit
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	3.1	3.0	3.28	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	11.0	11.3	2.34	0% - 50%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	11.2	11.5	2.39	0% - 50%
		EG020-SD: Copper	7440-50-8	1	mg/kg	2.0	1.8	8.76	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	1.4	1.4	0.00	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	4.0	3.8	4.78	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	7.4	6.6	12.0	No Limit
		EG020-SD: Manganese	7439-96-5	10	mg/kg	196	194	1.41	0% - 50%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	19.0	19.1	0.00	No Limit
EP1702676-047	OC1-0.2-T2	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Selenium	7782-49-2	0.1	mg/kg	1.3	1.2	11.2	0% - 50%
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	7.4	7.8	6.56	0% - 50%
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	19.8	22.6	13.5	0% - 20%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	24.9	26.4	5.84	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	5.4	5.8	7.19	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	3.5	3.6	0.00	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	9.3	9.8	5.33	No Limit

Page	5 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Laboratory sample iii Cost Name Option CAS Name Option Out Organ Plane III Option Plane III Recovery Laboration of Name Option E0020-050 Tool Markabi In Societimes by ICPNS (OCL tot 1997) - constrained F00207-050-01 mg/ng 15.0 14.4 2.63 0% - 0% - 0% - 0% - 0% - 0% - 0% - 0% -	Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
EP1702876-947 OC 0.2-72 EC020 SD: Znc (mode) 744-96-65 10 mg/kg 10.0 14.6 2.63 0.45, -595, CD002 SD: Manganese 743-94-62 2 rg/kg 42.6 47.3 10.4 0.55, -595, CD315T: Intel Reconventable Mencury by FIMS (CC Lets 81097.4) FM2007.6 0.01 rg/kg 40.01 40.01 0.00 No Limit E0035T: Intel Reconventable Mencury by FIMS (CC Lets 81097.4) FM2007.6 0.01 rg/kg 40.01 40.01 0.00 No Limit E0035T: Intel Reconventable Mencury by FIMS (CC Lets 81097.4) FM2007.6 0.01 rg/kg 40.01 40.01 0.00 No Limit E1702076-030 OC Lot 87419 EC035T-LL: Mencury 743-947.6 0.01 rg/kg 42.0 0.00 No Limit E1702076-004 BF4 EC035T-LL: Mencury 7694-417 20 rg/kg 42.0 0.00 No Limit E1702076-00 BF4 EC035T-LL: Mencury 7694-417 20 rg/kg 40.1 0.00 No Limit	Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
Ended FG202 SD. Managamest 7439-86.6 0 mg/kg 328 319 2.12 0%-30% EG032 SD. Managamest 7449-622 2 mg/kg 42.6 47.3 10.4 0%-20% EG035T1: Total Recoverable Marcury by FMS (GC Lots 10074) EC033TLL: Marcury 7439-87.6 0.01 mg/kg 40.01 0.00 No Limit EG035T: Total Recoverable Marcury by FMS (GC Lots 10075) EC035TLL: Marcury 7439-87.6 0.01 mg/kg 40.01 0.00 No Limit EG035T: Total Recoverable Marcury by FMS (GC Lots 100751) EC035TLL: Marcury 7439-87.6 0.01 mg/kg 40.01 0.00 No Limit EP1702678-036 GC 4-0.5 EC035TLL: Marcury 7439-87.6 0.01 mg/kg 40.01 0.00 No Limit EP1702678-00.1 GP 4 EX055. Ammonia as N 7644-17 20 mg/kg 40.1 40.0 0.00 No Limit EV102678-00.1 GP 4 EX055. Ammonia as N (SoL) 14797-65.0 0.1 mg/kg 40.1 40.1 0.00 <t< td=""><td>EG020-SD: Total Me</td><td>tals in Sediments by ICPMS</td><td>(QC Lot: 810877) - continued</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	EG020-SD: Total Me	tals in Sediments by ICPMS	(QC Lot: 810877) - continued							
Endpoint Endpoint TV444-622 2 mg/kg 42.0 47.3 10.4 00%-20%. EG9157 TotAl Recoverable Marcury by FMS (Co Lot. \$10973) F1722676-0.00 B4 EG0357 L1.1 Marcury 7439-97-6 0.01 mg/kg <0.01	EP1702676-047	OC1-0.2-T2	EG020-SD: Zinc	7440-66-6	1	mg/kg	15.0	14.6	2.63	0% - 50%
CODUCT: Total Recoverable Marcury by FIMS (2C Lot: 810874) Codu (24 EC) Environmental (25 EC) EP1702876-004 BP4 EC03057 LL: Mercury 7439-874 0.01 mg/kg <0.01			EG020-SD: Manganese	7439-96-5	10	mg/kg	326	319	2.12	0% - 20%
EP1702078-004 BP4 EC003F1.L: Mercury 7439.974 0.01 mg/kg 4-0.01 4-0.01 0.00 No Limit EP1702078-020 IC4 EC003F1.L: Mercury 7439.974 0.01 mg/kg 4-0.01 4-0.01 0.00 No Limit EP1702078-020 IC4.0 EC003F1.L: Mercury 7439.974 0.01 mg/kg 4-0.01 4-0.01 0.00 No Limit EP1702076-020 IC4.0 EC003F1.L: Mercury 7439.974 0.01 mg/kg 4-0.01 4-0.01 0.00 No Limit EP1702076-020 IC4.0 EX055. Ammonia as N 7684-17 20 mg/kg <-20			EG020-SD: Vanadium	7440-62-2	2	mg/kg	42.6	47.3	10.4	0% - 20%
EP170267-020 IC4 EG035T-LL: Mercury 7439-074 0.01 mptp EG035T: Total Recoverable Marcury by FIMS (GC Lot: 501876) E<	EG035T: Total Reco	overable Mercury by FIMS (C	QC Lot: 810874)							
EG0357: Total Recoverable Mercury by FMS (QC Lot: 87027) 7439-87-6 0.01 mg/kg <0.01 <0.00 No Limit EF1702876-05 OC3-0.5 EC0357-LL: Mercury 7439-87-6 0.01 mg/kg <0.01	EP1702676-004	BP4	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP170287-043 OC3-0.5 EE00371-LL: Marcury 7438-97-6 0.01 mg/kg <0.01 <0.01 No.Limit EP170287-040 DC1-0.272 EG0357-LL: Marcury 7438-97-6 0.01 mg/kg <0.01	EP1702676-020	IC4	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP1020376-047 OCI-02-72 EG0337-L1: Mercury 7439-97-6 0.01 mg/kg <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.00 No Limit EP170267-026 105-05 EK057G: Nintie as N (Sol.) 14797-650 0.1 mg/kg <0.1	EG035T: Total Reco	overable Mercury by FIMS (C	QC Lot: 810875)							
EX055: Ammonia as N QC Lot: 807419) P 3 QC C QC QC	EP1702676-035	OC3-0.5	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP170287-004 EP4 EK085: Ammonia as N 7664-41-7 20 mg/kg 420 <00 No Limit EP1702876-028 1C8-0.5 EK085: Ammonia as N 7864-17 20 mg/kg <20	EP1702676-047	OC1-0.2-T2	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EP1702676-026 1C8-0.5 EK055: Ammonia as N 7664-41-7 20 mg/kg <20 <20 <20 0.00 No Limit EK0576: Nitrite as N by Discrete Analyser (OC Lot: 807379) EK0576: Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1	EK055: Ammonia as	N (QC Lot: 807419)								
EKOSTG: Nitrite as N by Discrete Analyser (QC Lot: 807379) mg/kg <0.1 mg/kg <0.1 <0.0 No Limit EP1702876-026 1C8-0.5 EK087G: Nitrite as N (Sol.) 14797-85-0 0.1 mg/kg <0.1	EP1702676-004	BP4	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP1702876-028 ICR-0.5 EK057G: Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1 <0.1 0.00 No Limit EP1702876-004 BP4 EX057G: Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1	EP1702676-026	1C8-0.5	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP1702876-004 BP4 EKX57G: Nitrite as N (Sol.) 14787-85-0 0.1 mg/kg <0.1 <0.1 0.00 No Limit EKX056G: Nitrite plus Nitrate as N (Nol.) by Discrete Analyser (QC Lot: 80739) 0.1 mg/kg <0.1	EK057G: Nitrite as I	N by Discrete Analyser (QC	Lot: 807379)							
EP1702876-004 BP4 EK057G: Nitrite as N (NO2) by Discrete Analyser (QC Lot: 807380) EK0595G: Nitrite plus Nitrate as N (NO2) by Discrete Analyser (QC Lot: 807380)	EP1702676-026	1C8-0.5	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plus Nitrate as N (NOX) by Discrete Analyser (QC Lot: 807380) EP1702876-026 IC8-0.5 EK059G: Nitrite + Nitrate as N (Sol.) 0.1 mg/kg <0.1	EP1702676-004	BP4		14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1702878-004 BP4 EXOSGS: Nitrite + Nitrate as N (Sol.) 0.1 mg/kg <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.1 <-0.01 <-0.01 <-0.00 No Limit < <-2 mg/kg 40 14.00 10.00 No Limit EV1702876-028 IC1-R2 EKO67G: total Phosphorus as P 2 mg/kg 98 86 12.8 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0% -20% 0.00 No Limit EP1702676-	EK059G: Nitrite plus	s Nitrate as N (NOx) by Disc								
EKO61G: Total Kjeldahl Nitrogen By Discrete Analyser (QC Lot: 808228) EP1702878-004 BP4 EK081G: Total Kjeldahl Nitrogen as N 20 mg/kg 40 40 0.00 No Limit EP1702878-028 IC1-R2 EK081G: Total Kjeldahl Nitrogen as N 20 mg/kg 40 100 No Limit EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 808227) 2 mg/kg 98 86 12.8 0% - 20% EP1702876-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 98 86 12.8 0% - 20% EF1702876-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg -0.1 -0.00 No Limit EP1702876-004 BP4 EK071G: Reactive Phosphorus as P 1426544-2 0.1 mg/kg <-0.1	EP1702676-026	1C8-0.5	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1702676-004 BP4 EK061G: Total Kjeldahi Nitrogen as N 20 mg/kg 40 40 0.00 No Limit EP1702676-028 IC1-R2 EK061G: Total Kjeldahi Nitrogen as N 20 mg/kg 40 140 109 No Limit EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 808227) 2 mg/kg 98 86 12.8 0% - 20% EP1702676-004 BP4 EK067G: Total Phosphorus as P 2 mg/kg 100 97 3.12 0% - 20% EV07057:0-04 BP4 EK07G: Reactive Phosphorus as P 2 mg/kg 40.1 40.0 0.00 No Limit EV1702676-028 IC1-R2 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1	EP1702676-004	BP4	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP1702676-028 IC1-R2 EK061G: Total Phosphorus as N (kjedah I Ningen as N 20 mg/kg 40 140 109 No Limit EP1702676-028 IC1-R2 EK061G: Total Phosphorus as P 2 mg/kg 98 86 12.8 0% - 20% EP1702676-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 98 86 12.8 0% - 20% EP1702676-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 98 86 12.8 0% - 20% EV7103: Reactive Phosphorus as P by discrete analyser (QC Lot: 807381) 2 mg/kg <0.1	EK061G: Total Kjeld	ahl Nitrogen By Discrete An	alyser (QC Lot: 808228)							
EP1702676-028 IC1-R2 EK061G: Total Kjeldahl Nitrogen as N	EP1702676-004	BP4	EK061G: Total Kieldahl Nitrogen as N		20	mg/kg	40	40	0.00	No Limit
EK067G: Total Phosphorus as P by Discrete Analyser (QC Lot: 808227) EP1702676-004 BP4 EK067G: Total Phosphorus as P 2 mg/kg 98 86 12.8 0% - 20% EP1702676-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 100 97 3.12 0% - 20% EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 807381) EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1	EP1702676-028	IC1-R2			20	mg/kg	40	140	109	No Limit
EP1702676-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 100 97 3.12 0% - 20% EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 807381) 2 mg/kg	EK067G: Total Phos	phorus as P by Discrete Ana								
EP1702676-028 IC1-R2 EK067G: Total Phosphorus as P 2 mg/kg 100 97 3.12 0%-20% EK071G: Reactive Phosphorus as P by discrete analyser (QC Lot: 807381) 2 mg/kg <0.1 <0.1 0.00 No Limit EP1702676-028 IC1-R2 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1 <0.0 No Limit EP1702676-004 BP4 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1 <0.0 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814209) EV03: Total Organic Carbon 0.02 % 0.50 0.54 6.58 0% - 20% EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP1702676-012 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon <	EP1702676-004	BP4	EK067G: Total Phosphorus as P		2	mg/kg	98	86	12.8	0% - 20%
EP1702676-028 IC1-R2 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1 <0.1 0.00 No Limit EP1702676-004 BP4 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1	EP1702676-028	IC1-R2	• • • • • • • • • • • • • • • • • • •		2	mg/kg	100	97	3.12	0% - 20%
EP1702676-004 BP4 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1 <0.01 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814209) EP1003: Total Organic Carbon 0.02 % 0.50 0.54 6.58 0% - 20% EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP103: Total Organic Carbon (TOC) in Soil (QC Lot: 814210) EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.01 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Li	EK071G: Reactive P	hosphorus as P by discrete	analyser (QC Lot: 807381)							
EP1702676-004 BP4 EK071G: Reactive Phosphorus as P 14265-44-2 0.1 mg/kg <0.1 <0.1 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814209) EP003: Total Organic Carbon 0.02 % 0.50 0.54 6.58 0% - 20% EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP103: Total Organic Carbon (TOC) in Soil (QC Lot: 814210) EP103: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1032676-020 IC4				14265-44-2	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EM1703514-001 Anonymous EP003: Total Organic Carbon 0.02 % 0.50 0.54 6.58 0% - 20% EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814210) 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 %	EP1702676-004	BP4		14265-44-2	0.1		<0.1	<0.1	0.00	No Limit
EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.07 0.00 No Limit EP03: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 <th< td=""><td>EP003: Total Organi</td><td>c Carbon (TOC) in Soil (QC</td><td>Lot: 814209)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	EP003: Total Organi	c Carbon (TOC) in Soil (QC	Lot: 814209)							
EP1702676-012 TC1-0.5-T2 EP003: Total Organic Carbon 0.02 % 0.08 0.09 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814210) 0.02 % 0.11 0.11 0.00 No Limit EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.07 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 3 mg/kg	EM1703514-001	Anonymous	EP003: Total Organic Carbon		0.02	%	0.50	0.54	6.58	0% - 20%
EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 814210) EP1702676-031 OC1-0.5-T1 EP003: Total Organic Carbon 0.02 % 0.11 0.11 0.00 No Limit EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) 3 mg/kg <3	EP1702676-012	TC1-0.5-T2			0.02	%	0.08	0.09	0.00	No Limit
EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) 3 mg/kg <3 <3 0.00 0% - 3%	EP003: Total Organi	c Carbon (TOC) in Soil (QC								
EP1702676-043 OC9 EP003: Total Organic Carbon 0.02 % 0.07 0.00 No Limit EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) 0.02 % 0.03 0.03 0.00 No Limit EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.03 0.00 No Limit EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) 3 mg/kg <3 <3 0.00 0% - 3%					0.02	%	0.11	0.11	0.00	No Limit
EP003: Total Organic Carbon (TOC) in Soil (QC Lot: 818251) EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.00 No Limit EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) 3 mg/kg <3	EP1702676-043	OC9			0.02	%	0.07	0.07	0.00	No Limit
EP1702676-020 IC4 EP003: Total Organic Carbon 0.02 % 0.03 0.00 No Limit EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) 3 mg/kg <3	EP003: Total O <u>rgani</u>	c Carbon (TOC) in Soil (QC								
EP080-SD / EP071-SD: Total Petroleum Hydrocarbons (QC Lot: 806596) EP1702676-004 BP4 EP080-SD: C6 - C9 Fraction 3 mg/kg <3					0.02	%	0.03	0.03	0.00	No Limit
EP1702676-004 BP4 EP080-SD: C6 - C9 Fraction 3 mg/kg <3 0.00 0% - 3%		D: Total Petroleum Hvdroca								
					3	mg/kg	<3	<3	0.00	0% - 3%
		IC1-R2	EP080-SD: C6 - C9 Fraction			mg/kg				

Page	: 6 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	t	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080-SD / EP071-S	SD: Total Petroleum Hy	drocarbons (QC Lot: 806597)							
EP1702676-004	BP4	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1702676-028	IC1-R2	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	4	41.5	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	4	28.6	No Limit
		EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP080-SD / EP071-S	D: Total Recoverable	Hydrocarbons (QC Lot: 806596)							
EP1702676-004	BP4	EP080-SD: C6 - C10 Fraction	C6 C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP1702676-028	IC1-R2	EP080-SD: C6 - C10 Fraction	 C6_C10	3	mg/kg	<3	<3	0.00	0% - 3%
EP080-SD / EP071-S		Hydrocarbons (QC Lot: 806597)		-	5.5				
EP1702676-004	BP4	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
LI 1702070-004				3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C10 - C40 Fraction (sum) EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
EP1702676-028	IC1-R2			3	mg/kg	<3	<3	0.00	No Limit
EF1/020/0-026	IC I-RZ	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	7	78.4	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	7	80.0	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		5	mg/kg	<5	<5	0.00	No Limit
	(0.0 1	EP071-SD: >C34 - C40 Fraction		5	ilig/kg	~5	-5	0.00	
EP080-SD: BTEXN			74.40.0					0.00	201 001
EP1702676-004	BP4	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3	0.0		-0.0		0.00	00/ 00/
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
ED4700070 000	104 50	EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
EP1702676-028	IC1-R2	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3	0.0				0.00	00/ 00/
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%

Page	: 7 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP090: Organotin Co	ompounds (QC Lot: 810646)	- continued							
EP1702676-004	BP4	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	0.5	<0.5	0.00	No Limit
EP1702676-023	IC6	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
EP090: Organotin Co	ompounds (QC Lot: 810647)								
EP1702676-042	OC8	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
EP132B: Polynuclea	r Aromatic Hydrocarbons (
EP1702676-004	BP4	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit
		Er 1320-00. Denzo(b 1)/idoranthene	205-82-3		P99			0.00	
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit
EP1702676-028	IC1-R2	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	<4	0.00	No Limit
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit

Page	: 8 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL	ub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EP132B: Polynuclear Aromatic Hydrocarbons (QC Lot: 806598) - continued										
EP1702676-028	IC1-R2	EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit	
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit	
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit	
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EA033-A: Actual Acidity (QCLot: 806422)									
EA033: pH KCI (23A)		0.1	pH Unit	<0.1					
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	73.0756 mole H+ / t	95.4	79	103	
A033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02					
A033-B: Potential Acidity (QCLot: 806422)									
A033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.1798 % S	95.0	77	117	
A033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10					
EA033-C: Acid Neutralising Capacity (QCLot: 806422	2)								
A033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	<0.01	4.9 % CaCO3	104	85	115	
A033: acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	<10					
EA033: sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	<0.01					
EA033-E: Acid Base Accounting (QCLot: 806422)									
A033: Net Acidity (sulfur units)		0.02	% S	<0.02					
A033: Net Acidity (acidity units)		10	mole H+ / t	<10					
A033: Liming Rate		1	kg CaCO3/t	<1					
EG005-SD: Total Metals in Sediments by ICP-AES (Q	CL of: 810872)							1	
EG005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
EG005-SD: Iron	7439-89-6	50	mg/kg	<50					
G005-SD: Total Metals in Sediments by ICP-AES (Q	CL of: 810876)							1	
G005-SD: Aluminium	7429-90-5	50	mg/kg	<50					
EG005-SD: Iron	7439-89-6	50	mg/kg	<50					
EG020-SD: Total Metals in Sediments by ICPMS (QC EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50					
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	100	74	130	
G020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	104	97	113	
G020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	106	72	152	
G020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	94.4	76	116	
G020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5					
G020-SD: Lead	7439-92-1	1	mg/kg	<1.0	40.33169 mg/kg	90.5	74	124	
G020-SD: Manganese	7439-96-5	10	mg/kg	<10					
G020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	102	81	135	
G020-SD: Selenium	7782-49-2	0.1	mg/kg	<0.1					
EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1					
G020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0					

Page	: 10 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G020-SD: Total Metals in Sediments by ICPMS (QCI	ot: 810873) - continue	ed						
G020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	103	81	143
G020-SD: Total Metals in Sediments by ICPMS (QCI	ot: 810877)							
EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50				
G020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	99.3	74	130
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	98.8	97	113
G020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	102	72	152
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	95.8	76	116
G020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5				
G020-SD: Lead	7439-92-1	1	mg/kg	<1.0	40.33169 mg/kg	88.8	74	124
G020-SD: Manganese	7439-96-5	10	mg/kg	<10				
G020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	102	81	135
G020-SD: Selenium	7782-49-2	0.1	mg/kg	<0.1				
G020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1				
G020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0				
G020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	99.3	81	143
G035T: Total Recoverable Mercury by FIMS (QCLot	: 810874)							
G035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	104	80	120
G035T: Total Recoverable Mercury by FIMS (QCLot	:: 810875)							
G035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	107	80	120
K055: Ammonia as N (QCLot: 807419)								1
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	10 mg/kg	87.0	70	130
K057G: Nitrite as N by Discrete Analyser (QCLot: 8								
K057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	104	89	121
			iiig/kg	-0.1	2.0 mg/kg	104	03	121
K059G: Nitrite plus Nitrate as N (NOx) by Discrete A	Analyser (QCLot: 8073	,		-0.4	0.5 mm/km	400	00	110
K059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	108	90	112
K061G: Total Kjeldahl Nitrogen By Discrete Analyse	r (QCLot: 808228)							
K061G: Total Kjeldahl Nitrogen as N		20	mg/kg	<20	1000 mg/kg	83.8	78	112
				<20	100 mg/kg	98.2	70	130
K067G: Total Phosphorus as P by Discrete Analyser	(QCLot: 808227)							
K067G: Total Phosphorus as P		2	mg/kg	<2	440 mg/kg	92.6	78	108
				<2	44 mg/kg	77.5	70	130
K071G: Reactive Phosphorus as P by discrete analy								
K071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	104	92	112
P003: Total Organic Carbon (TOC) in Soil (QCLot: 8	14209)							
P003: Total Organic Carbon		0.02	%	<0.02	100 %	109	70	130
P003: Total Organic Carbon (TOC) in Soil (QCLot: 8	14210)							
P003: Total Organic Carbon		0.02	%	<0.02	100 %	96.9	70	130

Page	: 11 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P003: Total Organic Carbon (TOC) in Soil (QCLot: 818	251)							
P003: Total Organic Carbon		0.02	%	<0.02	100 %	103	70	130
P080-SD / EP071-SD: Total Petroleum Hydrocarbons(QCLot: 806596)							
P080-SD: C6 - C9 Fraction		3	mg/kg	<3	800 mg/kg	96.5	70	130
P080-SD / EP071-SD: Total Petroleum Hydrocarbons(QCLot: 806597)							
P071-SD: C10 - C14 Fraction		3	mg/kg	<3	138 mg/kg	102	70	130
P071-SD: C15 - C28 Fraction		3	mg/kg	<3	290 mg/kg	100	70	130
P071-SD: C29 - C36 Fraction		5	mg/kg	<5	51 mg/kg	97.2	70	130
P071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
P080-SD / EP071-SD: Total Recoverable Hydrocarbons	(QCLot: 806596)							
P080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	<3	925 mg/kg	99.7	70	130
P080-SD / EP071-SD: Total Recoverable Hydrocarbons	(QCLot: <u>806597)</u>							
P071-SD: >C10 - C16 Fraction		3	mg/kg	<3	202 mg/kg	102	70	130
P071-SD: >C16 - C34 Fraction		3	mg/kg	<3	258 mg/kg	99.2	70	130
:P071-SD: >C34 - C40 Fraction		5	mg/kg	<5	18 mg/kg	92.8	70	130
P071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
P080-SD: BTEXN (QCLot: 806596)								
P080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	50 mg/kg	98.4	70	130
P080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	50 mg/kg	94.0	70	130
P080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	50 mg/kg	104	70	130
P080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	100 mg/kg	105	70	130
	106-42-3							
P080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	50 mg/kg	98.9	70	130
P080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.2				
P080-SD: Sum of BTEX		0.2	mg/kg	<0.2				
P080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	50 mg/kg	95.9	70	130
EP090: Organotin Compounds (QCLot: 810646)								
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	111	52	139
P090: Organotin Compounds (QCLot: 810647)								
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	91.8	52	139
P132B: Polynuclear Aromatic Hydrocarbons (QCLot:	806598)							
P132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	85.0	55	131
P132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5				
P132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	25 µg/kg	77.1	64	110
P132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	25 µg/kg	84.2	62	112
P132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	90.9	64	118
P132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	88.6	59	117
P132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	70.8	69	111
P132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	77.6	66	118

Page	: 12 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report							
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)					
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High				
:P132B: Polynuclear Aromatic Hydrocarbons (QCLot: 806598) - continued												
EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	79.3	70	116				
EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	87.2	59	121				
EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	81.3	68	116				
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	25 µg/kg	85.4	51	107				
	205-82-3											
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	80.8	52	118				
EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4								
EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	86.6	55	111				
EP132B-SD: Perylene	198-55-0	4	µg/kg	<4								
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	88.2	62	106				
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	88.9	35	141				
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	87.0	48	122				
EP132B-SD: Coronene	191-07-1	5	µg/kg	<5								
EP132B-SD: Sum of PAHs		4	µg/kg	<4								

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	_imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005-SD: Total N	letals in Sediments by ICP-AES(QCLo	ot: 810872)						
EP1702676-005	TC2-R1	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not Determined	70	130	
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not Determined	70	130	
EG005-SD: Total N	letals in Sediments by ICP-AES(QCLo	ot: 810876)						
EP1702676-036	OC3-1	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not Determined	70	130	
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not Determined	70	130	
EG020-SD: Total N	letals in Sediments by ICPMS(QCLot:	810873)						
EP1702676-005	TC2-R1	EG020-SD: Arsenic	7440-38-2	50 mg/kg	92.1	70	130	
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	99.4	70	130	
		EG020-SD: Chromium	7440-47-3	50 mg/kg	77.9	70	130	
		EG020-SD: Copper	7440-50-8	250 mg/kg	84.1	70	130	
		EG020-SD: Lead	7439-92-1	250 mg/kg	83.7	70	130	

ub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G020-SD: Total M	etals in Sediments by ICPMS (QCLot: 810873) - contin	ued					
EP1702676-005	TC2-R1	EG020-SD: Nickel	7440-02-0	50 mg/kg	94.8	70	130
		EG020-SD: Selenium	7782-49-2	50 mg/kg	77.0	70	130
		EG020-SD: Zinc	7440-66-6	250 mg/kg	92.4	70	130
EG020-SD: Total M	etals in Sediments by ICPMS (QCLot: 810877)						
EP1702676-036	OC3-1	EG020-SD: Arsenic	7440-38-2	50 mg/kg	96.8	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	98.0	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	86.3	70	130
		EG020-SD: Copper	7440-50-8	250 mg/kg	87.5	70	130
		EG020-SD: Lead	7439-92-1	250 mg/kg	84.9	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	98.7	70	130
		EG020-SD: Selenium	7782-49-2	50 mg/kg	89.7	70	130
		EG020-SD: Zinc	7440-66-6	250 mg/kg	98.2	70	130
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 810874)						
EP1702676-005	TC2-R1	EG035T-LL: Mercury	7439-97-6	10 mg/kg	99.8	70	130
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 810875)						1
EP1702676-036	OC3-1	EG035T-LL: Mercury	7439-97-6	10 mg/kg	103	70	130
				i o nightg	100	10	100
	IS N (QCLot: 807419)		7004 44 7	100	04.0	70	100
EP1702676-005	TC2-R1	EK055: Ammonia as N	7664-41-7	100 mg/kg	84.3	70	130
	N by Discrete Analyser (QCLot: 807379)						
EP1702676-005	TC2-R1	EK057G: Nitrite as N (Sol.)	14797-65-0	3 mg/kg	104	70	130
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 80	7380)					
EP1702676-005	TC2-R1	EK059G: Nitrite + Nitrate as N (Sol.)		3 mg/kg	96.3	70	130
EK061G: Total Kiel	dahl Nitrogen By Discrete Analyser (QCLot: 808228)						1
EP1702676-005	TC2-R1	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	83.1	70	130
	sphorus as P by Discrete Analyser (QCLot: 808227)						100
EP1702676-005	TC2-R1	EK067G: Total Phosphorus as P		100 mg/kg	80.8	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 807381)						
EP1702676-005	TC2-R1	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	124	70	130
EP080-SD / EP071-	SD: Total Petroleum Hydrocarbons (QCLot: 806596)						
EP1702676-005	TC2-R1	EP080-SD: C6 - C9 Fraction		600 mg/kg	87.6	70	130
EP080-SD / EP071	SD: Total Petroleum Hydrocarbons (QCLot: 806597)						1
EP1702676-005	TC2-R1			138 mg/kg	86.8	70	130
LF 1/020/0-003		EP071-SD: C10 - C14 Fraction			87.4	70	130
		EP071-SD: C15 - C28 Fraction		290 mg/kg	87.4	70	130
		EP071-SD: C29 - C36 Fraction		51 mg/kg	C.00	70	130

Page	: 14 of 14
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot: 806596)	- continued							
EP1702676-005	TC2-R1	EP080-SD: C6 - C10 Fraction	C6_C10	725 mg/kg	89.2	70	130		
P080-SD / EP071	-SD: Total Recoverable Hydrocarbons (QCLot: 806597)								
EP1702676-005	TC2-R1	EP071-SD: >C10 - C16 Fraction		202 mg/kg	87.2	70	130		
		EP071-SD: >C16 - C34 Fraction		258 mg/kg	87.1	70	130		
		EP071-SD: >C34 - C40 Fraction		18 mg/kg	84.7	70	130		
P080-SD: BTEXN	l (QCLot: 806596)						1		
EP1702676-005	TC2-R1	EP080-SD: Benzene	71-43-2	50 mg/kg	88.2	70	130		
		EP080-SD: Toluene	108-88-3	50 mg/kg	79.8	70	130		
EP090: Organotin	Compounds (QCLot: 810646)						1		
EP1702676-005	TC2-R1	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	107	20	130		
				1.20 µgoling	107	20	100		
EP1702676-043	Compounds (QCLot: 810647)		56573-85-4	4.05.000/00	98.7	20	130		
		EP090: Tributyltin	50575-65-4	1.25 µgSn/kg	90.7	20	130		
	ear Aromatic Hydrocarbons (QCLot: 806598)								
EP1702676-005	TC2-R1	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	118	70	130		
		EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	118	70	130		
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	115	70	130		
		EP132B-SD: Fluorene	86-73-7	25 µg/kg	125	70	130		
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	119	70	130		
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	122	70	130		
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	127	70	130		
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	123	70	130		
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	112	70	130		
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	96.4	70	130		
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	113	70	130		
			205-82-3						
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	97.4	70	130		
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	105	70	130		
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	125	70	130		
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	113	70	130		
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 µg/kg	114	70	130		

	QA/QC Compliance Ass	ce Assessment to assist with Quality Review				
Work Order	: EP1702676	Page	: 1 of 20			
Client		Laboratory	: Environmental Division Perth			
Contact	: TRAVIS HURLEY	Telephone	: 08 9209 7606			
Project	: 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017			
Site	:	Issue Date	: 04-Apr-2017			
Sampler	:	No. of samples received	: 56			
Order number	:	No. of samples analysed	: 37			

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005-SD: Total Metals in Sediments by ICP-AES	EP1702676005	TC2-R1	Aluminium	7429-90-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1702676036	OC3-1	Aluminium	7429-90-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1702676005	TC2-R1	Iron	7439-89-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1702676036	OC3-1	Iron	7439-89-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Regular Sample Surrogates

Sub-Matrix: SEDIMENT

Matrix: SOII

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Samples Submitted							
EP132T: Base/Neutral Extractable Surrogates	EP1702676-004	BP4	Anthracene-d10	1719-06-8	68.2 %	70-130 %	Recovery less than lower data quality
							objective
EP132T: Base/Neutral Extractable Surrogates	EP1702676-041	OC7	Anthracene-d10	1719-06-8	69.9 %	70-130 %	Recovery less than lower data quality
							objective
EP132T: Base/Neutral Extractable Surrogates	EP1702676-009	TC2	4-Terphenyl-d14	1718-51-0	68.9 %	70-130 %	Recovery less than lower data quality
							objective
EP132T: Base/Neutral Extractable Surrogates	EP1702676-024	IC7-0.5	4-Terphenyl-d14	1718-51-0	66.9 %	70-130 %	Recovery less than lower data quality
							objective
EP132T: Base/Neutral Extractable Surrogates	EP1702676-041	OC7	4-Terphenyl-d14	1718-51-0	67.3 %	70-130 %	Recovery less than lower data quality
							objective

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

				Evaluation	i folding time	5.646, 1	ann nording arro
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-A: Actual Acidity								
80* dried soil (EA033)								
BP1,	TC2-R1,	15-Mar-2017	23-Mar-2017	15-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
TC1-1,	TC3							
80* dried soil (EA033) IC3-0.5		16-Mar-2017	23-Mar-2017	16-Mar-2018	1	23-Mar-2017	21-Jun-2017	~
80* dried soil (EA033)								
OC1-0.5-T1,	OC4-0.5,	17-Mar-2017	23-Mar-2017	17-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
OC4-1,	OC6,							
OC9								
80* dried soil (EA033)								
IC1-1.0,	IC5-1,	18-Mar-2017	23-Mar-2017	18-Mar-2018	~	23-Mar-2017	21-Jun-2017	✓
1C8-0.5,	IC5-1.5,							
OC5,	OC7							
EA033-B: Potential Acidity								
80* dried soil (EA033)								
BP1,	TC2-R1,	15-Mar-2017	23-Mar-2017	15-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
TC1-1,	TC3							
80* dried soil (EA033)								
IC3-0.5		16-Mar-2017	23-Mar-2017	16-Mar-2018	-	23-Mar-2017	21-Jun-2017	✓
80* dried soil (EA033)								
OC1-0.5-T1,	OC4-0.5,	17-Mar-2017	23-Mar-2017	17-Mar-2018	~	23-Mar-2017	21-Jun-2017	✓
OC4-1,	OC6,							
OC9								
80* dried soil (EA033)								
IC1-1.0,	IC5-1,	18-Mar-2017	23-Mar-2017	18-Mar-2018	~	23-Mar-2017	21-Jun-2017	✓
1C8-0.5,	IC5-1.5,							
OC5,	OC7							
EA033-C: Acid Neutralising Capacity								
80* dried soil (EA033)								
BP1,	TC2-R1,	15-Mar-2017	23-Mar-2017	15-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
TC1-1,	TC3							
80* dried soil (EA033) IC3-0.5		16-Mar-2017	23-Mar-2017	16-Mar-2018	1	23-Mar-2017	21-Jun-2017	~
80* dried soil (EA033)								
OC1-0.5-T1,	OC4-0.5,	17-Mar-2017	23-Mar-2017	17-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
OC4-1,	OC6,							
OC9								
80* dried soil (EA033)								
IC1-1.0,	IC5-1,	18-Mar-2017	23-Mar-2017	18-Mar-2018	1	23-Mar-2017	21-Jun-2017	✓
1C8-0.5,	IC5-1.5,							
OC5,	OC7							

Page	: 4 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	2 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-D: Retained Acidity								
80* dried soil (EA033)								
BP1,	TC2-R1,	15-Mar-2017	23-Mar-2017	15-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
TC1-1,	TC3							
80* dried soil (EA033)								
IC3-0.5		16-Mar-2017	23-Mar-2017	16-Mar-2018	✓	23-Mar-2017	21-Jun-2017	✓
80* dried soil (EA033)								
OC1-0.5-T1,	OC4-0.5,	17-Mar-2017	23-Mar-2017	17-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
OC4-1,	OC6,							
OC9								
80* dried soil (EA033)								
IC1-1.0,	IC5-1,	18-Mar-2017	23-Mar-2017	18-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
1C8-0.5,	IC5-1.5,							
OC5,	OC7							
EA033-E: Acid Base Accounting								
80* dried soil (EA033)								
BP1,	TC2-R1,	15-Mar-2017	23-Mar-2017	15-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
TC1-1,	TC3							
80* dried soil (EA033)								
IC3-0.5		16-Mar-2017	23-Mar-2017	16-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
80* dried soil (EA033)								
OC1-0.5-T1,	OC4-0.5,	17-Mar-2017	23-Mar-2017	17-Mar-2018	1	23-Mar-2017	21-Jun-2017	 ✓
OC4-1,	OC6,							
OC9								
80* dried soil (EA033)								
IC1-1.0,	IC5-1,	18-Mar-2017	23-Mar-2017	18-Mar-2018	1	23-Mar-2017	21-Jun-2017	1
1C8-0.5,	IC5-1.5,							
OC5,	OC7							

Page	: 5 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	i: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content								
Soil Glass Jar - Unpreserved (EA055-103)								
TC2-R1,	TC1-0.5,	15-Mar-2017				24-Mar-2017	29-Mar-2017	✓
TC1-1,	TC2,							
TC4,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EA055-103)								
BP4,	IC3-0.5,	16-Mar-2017				24-Mar-2017	30-Mar-2017	✓
IC4,	IC6,							
IC7-0.5,	IC7-1							
Soil Glass Jar - Unpreserved (EA055-103)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017				24-Mar-2017	31-Mar-2017	✓
OC3-1,	OC4-0.5,							
OC6,	OC8,							
OC9,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EA055-103)								
IC1,	IC5-0.5,	18-Mar-2017				24-Mar-2017	01-Apr-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC2-1,							
OC5,	OC7,							
OC7-R2-0.5								

Page	: 6 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Particle Sizing		-							
Snap Lock Bag - frozen (EA150H)									
TC2-R1,	TC1-0.5,		15-Mar-2017				30-Mar-2017	11-Sep-2017	✓
TC1-1,	TC2,								
TC4,	TC1-0.5-T2,								
IC2									
Snap Lock Bag - frozen (EA150H)									
BP4,	IC3-0.5,		16-Mar-2017				30-Mar-2017	12-Sep-2017	✓
IC4,	IC6,								
IC7-0.5,	IC7-1								
Snap Lock Bag - frozen (EA150H)									
OC1-0.5-T1,	OC3-0.5,		17-Mar-2017				30-Mar-2017	13-Sep-2017	✓
OC3-1,	OC4-0.5,								
OC6,	OC8,								
OC9,	OC10,								
OC1-0.2-T2									
Snap Lock Bag - frozen (EA150H)									
IC1,	IC5-0.5,		18-Mar-2017				30-Mar-2017	14-Sep-2017	 ✓
1C8-0.5,	IC1-R2,								
OC2-0.5,	OC2-1,								
OC5,	OC7,								
OC7-R2-0.5									

Page	: 7 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA150: Soil Classification based on Partic	cle Size				_			
Snap Lock Bag - frozen (EA150H)								
TC2-R1,	TC1-0.5,	15-Mar-2017				30-Mar-2017	11-Sep-2017	✓
TC1-1,	TC2,							
TC4,	TC1-0.5-T2,							
IC2								
Snap Lock Bag - frozen (EA150H)								
BP4,	IC3-0.5,	16-Mar-2017				30-Mar-2017	12-Sep-2017	✓
IC4,	IC6,							
IC7-0.5,	IC7-1							
Snap Lock Bag - frozen (EA150H)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017				30-Mar-2017	13-Sep-2017	✓
OC3-1,	OC4-0.5,							
OC6,	OC8,							
OC9,	OC10,							
OC1-0.2-T2								
Snap Lock Bag - frozen (EA150H)								
IC1,	IC5-0.5,	18-Mar-2017				30-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC2-1,							
OC5,	OC7,							
OC7-R2-0.5	·							

Page	: 8 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005-SD: Total Metals in Sediments by	ICP-AES							
Soil Glass Jar - Unpreserved (EG005-SD)								
TC2-R1,	TC1-0.5,	15-Mar-2017	27-Mar-2017	11-Sep-2017	1	29-Mar-2017	11-Sep-2017	✓
TC1-1,	TC2,							
TC4,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EG005-SD)								
BP4,	IC3-0.5,	16-Mar-2017	27-Mar-2017	12-Sep-2017	1	29-Mar-2017	12-Sep-2017	✓
IC4,	IC6,							
IC7-0.5,	IC7-1							
Soil Glass Jar - Unpreserved (EG005-SD)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	27-Mar-2017	13-Sep-2017	1	29-Mar-2017	13-Sep-2017	✓
OC3-1,	OC4-0.5,							
OC6,	OC8,							
OC9,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EG005-SD)								
IC1,	IC5-0.5,	18-Mar-2017	27-Mar-2017	14-Sep-2017	1	29-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC2-1,							
OC5,	OC7,							
OC7-R2-0.5								

Page	: 9 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020-SD: Total Metals in Sediments by	ICPMS							
Soil Glass Jar - Unpreserved (EG020-SD)								
TC2-R1,	TC1-0.5,	15-Mar-2017	27-Mar-2017	11-Sep-2017	1	29-Mar-2017	11-Sep-2017	✓
TC1-1,	TC2,							
TC4,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EG020-SD)								
BP4,	IC3-0.5,	16-Mar-2017	27-Mar-2017	12-Sep-2017	1	29-Mar-2017	12-Sep-2017	✓
IC4,	IC6,							
IC7-0.5,	IC7-1							
Soil Glass Jar - Unpreserved (EG020-SD)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	27-Mar-2017	13-Sep-2017	1	29-Mar-2017	13-Sep-2017	✓
OC3-1,	OC4-0.5,							
OC6,	OC8,							
OC9,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EG020-SD)								
IC1,	IC5-0.5,	18-Mar-2017	27-Mar-2017	14-Sep-2017	1	29-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC2-1,							
OC5,	OC7,							
OC7-R2-0.5								

Page	: 10 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding tim
Method		Si	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS									
Soil Glass Jar - Unpreserved (EG035T-LL)									
TC2-R1,	TC1-0.5,	15	5-Mar-2017	27-Mar-2017	12-Apr-2017	~	30-Mar-2017	12-Apr-2017	✓
TC1-1,	TC2,								
TC4,	TC1-0.5-T2,								
IC2									
Soil Glass Jar - Unpreserved (EG035T-LL)									
BP4,	IC3-0.5,	16	6-Mar-2017	27-Mar-2017	13-Apr-2017	1	30-Mar-2017	13-Apr-2017	\checkmark
IC4,	IC6,								
IC7-0.5,	IC7-1								
Soil Glass Jar - Unpreserved (EG035T-LL)									
OC1-0.5-T1,	OC3-0.5,	17	7-Mar-2017	27-Mar-2017	14-Apr-2017	1	30-Mar-2017	14-Apr-2017	✓
OC3-1,	OC4-0.5,								
OC6,	OC8,								
OC9,	OC10,								
OC1-0.2-T2									
Soil Glass Jar - Unpreserved (EG035T-LL)									
IC1,	IC5-0.5,	18	8-Mar-2017	27-Mar-2017	15-Apr-2017	1	30-Mar-2017	15-Apr-2017	✓
1C8-0.5,	IC1-R2,								•
OC2-0.5,	OC2-1,								
OC5.	OC7,								
OC7-R2-0.5	,								
EK055: Ammonia as N									
Soil Glass Jar - Unpreserved (EK055)									
TC2-R1,	TC1-0.5,	15	5-Mar-2017				24-Mar-2017	11-Sep-2017	✓
TC2,	TC1-0.5-T2,								
IC2									
Soil Glass Jar - Unpreserved (EK055)									
BP4,	IC7-0.5	16	6-Mar-2017				24-Mar-2017	12-Sep-2017	✓
Soil Glass Jar - Unpreserved (EK055)									
OC1-0.5-T1,	OC3-0.5,	17	7-Mar-2017				24-Mar-2017	13-Sep-2017	1
OC4-0.5,	OC10,								
OC1-0.2-T2									
Soil Glass Jar - Unpreserved (EK055)									
IC1,	IC5-0.5,	18	8-Mar-2017				24-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,								
OC2-0.5,	OC7,								
OC7-R2-0.5	,								
							1		

Page	: 11 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	i: × = Holding time	breach ; 🗸 = Withi	n holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser								
Soil Glass Jar - Unpreserved (EK057G)								
TC2-R1,	TC1-0.5,	15-Mar-2017	28-Mar-2017	11-Sep-2017	1	28-Mar-2017	11-Sep-2017	✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EK057G)								
BP4,	IC7-0.5	16-Mar-2017	28-Mar-2017	12-Sep-2017	✓	28-Mar-2017	12-Sep-2017	✓
Soil Glass Jar - Unpreserved (EK057G)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	28-Mar-2017	13-Sep-2017	1	28-Mar-2017	13-Sep-2017	✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EK057G)								
IC1,	IC5-0.5,	18-Mar-2017	28-Mar-2017	14-Sep-2017	1	28-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC7,							
OC7-R2-0.5								
EK059G: Nitrite plus Nitrate as N (NOx) by Di	iscrete Analyser							
Soil Glass Jar - Unpreserved (EK059G)								
TC2-R1,	TC1-0.5,	15-Mar-2017	28-Mar-2017	11-Sep-2017	✓	28-Mar-2017	11-Sep-2017	✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EK059G)								
BP4,	IC7-0.5	16-Mar-2017	28-Mar-2017	12-Sep-2017	1	28-Mar-2017	12-Sep-2017	✓
Soil Glass Jar - Unpreserved (EK059G)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	28-Mar-2017	13-Sep-2017	✓	28-Mar-2017	13-Sep-2017	✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EK059G)								
IC1,	IC5-0.5,	18-Mar-2017	28-Mar-2017	14-Sep-2017	1	28-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC7,							
OC7-R2-0.5								

Page	: 12 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	2 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK061G: Total Kjeldahl Nitrogen By Discrete	Analyser				_			
Soil Glass Jar - Unpreserved (EK061G)								
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	11-Sep-2017	1	29-Mar-2017	11-Sep-2017	 ✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EK061G)								
BP4,	IC7-0.5	16-Mar-2017	24-Mar-2017	12-Sep-2017	1	29-Mar-2017	12-Sep-2017	✓
Soil Glass Jar - Unpreserved (EK061G)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	13-Sep-2017	✓	29-Mar-2017	13-Sep-2017	✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EK061G)								
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	14-Sep-2017	1	29-Mar-2017	14-Sep-2017	✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC7,							
OC7-R2-0.5								
EK067G: Total Phosphorus as P by Discrete	Analyser							
Soil Glass Jar - Unpreserved (EK067G)								
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	11-Sep-2017	✓	29-Mar-2017	11-Sep-2017	✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EK067G)								
BP4,	IC7-0.5	16-Mar-2017	24-Mar-2017	12-Sep-2017	✓	29-Mar-2017	12-Sep-2017	✓
Soil Glass Jar - Unpreserved (EK067G)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	13-Sep-2017	1	29-Mar-2017	13-Sep-2017	✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EK067G)								
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	14-Sep-2017	✓	29-Mar-2017	14-Sep-2017	 ✓
1C8-0.5,	IC1-R2,							
OC2-0.5,	OC7,							
OC7-R2-0.5								

Page	: 13 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	2 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = Withi	n holding time	
Method		Sample Date	Ex	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EK071G: Reactive Phosphorus as P by	discrete analyser								
Soil Glass Jar - Unpreserved (EK071G)									
TC2-R1,	TC1-0.5,	15-Mar-2017	28-Mar-2017	11-Sep-2017	1	28-Mar-2017	11-Sep-2017	 ✓ 	
TC2,	TC1-0.5-T2,								
IC2									
Soil Glass Jar - Unpreserved (EK071G)									
BP4,	IC7-0.5	16-Mar-2017	28-Mar-2017	12-Sep-2017	 ✓ 	28-Mar-2017	12-Sep-2017	✓	
Soil Glass Jar - Unpreserved (EK071G)									
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	28-Mar-2017	13-Sep-2017	~	28-Mar-2017	13-Sep-2017	✓	
OC4-0.5,	OC10,								
OC1-0.2-T2									
Soil Glass Jar - Unpreserved (EK071G)									
IC1,	IC5-0.5,	18-Mar-2017	28-Mar-2017	14-Sep-2017	~	28-Mar-2017	14-Sep-2017	✓	
1C8-0.5,	IC1-R2,								
OC2-0.5,	OC7,								
OC7-R2-0.5									
EP003: Total Organic Carbon (TOC) in S	Soil								
Pulp Bag (EP003)									
IC4		16-Mar-2017	31-Mar-2017	13-Apr-2017	✓	31-Mar-2017	13-Apr-2017	✓	
Snap Lock Bag - Friable Asbestos/PSD I									
TC2-R1,	TC1-0.5,	15-Mar-2017	29-Mar-2017	12-Apr-2017	~	29-Mar-2017	12-Apr-2017	✓	
TC1-1,	TC2,								
TC4,	TC1-0.5-T2,								
IC2									
Snap Lock Bag - Friable Asbestos/PSD I									
BP4,	IC3-0.5,	16-Mar-2017	29-Mar-2017	13-Apr-2017	~	29-Mar-2017	13-Apr-2017	 ✓ 	
IC6,	IC7-0.5,								
IC7-1									
Snap Lock Bag - Friable Asbestos/PSD I	Bag (EP003)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	29-Mar-2017	14-Apr-2017	~	29-Mar-2017	14-Apr-2017	 ✓ 	
OC3-1,	OC4-0.5,								
OC6,	OC8,								
OC9,	OC10,								
OC1-0.2-T2									
Snap Lock Bag - Friable Asbestos/PSD I									
IC1,	IC5-0.5,	18-Mar-2017	29-Mar-2017	15-Apr-2017	1	29-Mar-2017	15-Apr-2017	✓	
IC1-R2,	OC2-0.5,								
OC2-1,	OC5,								
OC7,	OC7-R2-0.5								
Soil Glass Jar - Unpreserved (EP003)									
1C8-0.5		18-Mar-2017	29-Mar-2017	15-Apr-2017	1	29-Mar-2017	15-Apr-2017	 ✓ 	

Page	: 14 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding tin
Method		Sample Date	E	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Recoverable Hydrocarbons	- NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071-SD)								
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	29-Mar-2017	1	27-Mar-2017	03-May-2017	✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EP071-SD)								
BP4,	IC4,	16-Mar-2017	24-Mar-2017	30-Mar-2017	1	27-Mar-2017	03-May-2017	✓
IC7-0.5								
Soil Glass Jar - Unpreserved (EP071-SD)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	31-Mar-2017	1	27-Mar-2017	03-May-2017	✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EP071-SD)								
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	01-Apr-2017	1	27-Mar-2017	03-May-2017	✓
IC1-R2,	OC5,							
OC7,	OC7-R2-0.5							
EP080-SD / EP071-SD: Total Petroleum Hydro	ocarbons							
Soil Glass Jar - Unpreserved (EP071-SD)								
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	29-Mar-2017	1	27-Mar-2017	03-May-2017	 ✓
TC2,	TC1-0.5-T2,							
IC2								
Soil Glass Jar - Unpreserved (EP071-SD)								
BP4,	IC4,	16-Mar-2017	24-Mar-2017	30-Mar-2017	1	27-Mar-2017	03-May-2017	 ✓
IC7-0.5								
Soil Glass Jar - Unpreserved (EP071-SD)								
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	31-Mar-2017	1	27-Mar-2017	03-May-2017	 ✓
OC4-0.5,	OC10,							
OC1-0.2-T2								
Soil Glass Jar - Unpreserved (EP071-SD)								
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	01-Apr-2017	1	27-Mar-2017	03-May-2017	✓
IC1-R2,	OC5,							
OC7,	OC7-R2-0.5							

Page	: 15 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; ✓ = With	in holding tir	
Method		Sample Date	E>	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080-SD / EP071-SD: Total Recoverable Hy	drocarbons								
Soil Glass Jar - Unpreserved (EP080-SD)									
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	29-Mar-2017	1	27-Mar-2017	29-Mar-2017	 ✓ 	
TC2,	TC1-0.5-T2,								
IC2									
Soil Glass Jar - Unpreserved (EP080-SD)									
BP4,	IC4,	16-Mar-2017	24-Mar-2017	30-Mar-2017	1	27-Mar-2017	30-Mar-2017	✓	
IC7-0.5									
Soil Glass Jar - Unpreserved (EP080-SD)									
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	31-Mar-2017	1	27-Mar-2017	31-Mar-2017	✓	
OC4-0.5,	OC10,								
OC1-0.2-T2									
Soil Glass Jar - Unpreserved (EP080-SD)									
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	01-Apr-2017	1	27-Mar-2017	01-Apr-2017	✓	
IC1-R2,	OC5,								
OC7,	OC7-R2-0.5								
EP080-SD: BTEXN								1	
Soil Glass Jar - Unpreserved (EP080-SD)									
TC2-R1,	TC1-0.5,	15-Mar-2017	24-Mar-2017	29-Mar-2017	1	27-Mar-2017	29-Mar-2017	1	
TC2,	TC1-0.5-T2,								
IC2									
Soil Glass Jar - Unpreserved (EP080-SD)									
BP4,	IC4,	16-Mar-2017	24-Mar-2017	30-Mar-2017	1	27-Mar-2017	30-Mar-2017	1	
IC7-0.5									
Soil Glass Jar - Unpreserved (EP080-SD)									
OC1-0.5-T1,	OC3-0.5,	17-Mar-2017	24-Mar-2017	31-Mar-2017	1	27-Mar-2017	31-Mar-2017	1	
OC4-0.5,	OC10,								
OC1-0.2-T2									
Soil Glass Jar - Unpreserved (EP080-SD)									
IC1,	IC5-0.5,	18-Mar-2017	24-Mar-2017	01-Apr-2017	1	27-Mar-2017	01-Apr-2017	1	
IC1-R2,	OC5,								
OC7,	OC7-R2-0.5								

Page	: 16 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP090: Organotin Compounds								
Soil Glass Jar - Unpreserved (EP090) TC2-R1, TC2, TC1-0.5-T2	TC1-0.5, TC4,	15-Mar-2017	28-Mar-2017	29-Mar-2017	1	03-Apr-2017	07-May-2017	~
Soil Glass Jar - Unpreserved (EP090) BP4, IC4, IC7-0.5	IC3-0.5, IC6,	16-Mar-2017	28-Mar-2017	30-Mar-2017	~	03-Apr-2017	07-May-2017	✓
Soil Glass Jar - Unpreserved (EP090) OC8, OC10,	OC9, OC1-0.2-T2	17-Mar-2017	27-Mar-2017	31-Mar-2017	~	31-Mar-2017	06-May-2017	~
Soil Glass Jar - Unpreserved (EP090) OC1-0.5-T1, OC4-0.5,	OC3-0.5, OC6	17-Mar-2017	28-Mar-2017	31-Mar-2017	~	03-Apr-2017	07-May-2017	~
Soil Glass Jar - Unpreserved (EP090) OC7-R2-0.5		18-Mar-2017	27-Mar-2017	01-Apr-2017	1	31-Mar-2017	06-May-2017	~
Soil Glass Jar - Unpreserved (EP090) IC1, IC1-R2, OC5,	IC5-0.5, OC2-0.5, OC7	18-Mar-2017	28-Mar-2017	01-Apr-2017	1	03-Apr-2017	07-May-2017	~
EP132B: Polynuclear Aromatic Hydrocarbons								
Soil Glass Jar - Unpreserved (EP132B-SD) TC2-R1, TC2, IC2	TC1-0.5, TC1-0.5-T2,	15-Mar-2017	24-Mar-2017	29-Mar-2017	~	27-Mar-2017	03-May-2017	~
Soil Glass Jar - Unpreserved (EP132B-SD) BP4, IC7-0.5	IC4,	16-Mar-2017	24-Mar-2017	30-Mar-2017	~	27-Mar-2017	03-May-2017	✓
Soil Glass Jar - Unpreserved (EP132B-SD) OC1-0.5-T1, OC4-0.5, OC1-0.2-T2	OC3-0.5, OC10,	17-Mar-2017	24-Mar-2017	31-Mar-2017	1	27-Mar-2017	03-May-2017	~
Soil Glass Jar - Unpreserved (EP132B-SD) IC1, IC1-R2, OC7,	IC5-0.5, OC5, OC7-R2-0.5	18-Mar-2017	24-Mar-2017	01-Apr-2017	~	27-Mar-2017	03-May-2017	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	20	Reaular	Actual	Expected	Evaluation	
aboratory Duplicates (DUP)							
Buchi Ammonia	EK055	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
loisture Content	EA055-103	4	31	12.90	10.00	~	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
nalyser							
litrite as N - Soluble by Discrete Analyser	EK057G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
organotin Analysis	EP090	3	25	12.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	4	31	12.90	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	4	31	12.90	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	4	31	12.90	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	5	35	14.29	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
uchi Ammonia	EK055	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
hromium Suite for Acid Sulphate Soils	EA033	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
rganotin Analysis	EP090	2	25	8.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	3	35	8.57	5.00	~	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	2	19	10.53	10.00	~	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	19	5.26	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
ethod Blanks (MB)							
uchi Ammonia	EK055	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 18 of 20
Work Order	: EP1702676
Client	: WA MARINE PTY LTD
Project	: 17WAU-0008 Onslow Marine Support Base

latrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
uality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
nalvtical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
lethod Blanks (MB) - Continued							
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Analyser							
litrite as N - Soluble by Discrete Analyser	EK057G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Organotin Analysis	EP090	2	25	8.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	2	31	6.45	5.00	~	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	3	35	8.57	5.00	~	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
latrix Spikes (MS)							
Buchi Ammonia	EK055	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
rganotin Analysis	EP090	2	25	8.00	5.00	~	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	19	5.26	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	2	31	6.45	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	2	31	6.45	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	2	31	6.45	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	19	5.26	5.00	~	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	19	5.26	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Total Fe and Al in Sediments by ICPAES	EG005-SD	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by Chemical Reduction, and direct colourimetry by Discrete Analyser.
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrrogen, each determined seperately as N.
Total Phosporus By Discrete Analyser	EK067G	SOIL	In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	SOIL	In house: Referenced to APHA 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3) (
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Organotin Analysis	EP090	SOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

QUALITY CONTROL REPORT

Work Order	: EP1703525	Page	: 1 of 10	
Client		Laboratory	: Environmental Division Per	th
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell	
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA A	ustralia 6090
Telephone	:	Telephone	: 08 9209 7606	
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017	
Order number	:	Date Analysis Commenced	: 12-Apr-2017	
C-O-C number	:	Issue Date	22-Apr-2017	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: EP/814/15			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris		Brisbane Acid Sulphate Soils, Stafford, QLD
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics, Malaga, WA
Daniel Fisher	Inorganics Analyst	Perth ASS, Malaga, WA
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW
Efua Wilson	Metals Chemist	Perth Inorganics, Malaga, WA
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA033-A: Actual Aci	idity (QC Lot: 839277)								
EP1703525-003	TC5	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.00	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.00	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	9.9	9.9	0.00	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 839277)							
Laboratory sample ID Client sample ID Method: Compound CAS Number LOR Unit Original Result Duple EA033-A: Actual Acidity (QC Lot: 839277) EA033: sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyrite S <0.02	<0.005	0.00	No Limit						
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	<10	<10	0.00	No Limit
		(a-22B)							
EA033-C: Acid Neut	ralising Capacity (QC L	ot: 839277)							
EP1703525-003	TC5	EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	10.4	10.4	0.480	0% - 20%
			0.01	% pyrite S	3.35	3.33	0.599	0% - 20%	
	(s-19A2)								
		EA033: acidity - Acid Neutralising Capacity		10	mole H+ / t	2090	2080	0.498	0% - 20%
		(a-19A2)							
EA033-E: Acid Base	Accounting (QC Lot: 8	39277)							
EP1703525-003	TC5	EA033: Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	0.00	No Limit
		EA033: Net Acidity excluding ANC (sulfur units)		0.02	% S	<0.02	<0.02	0.00 0.00 0.00 0.00 0.00 0 0.00 0 0.00 0 0.00 0 0.480 0 0.599 0 0.498 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 13.3 0	No Limit
		EA033: Liming Rate		1	kg CaCO3/t	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	No Limit		
		EA033: Liming Rate excluding ANC		1	kg CaCO3/t	<1	<1	0.00	No Limit
		EA033: Net Acidity (acidity units)		10	mole H+ / t	<10	<10	0.00	No Limit
		EA033: Net Acidity excluding ANC (acidity units)	CAS Number LOR Unit Original Result Duplicate Result RPD (%) iity (s-23F) 0.02 % pyrite S < 0.02 < 0.02 0.00 2 mole H+ / t < 2 < 2 0.00 0.1 pH Unit 9.9 9.9 0.00 22B) 0.005 % S < 0.005 < 0.005 0.00 Sulfur 0.005 % S < 0.005 < 0.00 < 0.00 MA2) 0.01 % CaCO3 10.4 10.4 0.480 pacity 0.01 % pyrite S 3.35 3.33 0.599 nacity 10 mole H+ / t 2090 2080 0.498 0.02 % S < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02	No Limit					
EA055: Moisture Co	ntent (QC Lot: 846958)								
EP1703525-001	TC1-1	EA055-103: Moisture Content (dried @ 103°C)		1	%	25.6	22.4	13.3	0% - 20%
EG005-SD: Total Me	tals in Sediments by IC								
			7429-90-5	50	ma/ka	5820	5890	1.14	0% - 20%

Page	: 3 of 10
Work Order	: EP1703525
Client	: WA MARINE PTY LTD
Project	Ex EP1702676 17-WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005-SD: Total Me	etals in Sediments by I	CP-AES (QC Lot: 846097) - continued							
EP1703525-002	TC1-T2-1	EG005-SD: Iron	7439-89-6	50	mg/kg	27700	27800	0.240	0% - 20%
EG020-SD: Total Me	etals in Sediments by I	CPMS (QC Lot: 846098)							
EP1703525-002	TC1-T2-1	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Selenium	7782-49-2	0.1	mg/kg	2.6	2.5	5.98	0% - 20%
		EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	0.00	No Limit
		EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	13.1	12.7	3.18	0% - 20%
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	15.8	18.6	16.1	0% - 50%
		EG020-SD: Chromium	7440-47-3	1	mg/kg	39.6	38.0	4.15	0% - 20%
		EG020-SD: Copper	7440-50-8	1	mg/kg	17.8	16.8	5.79	0% - 50%
		EG020-SD: Lead	7439-92-1	1	mg/kg	6.7	6.6	0.00	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	18.6	18.1	2.76	0% - 50%
		EG020-SD: Zinc	7440-66-6	1	mg/kg	32.3	30.5	5.76	0% - 20%
		EG020-SD: Manganese	7439-96-5	10	mg/kg	535	512	4.41	0% - 20%
		EG020-SD: Vanadium	7440-62-2	2	mg/kg	54.2	54.3	0.241	0% - 20%
EG035T: Total Rec	overable Mercury by F	IMS (QC Lot: 846099)							
EP1703525-002	TC1-T2-1	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EK055: Ammonia as	s N (QC Lot: 847181)								
EP1703488-014	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP1703488-023	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyse	er (QC Lot: 846993)							
EP1703525-001	TC1-1	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plu	Is Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 846992)							
EP1703525-001	TC1-1	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		rete Analyser (QC Lot: 836864)		0.1			0	0.00	
EP1703488-014	Anonymous			20	ma/ka	120	140	14.0	No Limit
EP1703488-024	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg mg/kg	420	490	14.0	0% - 20%
	-	EK061G: Total Kjeldahl Nitrogen as N		20	ilig/kg	420	430	10.2	070-2070
		ete Analyser (QC Lot: 836863)		<u> </u>		04	00	40.0	00/ 000/
EP1703488-014	Anonymous	EK067G: Total Phosphorus as P		2	mg/kg	94	82	13.9	0% - 20%
EP1703488-024	Anonymous	EK067G: Total Phosphorus as P		2	mg/kg	141	128	9.48	0% - 20%
		screte analyser (QC Lot: 846994)							
EP1703525-001	TC1-1	EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.3	0.3	0.00	No Limit
EP003: Total Organ	ic Carbon (TOC) in So	il (QC Lot: 845037)							
EP1703488-026	Anonymous	EP003: Total Organic Carbon		0.02	%	0.07	0.06	28.0	No Limit
EP080-SD / EP071-S	SD: Total Petroleum H	ydrocarbons (QC Lot: 836689)							
EP1703525-001	TC1-1	EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3	<3	0.00	No Limit

Page	: 4 of 10
Work Order	: EP1703525
Client	: WA MARINE PTY LTD
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
P080-SD / EP071-	SD: Total Petroleum Hy	drocarbons (QC Lot: 836689) - continued							
EP1703525-001	TC1-1	EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	<5	0.00	No Limit
P080-SD / EP071-	SD: Total Petroleum Hy	drocarbons (QC Lot: 843106)							
EP1703525-001	TC1-1	EP080-SD: C6 - C9 Fraction		3	mg/kg	<3	<3	0.00	0% - 3%
P080-SD / EP071-	SD: Total Recoverable I	Hydrocarbons (QC Lot: 836689)							
P1703525-001	TC1-1	EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	<3	0.00	No Limit
		EP071-SD: >C16 - C34 Fraction		3	mg/kg	<3	4	41.7	No Limit
		EP071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3	4	28.6	No Limit
		EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	<5	0.00	No Limit
P080-SD / EP071-	SD: Total Pocovorable k	Hydrocarbons (QC Lot: 843106)		-					
P1703525-001	TC1-1		C6 C10	3	mg/kg	<3	<3	0.00	0% - 3%
		EP080-SD: C6 - C10 Fraction	00_010	5	iiig/kg	~5	~5	0.00	078 - 378
P080-SD: BTEXN				0.0				0.00	001 001
EP1703525-001	TC1-1	EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
			106-42-3	0.0			10.0	0.00	00/ 00/
		EP080-SD: ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.5	<0.5	0.00	0%2%
		EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2	<0.2	0.00	0%2%
		EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	0.00	0%2%
	Compounds (QC Lot: 84	44512)							
EP1703444-003	Anonymous	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
EP1703525-001	TC1-1	EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	0.00	No Limit
P132B: Polynucle	ar Aromatic Hydrocarb	ons (QC Lot: 836690)							
P1703525-001	TC1-1	EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Perylene	198-55-0	4	µg/kg	<4	<4	0.00	No Limit

Page	: 5 of 10
Work Order	: EP1703525
Client	: WA MARINE PTY LTD
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP132B: Polynuclear	Polynuclear Aromatic Hydrocarbons (QC Lot: 836690) - continued 5-001 TC1-1 EP132B-SD: Benzo(g.h.i)perylene 1 EP132B-SD: Dibenz(a.h)anthracene EP132B-SD: Indeno(1.2.3.cd)pyrene 1								
EP1703525-001	TC1-1	EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Sum of PAHs		4	µg/kg	<4	<4	0.00	No Limit
		EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	0.00	No Limit
		EP132B-SD: Coronene	191-07-1	5	µg/kg	<5	<5	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EA033-A: Actual Acidity (QCLot: 839277)								
EA033: pH KCI (23A)		0.1	pH Unit	<0.1				
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	73.0756 mole H+ / t	90.6	79	103
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				
EA033-B: Potential Acidity (QCLot: 839277)								
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.1798 % S	81.2	77	117
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10				
EA033-C: Acid Neutralising Capacity (QCLot: 839277	7)							
EA033: Acid Neutralising Capacity (19A2)		0.01	% CaCO3	<0.01	4.9 % CaCO3	103	85	115
EA033: acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	<10				
EA033: sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	<0.01				
EA033-E: Acid Base Accounting (QCLot: 839277)								
EA033: Net Acidity (sulfur units)		0.02	% S	<0.02				
EA033: Net Acidity (acidity units)		10	mole H+ / t	<10				
EA033: Liming Rate		1	kg CaCO3/t	<1				
EG005-SD: Total Metals in Sediments by ICP-AES (Q	CL of: 846097)							
EG005-SD: Aluminium	7429-90-5	50	mg/kg	<50				
EG005-SD: Iron	7439-89-6	50	mg/kg	<50				
EG020-SD: Total Metals in Sediments by ICPMS (QC	Lot: 846098)							
EG020-SD: Antimony	7440-36-0	0.5	mg/kg	<0.50				
EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	115	74	130
EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	109	97	113
EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	103	72	152
EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	102	76	116
EG020-SD: Cobalt	7440-48-4	0.5	mg/kg	<0.5				
EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	40.33169 mg/kg	98.1	74	124
EG020-SD: Manganese	7439-96-5	10	mg/kg	<10				
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	104	81	135
EG020-SD: Selenium	7782-49-2	0.1	mg/kg	<0.1				
EG020-SD: Silver	7440-22-4	0.1	mg/kg	<0.1				
EG020-SD: Vanadium	7440-62-2	2	mg/kg	<2.0				
EG020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	111	81	143
EG035T: Total Recoverable Mercury by FIMS (QCLo	t: 846099)							
EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	99.3	80	120

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
K055: Ammonia as N (QCLot: 847181)								
EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	10 mg/kg	88.8	70	130
EK057G: Nitrite as N by Discrete Analyser (QCLot	: 846993)							
EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	96.6	89	121
EK059G: Nitrite plus Nitrate as N (NOx) by Discret	e Analyser (QCLot: 8469	92)						
EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	107	90	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	ser (OCI of: 836864)							
EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	<20	1000 mg/kg	84.5	78	112
			0.0	<20	100 mg/kg	85.9	70	130
K067G: Total Phosphorus as P by Discrete Analys	ser (OCI of: 836863)							
EK067G: Total Phosphorus as P		2	mg/kg	<2	440 mg/kg	88.4	78	108
			5.5	<2	44 mg/kg	90.7	70	130
EK071G: Reactive Phosphorus as P by discrete an	alvser (QCLot: 846994)							
EK071G: Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	2.5 mg/kg	105	92	112
EP003: Total Organic Carbon (TOC) in Soil (QCLot	• 845037)							
EP003: Total Organic Carbon	. 043037)	0.02	%	<0.02	100 %	110	70	130
	(OCL at: 926690)							
EP080-SD / EP071-SD: Total Petroleum Hydrocarbo EP071-SD: C10 - C14 Fraction		3	mg/kg	<3	138 mg/kg	103	70	130
EP071-SD: C15 - C28 Fraction		3	mg/kg	<3	290 mg/kg	106	70	130
EP071-SD: C29 - C36 Fraction		5	mg/kg	<5	51 mg/kg	113	70	130
EP071-SD: C10 - C36 Fraction (sum)		3	mg/kg	<3				
	001 at: 942406)							
EP080-SD / EP071-SD: Total Petroleum Hydrocarbo EP080-SD: C6 - C9 Fraction	ons (QCLOI: 643106)	3	mg/kg	<3	800 mg/kg	73.4	70	130
		3	ilig/kg	-9	000 mg/kg	13.4	70	150
EP080-SD / EP071-SD: Total Recoverable Hydrocar	bons (QCLot: 836689)	3	malka	<3	202 ma/ka	105	70	130
EP071-SD: >C10 - C16 Fraction		3	mg/kg	<3	202 mg/kg 258 mg/kg	105	70	130
EP071-SD: >C16 - C34 Fraction EP071-SD: >C34 - C40 Fraction		5	mg/kg	<5	18 mg/kg	96.0	70	130
=P071-SD: >C34 - C40 Fraction =P071-SD: >C10 - C40 Fraction (sum)		3	mg/kg	<3				
		3	ilig/kg	-9				
EP080-SD / EP071-SD: Total Recoverable Hydrocar		3	malka	<3	02E malka	77.0	70	130
EP080-SD: C6 - C10 Fraction	C6_C10	3	mg/kg	< 3	925 mg/kg	11.0	70	130
EP080-SD: BTEXN (QCLot: 843106)					50 "	100		100
EP080-SD: Benzene	71-43-2	0.2	mg/kg	<0.2	50 mg/kg	106	70	130
EP080-SD: Toluene	108-88-3	0.2	mg/kg	<0.2	50 mg/kg	103	70	130
EP080-SD: Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	50 mg/kg	110	70	130
EP080-SD: meta- & para-Xylene	108-38-3	0.2	mg/kg	<0.2	100 mg/kg	108	70	130
ED000 SD: othe Yulene	106-42-3 95-47-6	0.2	mg/kg	<0.2	50 mg/kg	111	70	130
EP080-SD: ortho-Xylene EP080-SD: Total Xylenes	1330-20-7	0.2	mg/kg	<0.2				

Page	: 8 of 10
Work Order	: EP1703525
Client	: WA MARINE PTY LTD
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP080-SD: BTEXN (QCLot: 843106) - continued										
EP080-SD: Sum of BTEX		0.2	mg/kg	<0.2						
EP080-SD: Naphthalene	91-20-3	0.2	mg/kg	<0.2	50 mg/kg	114	70	130		
EP090: Organotin Compounds (QCLot: 844512)										
EP090: Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	1.25 µgSn/kg	103	52	139		
EP132B: Polynuclear Aromatic Hydrocarbons (QCLot: 83	6690)	-								
EP132B-SD: Naphthalene	91-20-3	5	µg/kg	<5	25 µg/kg	99.4	55	131		
EP132B-SD: 2-Methylnaphthalene	91-57-6	5	µg/kg	<5						
EP132B-SD: Acenaphthylene	208-96-8	4	µg/kg	<4	25 µg/kg	93.5	64	110		
EP132B-SD: Acenaphthene	83-32-9	4	µg/kg	<4	25 µg/kg	101	62	112		
EP132B-SD: Fluorene	86-73-7	4	µg/kg	<4	25 µg/kg	99.4	64	118		
EP132B-SD: Phenanthrene	85-01-8	4	µg/kg	<4	25 µg/kg	103	59	117		
EP132B-SD: Anthracene	120-12-7	4	µg/kg	<4	25 µg/kg	103	69	111		
EP132B-SD: Fluoranthene	206-44-0	4	µg/kg	<4	25 µg/kg	100	66	118		
EP132B-SD: Pyrene	129-00-0	4	µg/kg	<4	25 µg/kg	98.1	70	116		
EP132B-SD: Benz(a)anthracene	56-55-3	4	µg/kg	<4	25 µg/kg	87.8	59	121		
EP132B-SD: Chrysene	218-01-9	4	µg/kg	<4	25 µg/kg	116	68	116		
EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	4	µg/kg	<4	25 µg/kg	95.2	51	107		
	205-82-3									
EP132B-SD: Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	25 µg/kg	90.0	52	118		
EP132B-SD: Benzo(e)pyrene	192-97-2	4	µg/kg	<4						
EP132B-SD: Benzo(a)pyrene	50-32-8	4	µg/kg	<4	25 µg/kg	91.0	55	111		
EP132B-SD: Perylene	198-55-0	4	µg/kg	<4						
EP132B-SD: Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	25 µg/kg	81.8	62	106		
EP132B-SD: Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	25 µg/kg	97.8	35	141		
EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	25 µg/kg	104	48	122		
EP132B-SD: Coronene	191-07-1	5	µg/kg	<5						
EP132B-SD: Sum of PAHs		4	µg/kg	<4						

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ıb-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005-SD: Total N	letals in Sediments by ICP-AES (QCLot: 846097)							
EP1703525-003	TC5	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not	70	130	
					Determined			

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery I	_imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig	
G005-SD: Total M	letals in Sediments by ICP-AES (QCLot: 846097)	- continued						
EP1703525-003	TC5	EG005-SD: Iron	7439-89-6	50 mg/kg	# Not	70	130	
					Determined			
EG020-SD: Total N	letals in Sediments by ICPMS (QCLot: 846098)							
EP1703525-003	TC5	EG020-SD: Arsenic	7440-38-2	50 mg/kg	98.2	70	130	
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	104	70	130	
		EG020-SD: Chromium	7440-47-3	50 mg/kg	84.4	70	130	
		EG020-SD: Copper	7440-50-8	250 mg/kg	88.2	70	130	
		EG020-SD: Lead	7439-92-1	250 mg/kg	92.5	70	130	
		EG020-SD: Nickel	7440-02-0	50 mg/kg	101	70	130	
		EG020-SD: Selenium	7782-49-2	50 mg/kg	88.5	70	130	
		EG020-SD: Zinc	7440-66-6	250 mg/kg	101	70	130	
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 846099)							
EP1703525-003	TC5	EG035T-LL: Mercury	7439-97-6	10 mg/kg	98.0	70	130	
				1011191119				
	as N (QCLot: 847181)			100 #	00.0	=0	10	
EP1703488-015	Anonymous	EK055: Ammonia as N	7664-41-7	100 mg/kg	90.3	70	130	
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 846993)							
EP1703525-002	TC1-T2-1	EK057G: Nitrite as N (Sol.)	14797-65-0	3 mg/kg	100	70	130	
EK059G: Nitrite p	us Nitrate as N (NOx) by Discrete Analyser(QCL	ot: 846992)						
EP1703525-002	TC1-T2-1	EK059G: Nitrite + Nitrate as N (Sol.)		3 mg/kg	96.5	70	130	
EK061G: Total Kia	dahl Nitrogen By Discrete Analyser (QCLot: 836						1	
EP1703488-015	Anonymous			500 mg/kg	# 56.3	70	130	
		EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	# 50.5	70	130	
	osphorus as P by Discrete Analyser (QCLot: 8368	63)						
EP1703488-015	Anonymous	EK067G: Total Phosphorus as P		100 mg/kg	83.1	70	130	
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 8	46994)						
EP1703525-002	TC1-T2-1	EK071G: Reactive Phosphorus as P	14265-44-2	2.5 mg/kg	110	70	130	
=P080-SD / EP071	SD: Total Petroleum Hydrocarbons (QCLot: 8366	89)						
EP1703525-002	TC1-T2-1	EP071-SD: C10 - C14 Fraction		138 mg/kg	103	70	130	
L. 1700020-002		EP071-SD: C10 - C14 Fraction EP071-SD: C15 - C28 Fraction		290 mg/kg	103	70	13	
		EP071-SD: C19 - C28 Fraction EP071-SD: C29 - C36 Fraction		51 mg/kg	119	70	13	
	CD: Total Datralaum Unduggerhang (OCL at 0424			51 119/19		. •	10	
	SD: Total Petroleum Hydrocarbons (QCLot: 8431				70 7	70	1-	
EP1703525-002	TC1-T2-1	EP080-SD: C6 - C9 Fraction		600 mg/kg	73.7	70	13	
EP080-SD / EP071	SD: Total Recoverable Hydrocarbons (QCLot: 83	6689)						
EP1703525-002	TC1-T2-1	EP071-SD: >C10 - C16 Fraction		202 mg/kg	106	70	130	
		EP071-SD: >C16 - C34 Fraction		258 mg/kg	108	70	130	
		EP071-SD: >C34 - C40 Fraction		18 mg/kg	103	70	130	

Sub-Matrix: SOIL				Ma	atrix Spike (MS) Report	1	
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080-SD / EP071	SD: Total Recoverable Hydrocarbons (QCLot: 84310)6)					
EP1703525-002	TC1-T2-1	EP080-SD: C6 - C10 Fraction	C6_C10	725 mg/kg	75.8	70	130
P080-SD: BTEXN	(QCLot: 843106)						
EP1703525-002	TC1-T2-1	EP080-SD: Benzene	71-43-2	50 mg/kg	101	70	130
		EP080-SD: Toluene	108-88-3	50 mg/kg	102	70	130
P090: Organotin	Compounds (QCLot: 844512)						
EP1703444-004	Anonymous	EP090: Tributyltin	56573-85-4	1.25 µgSn/kg	70.6	20	130
P132B: Polynucle	ear Aromatic Hydrocarbons (QCLot: 836690)						
EP1703525-002	TC1-T2-1	EP132B-SD: Naphthalene	91-20-3	25 µg/kg	79.4	70	130
	EP132B-SD: Acenaphthylene	208-96-8	25 µg/kg	76.7	70	130	
		EP132B-SD: Acenaphthene	83-32-9	25 µg/kg	83.8	70	130
		EP132B-SD: Fluorene	86-73-7	25 µg/kg	86.1	70	130
		EP132B-SD: Phenanthrene	85-01-8	25 µg/kg	80.0	70	130
		EP132B-SD: Anthracene	120-12-7	25 µg/kg	83.9	70	130
		EP132B-SD: Fluoranthene	206-44-0	25 µg/kg	97.4	70	130
		EP132B-SD: Pyrene	129-00-0	25 µg/kg	95.6	70	130
		EP132B-SD: Benz(a)anthracene	56-55-3	25 µg/kg	88.8	70	130
		EP132B-SD: Chrysene	218-01-9	25 µg/kg	110	70	130
		EP132B-SD: Benzo(b+j)fluoranthene	205-99-2	25 µg/kg	85.4	70	130
			205-82-3				
		EP132B-SD: Benzo(k)fluoranthene	207-08-9	25 µg/kg	98.0	70	130
		EP132B-SD: Benzo(a)pyrene	50-32-8	25 µg/kg	78.4	70	130
		EP132B-SD: Benzo(g.h.i)perylene	191-24-2	25 µg/kg	93.4	70	130
		EP132B-SD: Dibenz(a.h)anthracene	53-70-3	25 µg/kg	87.2	70	130
		EP132B-SD: Indeno(1.2.3.cd)pyrene	193-39-5	25 µg/kg	88.9	70	130

QA/QC Compliance Assessment to assist with Quality Review

Work Order	: EP1703525	Page	: 1 of 10
Client		Laboratory	: Environmental Division Perth
Contact	: TRAVIS HURLEY	Telephone	: 08 9209 7606
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017
Site	:	Issue Date	: 22-Apr-2017
Sampler	:	No. of samples received	: 3
Order number	:	No. of samples analysed	: 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005-SD: Total Metals in Sediments by ICP-AES	EP1703525003	TC5	Aluminium	7429-90-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1703525003	TC5	Iron	7439-89-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser	EP1703488015	Anonymous	Total Kjeldahl Nitrogen		56.3 %	70-130%	Recovery less than lower data quality
			as N				objective

Outliers : Analysis Holding Time Compliance

Matrix:	SOIL
---------	------

Method		E:	xtraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days overdue	Date analysed	Due for analysis	Days overdue
EA033-A: Actual Acidity							
Soil Glass Jar - Unpreserved							
TC5		19-Apr-2017	18-Mar-2017	32			
EA033-B: Potential Acidity							
Soil Glass Jar - Unpreserved							
TC5		19-Apr-2017	18-Mar-2017	32			
EA033-C: Acid Neutralising Capacity							
Soil Glass Jar - Unpreserved							
TC5		19-Apr-2017	18-Mar-2017	32			
A033-D: Retained Acidity							
Soil Glass Jar - Unpreserved							
TC5		19-Apr-2017	18-Mar-2017	32			
A033-E: Acid Base Accounting							
Soil Glass Jar - Unpreserved							
TC5		19-Apr-2017	18-Mar-2017	32			
A055: Moisture Content							
Soil Glass Jar - Unpreserved							
TC1-1,	TC1-T2-1				20-Apr-2017	29-Mar-2017	22
Soil Glass Jar - Unpreserved							
TC5					20-Apr-2017	31-Mar-2017	20
G035T: Total Recoverable Mercury	by FIMS						
Soil Glass Jar - Unpreserved							
TC1-T2-1		20-Apr-2017	12-Apr-2017	8	20-Apr-2017	12-Apr-2017	8
Soil Glass Jar - Unpreserved							
TC5		20-Apr-2017	14-Apr-2017	6	20-Apr-2017	14-Apr-2017	6

Davs

7

5

20

20

Matrix: SOIL Method Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Date analysed Due for analysis Davs overdue overdue EP003: Total Organic Carbon (TOC) in Soil Soil Glass Jar - Unpreserved 19-Apr-2017 12-Apr-2017 7 19-Apr-2017 12-Apr-2017 TC1-T2-1 Soil Glass Jar - Unpreserved TC5 19-Apr-2017 14-Apr-2017 5 19-Apr-2017 14-Apr-2017 EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions Soil Glass Jar - Unpreserved TC1-1. TC1-T2-1 13-Apr-2017 29-Mar-2017 15 ____ ____ EP080-SD / EP071-SD: Total Petroleum Hydrocarbons Soil Glass Jar - Unpreserved TC1-1. TC1-T2-1 29-Mar-2017 15 13-Apr-2017 ----EP080-SD / EP071-SD: Total Recoverable Hydrocarbons Soil Glass Jar - Unpreserved TC1-1, TC1-T2-1 13-Apr-2017 29-Mar-2017 15 18-Apr-2017 29-Mar-2017 EP080-SD: BTEXN Soil Glass Jar - Unpreserved TC1-T2-1 TC1-1. 13-Apr-2017 29-Mar-2017 15 18-Apr-2017 29-Mar-2017 EP090: Organotin Compounds Soil Glass Jar - Unpreserved TC1-1, TC1-T2-1 19-Apr-2017 29-Mar-2017 21 --------EP132B: Polynuclear Aromatic Hydrocarbons Soil Glass Jar - Unpreserved TC1-1 TC1-T2-1 13-Apr-2017 29-Mar-2017 15 ____ ----

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL Evaluation: \star = Holding time breach ; \checkmark = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EA033-A: Actual Acidity Soil Glass Jar - Unpreserved (EA033) 17-Mar-2017 19-Apr-2017 18-Mar-2017 19-Apr-2017 18-Jul-2017 TC5 . \checkmark

Mande Sample fabre Extender / Poparitor Text - Analyzet Analyzet Catalian / Locat Sample (D) Date environd Date environd Schalt on	Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
EA33-B - Protential Acting Distance Distance <thdistance< th=""> Distance <thdista< td=""><td>Method</td><td>Sample Date</td><td>Ex</td><td>traction / Preparation</td><td></td><td></td><td></td></thdista<></thdistance<>	Method	Sample Date	Ex	traction / Preparation				
Soli (Jas Jar - Unpresenved (EA033) T25 17.Mar. 2017 18.Mar. 2017 <td>Container / Client Sample ID(s)</td> <td></td> <td>Date extracted</td> <td>Due for extraction</td> <td>Evaluation</td> <td>Date analysed</td> <td>Due for analysis</td> <td>Evaluation</td>	Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
TC5 17.48.r2017 19.48.r2017 1 <th1< th=""></th1<>	EA033-B: Potential Acidity							
EA33-C2 Acid Neutraliang Capacity Image: Compresented (EA33)							10 1 1 00 17	
Sol Class Jar - Unpreserved (EA033) TC5 19-Agr-2017	TC5	17-Mar-2017	19-Apr-2017	18-Mar-2017	*	19-Apr-2017	18-Jul-2017	✓
TCS 19.4.ar.2017 18.4.ar.2017 14.4.3.2.ar.2017 14.4.3.2.2.ar.22.ar.22.ar.22.ar.2.2.ar.222.								
EA33-D: Retained Acidity Image: Probability of the second s		17 Mar 2017	19 Apr 2017	18-Mar-2017	4.0	19 Apr 2017	18- Jul-2017	,
Soli Class Jar. Unpreserved (EA033) TAMar.2017 19. Apr.2017 19. Apr.2017 19. Apr.2017 18. Alar.2017 19. Apr.2017 18. Alar.2017		17-Wai-2017	13-Apr-2017	10 Mai 2017	*	13-Api-2017	10 001 2017	V
TCS TMar.2017 T9.Apr.2017 T9.								
EA033E: Acid Base Accounting V V V Sofi Glass Jar - Unpreserved (EA033) TG5 17-Mar-2017 19-Apr-2017 18-Mar-2017 18-Mar-2017 18-Mar-2017 18-Mar-2017 V EA053. Moisture Contant TG1-T2-1 15-Mar-2017 20-Apr-2017 29-Mar-2017 x Sofi Glass Jar - Unpreserved (EA055-103) TG1-1 TG1-T2-1 15-Mar-2017 20-Apr-2017 29-Mar-2017 x Sofi Glass Jar - Unpreserved (EA055-103) TG5 TG1-T2-1 15-Mar-2017 20-Apr-2017 13-Mar-2017 x EA150: Particle Sizing Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TG1-T2-1 17-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ TG5 T2-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TG1-T2-1 15-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TG1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017		17-Mar-2017	19-Apr-2017	18-Mar-2017	*	19-Apr-2017	18-Jul-2017	1
Soli (lass Jar - Unpreserved (£A033) TC5 17.44ar-2017 19.Apr-2017 18.4ar-2017 18.4ar-2017 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					
TCS 17.4Bar-2017 19.4pr-2017 11.5pr-2017 √ Statistic String TC1-12-1 15.4Mar-2017 19.4pr-2017 11.5pr-2017 √ Statist String TC1-12-1 15.4Mar-2017 19.4pr-2017 11.5pr-2017 √ Statist String TC1-12-1 15.4Mar-2017 19.4pr-2017 11.5pr-2017 √ Statist String TC1-12-1 15.4Mar-2017 19.4pr-2017 11.5pr-2017 √ Statist String TC1-12-1 15.4Mar-2017								
Soli Class Jar - Unpreserved (EA055-103) TC1-T2-1 TC1-T2-1 T5 - Mar-2017 J. J. <th< td=""><td></td><td>17-Mar-2017</td><td>19-Apr-2017</td><td>18-Mar-2017</td><td>*</td><td>19-Apr-2017</td><td>18-Jul-2017</td><td>1</td></th<>		17-Mar-2017	19-Apr-2017	18-Mar-2017	*	19-Apr-2017	18-Jul-2017	1
TC1-1, TC1-T2-1 15 Mar 2017 20 Apr 2017 29 Mar 2017 x Soli Glass Jar - Unpreserved (EA055-103) 17 Mar 2017 20 Apr 2017 x EA169: Particle Sizing 11 Mar 2017 x EA169: Particle Sizing	EA055: Moisture Content							
Diff Giss Jar - Unpreserved (EA055-103) TCS TOT IC TOT IC TOT IC A160 Giss Jar - Unpreserved (EA055-103) TCS 17-Mar-2017 17-Mar-2017 31-Mar-2017 X A150- Particle Sizing 17-Mar-2017 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2:1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2:1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2:1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2:1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2:1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Soli Glass Jar - Unpreserved (EG005-SD) TC1-T2:1 17-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ Soli Glass Jar - Unpreserved (EG002-SD) TC1-T2:1 10-Mar-2017	Soil Glass Jar - Unpreserved (EA055-103)							
TCS TCS T		15-Mar-2017				20-Apr-2017	29-Mar-2017	×
CA150: Particle Sizing Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC5 EA150: PSD Bag (EA150H) TC5 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC4: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1: T2:1 Snap Lock Bag - Tupreserved (E6005-SD) TC1		17 Max 2017				20 4 - 2017	21 Mar 2017	
Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC5 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ EA150: Soli Classification based on Particle Size 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 11-Sep-2017 19-Apr-2017 13-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 11-Sep-2017 11-Sep-2017 11-Sep-2017 13-Sep-2017 11-Sep-2017 13-Sep-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 13-Sep-2017 13-Sep-2017 ✓		17-Mar-2017				20-Apr-2017	31-IVIAI-2017	×
TC1.72.1 15-Mar.2017 19-Apr.2017 11-Sep.2017 11-Sep.2017 √ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar.2017 19-Apr.2017 13-Sep.2017 √ EA150: Soli Classification based on Particle Size 19-Apr.2017 11-Sep.2017 √ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 15-Mar.2017 19-Apr.2017 11-Sep.2017 √ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar.2017 19-Apr.2017 11-Sep.2017 √ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar.2017 19-Apr.2017 13-Sep.2017 √ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar.2017 20-Apr.2017 11-Sep.2017 √ 20-Apr.2017 13-Sep.2017 √ 20-Apr.2017 11-Sep.2017 √ 20-Apr.2017 11-Sep.2017 √ 20-Apr.2017 11-Sep.2017 √ 20-Apr.2017 11-Sep.2017 √ 20-Apr.2017 13-Sep.2017 √ 20-Apr.2017 13-Sep.2017 √ 20-Apr.2017 13-Sep.2017 √ 20-								
Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC3 17-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ EA150: S0I Classification based on Particle Size 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 17-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Soli Class Jar - Unpreserved (EG005-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ Soli Class Jar - Unpreserved (EG005-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 13-Sep-2017 ✓ 20-Apr-2017 13-Sep-2017 ✓ Soli Class Jar - Unpreserved (EG020-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 13-Sep-2017 ✓ Soli Class Jar - Unpreserved (EG020-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 13-Sep-2017		15-Mar-2017				19-Apr-2017	11-Sep-2017	1
TC5 17-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ EA150: Soli Classification based on Particle Size 5								•
Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) TC1-T2-1 11-Sep-2017 11-S		17-Mar-2017				19-Apr-2017	13-Sep-2017	✓
TC1-T2-1 15-Mar-2017 19-Apr-2017 11-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H) 17-Mar-2017 19-Apr-2017 13-Sep-2017 ✓ EG005-SD: Total Metals in Sediments by ICP-AES 15-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓	EA150: Soil Classification based on Particle Size							
Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - Friable Asbestos/PSD Bag (EA150H) Name Lock Bag - State Part Part Part Part Part Part Part Part	Snap Lock Bag - Friable Asbestos/PSD Bag (EA150H)							
TC5 17-Mar-2017 19-Apr-2017 13-Sep-2017 13-Sep-2017 EG005-SD: Total Metals in Sediments by ICP-AES Soil Glass Jar - Unpreserved (EG005-SD) 11-Sep-2017 13-Sep-2017 11-Sep-2017 14-Sep-2017 11-Sep-2017 14-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 13-Sep-2017 11-Sep-2017 11-Sep-2017<		15-Mar-2017				19-Apr-2017	11-Sep-2017	✓
EG005-SD: Total Metals in Sediments by ICP-AES Soil Glass Jar - Unpreserved (EG005-SD) 15-Mar-2017 20-Apr-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 11-Sep-2017 √ Soil Glass Jar - Unpreserved (EG005-SD) 17-Mar-2017 20-Apr-2017 13-Sep-2017 13-Sep-2017 13-Sep-2017 13-Sep-2017 √ EG020-SD: Total Metals in Sediments by ICPMS 50il Glass Jar - Unpreserved (EG020-SD) 11-Sep-2017 11-Sep-2017 √ 20-Apr-2017 11-Sep-2017 √ Soil Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 √ 20-Apr-2017 11-Sep-2017 √ Soil Glass Jar - Unpreserved (EG020-SD) TC5 17-Mar-2017 20-Apr-2017 11-Sep-2017 √ 20-Apr-2017 11-Sep-2017 √ Soil Glass Jar - Unpreserved (EG035T-LL) TC4 15-Mar-2017 20-Apr-2017 13-Sep-2017 √ 20-Apr-2017 12-Apr-2017 x Soil Glass Jar - Unpreserved (EG035T-LL) TC4 15-Mar-2017 20-Apr-2017 12-Apr-2017 x Soil Glass Jar - Unpreserved (EG035T-LL) 15-Mar-2017 12-Apr-2017		17 Mar 2017				10 Apr 2017	12 Son 2017	,
Soil Glass Jar - Unpreserved (EG005-SD) TC1-T2-1 11-Sep-2017 11-Sep-		17-Mar-2017				19-Apr-2017	13-Sep-2017	✓
TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ Soil Glass Jar - Unpreserved (EG005-SD) TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 ✓ 20-Apr-2017 13-Sep-2017 ✓ EG020-SD: Total Metals in Sediments by ICPMS 501 Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ ✓ Soil Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 10-preserved (EG020-SD) TC5 11-Sep-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓								
Soil Glass Jar - Unpreserved (EG005-SD) TC517-Mar-201720-Apr-201713-Sep-2017 </td <td></td> <td>15-Mar-2017</td> <td>20-Apr-2017</td> <td>11-Sep-2017</td> <td></td> <td>20-Apr-2017</td> <td>11-Sep-2017</td> <td></td>		15-Mar-2017	20-Apr-2017	11-Sep-2017		20-Apr-2017	11-Sep-2017	
TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 ✓ 20-Apr-2017 13-Sep-2017 ✓ EG020-SD: Total Metals in Sediments by ICPMS Soil Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 Soil Glass Jar - Unpreserved (EG020-SD) TC5 15-Mar-2017 20-Apr-2017 11-Sep-2017 ✓ 20-Apr-2017 11-Sep-2017 ✓ Soil Glass Jar - Unpreserved (EG020-SD) TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 ✓ ✓ ✓ Soil Glass Jar - Unpreserved (EG030-SD) TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 √ ✓ Soil Glass Jar - Unpreserved (EG035T-LL) TC1-T2-1 15-Mar-2017 20-Apr-2017 13-Sep-2017 √ ✓ Soil Glass Jar - Unpreserved (EG035T-LL) TC1-T2-1 15-Mar-2017 20-Apr-2017 12-Apr-2017			20 Apr 2011		•	20 Apr 2011		•
Soil Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 11-Sep		17-Mar-2017	20-Apr-2017	13-Sep-2017	1	20-Apr-2017	13-Sep-2017	1
Soil Glass Jar - Unpreserved (EG020-SD) TC1-T2-1 15-Mar-2017 20-Apr-2017 11-Sep-2017 11-Sep	EG020-SD: Total Metals in Sediments by ICPMS							
Soil Glass Jar - Unpreserved (EG020-SD) TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 20-Apr-2017 13-Sep-2017 13-Sep-2017<								
TC5 17-Mar-2017 20-Apr-2017 13-Sep-2017 ✓ 20-Apr-2017 13-Sep-2017 ✓ EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved (EG035T-LL) TC1-T2-1 Soil Glass Jar - Unpreserved (EG035T-LL) Soil Glass Jar - Unpreserved (EG035T-LL) 15-Mar-2017 12-Apr-2017	TC1-T2-1	15-Mar-2017	20-Apr-2017	11-Sep-2017	✓	20-Apr-2017	11-Sep-2017	✓
EG035T: Total Recoverable Mercury by FIMS Soil Glass Jar - Unpreserved (EG035T-LL) TC1-T2-1 15-Mar-2017 20-Apr-2017 12-Apr-2017 12-Apr-2017 12-Apr-2017 12-Apr-2017		17 11 - 0017		12 0	,		42 0 0047	
Soil Glass Jar - Unpreserved (EG035T-LL) 20-Apr-2017 12-Apr-2017 20-Apr-2017 12-Apr-2017 12-Apr-2017 <td></td> <td>17-Mar-2017</td> <td>20-Apr-2017</td> <td>13-Sep-2017</td> <td>~</td> <td>20-Apr-2017</td> <td>13-Sep-2017</td> <td>✓</td>		17-Mar-2017	20-Apr-2017	13-Sep-2017	~	20-Apr-2017	13-Sep-2017	✓
TC1-T2-1 20-Apr-2017 12-Apr-2017 20-Apr-2017 12-Apr-2017								
Soil Glass Jar - Unpreserved (EG035T-LL)		15-Mar-2017	20-Apr-2017	12-Δpr-2017	4-	20-Apr-2017	12-Apr-2017	4-
		15-mdi-2017	20-Api-2017	12-7701-2017	×	20-401-2017	12-Api-2017	*
	TC5	17-Mar-2017	20-Apr-2017	14-Apr-2017	×	20-Apr-2017	14-Apr-2017	x

Matrix: SOIL					Evaluatior	n: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	E>	Extraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK055: Ammonia as N					_			
Soil Glass Jar - Unpreserved (EK055)								
TC1-1,	TC1-T2-1	15-Mar-2017				20-Apr-2017	11-Sep-2017	✓
EK057G: Nitrite as N by Discrete Analyser								
Soil Glass Jar - Unpreserved (EK057G)				11.0 - 0017			11.0 - 0017	
TC1-1,	TC1-T2-1	15-Mar-2017	20-Apr-2017	11-Sep-2017	-	20-Apr-2017	11-Sep-2017	✓
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	ete Analyser							
Soil Glass Jar - Unpreserved (EK059G)		15-Mar-2017	20-Apr-2017	11-Sep-2017	1	20-Apr-2017	11-Sep-2017	,
TC1-1,	TC1-T2-1	15-Mid1-2017	20-Apr-2017	11-3ep-2017	~	20-Apr-2017	11-3ep-2017	✓
EK061G: Total Kjeldahl Nitrogen By Discrete Analy	yser							
Soil Glass Jar - Unpreserved (EK061G) TC1-1,	TC1-T2-1	15-Mar-2017	12-Apr-2017	11-Sep-2017	1	19-Apr-2017	11-Sep-2017	1
	_			11 000 2011	v		11 000 2011	v
EK067G: Total Phosphorus as P by Discrete Analy Soil Glass Jar - Unpreserved (EK067G)	/ser							
TC1-1,	TC1-T2-1	15-Mar-2017	12-Apr-2017	11-Sep-2017	1	19-Apr-2017	11-Sep-2017	1
EK071G: Reactive Phosphorus as P by discrete an					_			
Soil Glass Jar - Unpreserved (EK071G)								
TC1-1,	TC1-T2-1	15-Mar-2017	20-Apr-2017	11-Sep-2017	1	20-Apr-2017	11-Sep-2017	 ✓
EP003: Total Organic Carbon (TOC) in Soil								
Soil Glass Jar - Unpreserved (EP003)								
TC1-T2-1		15-Mar-2017	19-Apr-2017	12-Apr-2017	<u>*</u>	19-Apr-2017	12-Apr-2017	×
Soil Glass Jar - Unpreserved (EP003)			10.0.0047	44.4			44.4	
TC5		17-Mar-2017	19-Apr-2017	14-Apr-2017	<u>*</u>	19-Apr-2017	14-Apr-2017	×
EP080/071: Total Recoverable Hydrocarbons - NEF	PM 2013 Fractions		_				1	
Soil Glass Jar - Unpreserved (EP071-SD) TC1-1,	TC1-T2-1	15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	23-May-2017	1
		13-Mai-2017	13-Api-2017	20 Mai 2017	*	10-Apr-2017	20 May 2017	~
EP080-SD / EP071-SD: Total Petroleum Hydrocarbo	ons							
Soil Glass Jar - Unpreserved (EP080-SD) TC1-1		15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	29-Mar-2017	×
Soil Glass Jar - Unpreserved (EP071-SD)								
TC1-1		15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	23-May-2017	✓
Soil Glass Jar - Unpreserved (EP080-SD)								
TC1-T2-1		15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	29-Mar-2017	*
Soil Glass Jar - Unpreserved (EP071-SD) TC1-T2-1		15-Mar-2017	13-Apr-2017	29-Mar-2017	<u>1</u>	18-Apr-2017	23-May-2017	1
		15-Wid1-2017	13-Api-2017	20 1001-2017	*	10-Apr-2017	20 May-2017	▼
EP080-SD / EP071-SD: Total Recoverable Hydroca	rbons							
Soil Glass Jar - Unpreserved (EP080-SD) TC1-1,	TC1-T2-1	15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	29-Mar-2017	x
					-			-
EP080-SD: BTEXN Soil Glass Jar - Unpreserved (EP080-SD)								
TC1-1,	TC1-T2-1	15-Mar-2017	13-Apr-2017	29-Mar-2017	*	18-Apr-2017	29-Mar-2017	x
,				1	-	1		**

Page	: 6 of 10
Work Order	: EP1703525
Client	: WA MARINE PTY LTD
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP090: Organotin Compounds								
Soil Glass Jar - Unpreserved (EP090)								
TC1-1,	TC1-T2-1	15-Mar-2017	19-Apr-2017	29-Mar-2017	*	20-Apr-2017	29-May-2017	✓
EP132B: Polynuclear Aromatic Hydroc	carbons							
Soil Glass Jar - Unpreserved (EP132B-S	SD)							
TC1-1,	TC1-T2-1	15-Mar-2017	13-Apr-2017	29-Mar-2017	sc .	19-Apr-2017	23-May-2017	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation		
aboratory Duplicates (DUP)								
Buchi Ammonia	EK055	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Chromium Suite for Acid Sulphate Soils	EA033	1	1	100.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
loisture Content	EA055-103	1	3	33.33	10.00	~	NEPM 2013 B3 & ALS QC Standard	
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
nalyser								
litrite as N - Soluble by Discrete Analyser	EK057G	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
organotin Analysis	EP090	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
KN as N By Discrete Analyser	EK061G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
otal Fe and AI in Sediments by ICPAES	EG005-SD	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS (Low Level)	EG035T-LL	1	2	50.00	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
otal Metals in Sediments by ICPMS	EG020-SD	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
otal Organic Carbon	EP003	1	3	33.33	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
otal Phosporus By Discrete Analyser	EK067G	2	15	13.33	10.00	<u>ا</u>	NEPM 2013 B3 & ALS QC Standard	
PH - Semivolatile Fraction	EP071-SD	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX in Sediments	EP080-SD	1	2	50.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
aboratory Control Samples (LCS)								
uchi Ammonia	EK055	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
hromium Suite for Acid Sulphate Soils	EA033	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
itrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
nalyser								
itrite as N - Soluble by Discrete Analyser	EK057G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
rganotin Analysis	EP090	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard	
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
KN as N By Discrete Analyser	EK061G	2	15	13.33	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
otal Mercury by FIMS (Low Level)	EG035T-LL	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard	
otal Metals in Sediments by ICPMS	EG020-SD	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard	
otal Organic Carbon	EP003	1	3	33.33	5.00		NEPM 2013 B3 & ALS QC Standard	
otal Phosporus By Discrete Analyser	EK067G	2	15	13.33	10.00		NEPM 2013 B3 & ALS QC Standard	
PH - Semivolatile Fraction	EP071-SD	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard	
RH Volatiles/BTEX in Sediments	EP080-SD	1	2	50.00	5.00		NEPM 2013 B3 & ALS QC Standard	
ethod Blanks (MB)								
uchi Ammonia	EK055	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Chromium Suite for Acid Sulphate Soils	EA033	1	1	100.00	5.00		NEPM 2013 B3 & ALS QC Standard	

Quality Control Sample Type			Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	 	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Vitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Analyser						-	
litrite as N - Soluble by Discrete Analyser	EK057G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Drganotin Analysis	EP090	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	1	2	50.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	1	2	50.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Organic Carbon	EP003	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	1	15	6.67	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
latrix Spikes (MS)							
Buchi Ammonia	EK055	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
nalyser							
itrite as N - Soluble by Discrete Analyser	EK057G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
rganotin Analysis	EP090	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
AHs in Sediments by GCMS(SIM)	EP132B-SD	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
eactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
KN as N By Discrete Analyser	EK061G	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Fe and AI in Sediments by ICPAES	EG005-SD	1	2	50.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS (Low Level)	EG035T-LL	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals in Sediments by ICPMS	EG020-SD	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosporus By Discrete Analyser	EK067G	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
PH - Semivolatile Fraction	EP071-SD	1	2	50.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX in Sediments	EP080-SD	1	2	50.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Particle Size Analysis by Hydrometer	EA150H	SOIL	Particle Size Analysis by Hydrometer according to AS1289.3.6.3 - 2003
Total Fe and Al in Sediments by ICPAES	EG005-SD	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by Chemical Reduction, and direct colourimetry by Discrete Analyser.
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrrogen, each determined seperately as N.
Total Phosporus By Discrete Analyser	EK067G	SOIL	In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.

Analytical Methods	Method	Matrix	Method Descriptions
Reactive Phosphorus as P-Soluble By Discrete Analyser	EK071G	SOIL	In house: Referenced to APHA 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant
Total Organic Carbon	EP003	SOIL	with NEPM (2013) Schedule B(3) (In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.
TPH - Semivolatile Fraction	EP071-SD	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
TRH Volatiles/BTEX in Sediments	EP080-SD	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Organotin Analysis	EP090	SOIL	In house: Referenced to USEPA SW 846 - 8270D Prepared sample extracts are analysed by GC/MS coupled with high volume injection, and quanitified against an established calibration curve.
PAHs in Sediments by GCMS(SIM)	EP132B-SD	SOIL	In house: Referenced to USEPA 8270D GCMS Capillary column, SIM mode using large volume programmed temperature vaporisation injection.
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids for LVI (Non-concentrating)	ORG17D	SOIL	In house: 10g of sample, Na2SO4 and surrogate are extracted with 50mL 1:1 DCM/Acetone by end over end tumbling. An aliquot is concentrated by nitrogen blowdown to a reduced volume for analysis if required.
Organotin Sample Preparation	ORG35	SOIL	In house: 20g sample is spiked with surrogate and leached in a methanol:acetic acid:UHP water mix and vacuum filtered. Reagents and solvents are added to the sample and the mixture tumbled. The butyltin compounds are simultaneously derivatised and extracted. The extract is further extracted with petroleum ether. The resultant extracts are combined and concentrated for analysis.

QUALITY CONTROL REPORT

Work Order	: EP1705039	Page	: 1 of 3
Client		Laboratory	: Environmental Division Perth
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA Australia 6090
Telephone	:	Telephone	: 08 9209 7606
Project	: Ex EP1702676 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017
Order number	:	Date Analysis Commenced	: 24-May-2017
C-O-C number	:	Issue Date	25-May-2017
Sampler	:		Iac-MRA NATA
Site	:		
Quote number	: EP/814/15		Accreditation No. 82
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testin

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL	b-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
ED008: Exchangeab	ole Cations (QC Lot: 895521											
EP1705039-001	OC4-0.5 EP1707626_037	ED008: Exchangeable Calcium		0.1	meq/100g	25.6	25.6	0.00	0% - 20%			
		ED008: Exchangeable Magnesium		0.1	meq/100g	7.2	7.1	0.00	0% - 20%			
		ED008: Exchangeable Potassium		0.1	meq/100g	0.7	0.7	0.00	No Limit			
		ED008: Exchangeable Sodium		0.1	meq/100g	0.9	0.9	0.00	No Limit			
EP1705103-008	Anonymous	ED008: Exchangeable Calcium		0.1	meq/100g	23.5	23.8	1.18	0% - 20%			
		ED008: Exchangeable Magnesium		0.1	meq/100g	3.3	3.3	0.00	0% - 20%			
		ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	<0.1	0.00	No Limit			
		ED008: Exchangeable Sodium		0.1	meq/100g	0.4	0.4	0.00	No Limit			

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
		Report	Spike	Spike Recovery (%)	Recovery Limits (%)				
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
ED008: Exchangeable Cations (QCLot: 895521)									
ED008: Exchangeable Calcium		0.1	meq/100g	<0.1	10.925 meq/100g	105	91	109	
ED008: Exchangeable Magnesium		0.1	meq/100g	<0.1	5.9518 meq/100g	108	89	111	
ED008: Exchangeable Potassium		0.1	meq/100g	<0.1	0.4769 meq/100g	103	79	116	
ED008: Exchangeable Sodium		0.1	meq/100g	<0.1	0.8718 meq/100g	93.7	75	118	
ED008: Cation Exchange Capacity		0.1	meq/100g	<0.1	18.2255 meq/100g	106	88	110	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

	QA/QC Compliance Assessment to assist with Quality Review										
Work Order	: EP1705039	Page	: 1 of 4								
Client		Laboratory	: Environmental Division Perth								
Contact	: TRAVIS HURLEY	Telephone	: 08 9209 7606								
Project	: Ex EP1702676 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017								
Site	:	Issue Date	: 25-May-2017								
Sampler	:	No. of samples received	:1								

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

No. of samples analysed

: 1

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Client Contact Project Site Sampler Order number

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

• NO Method Blank value outliers occur.

· ____

- NO Duplicate outliers occur. ٠
- <u>NO</u> Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Method		Extraction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracte	d Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdu
ED008: Exchangeable Cations						
Soil Glass Jar - Unpreserved						
OC4-0.5 - EP1707626 037	24-May-201	7 14-Apr-2017	40	24-May-2017	14-Apr-2017	40

Analysis Holding Time Compliance

Matrix: SOIL

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
ED008: Exchangeable Cations							
Soil Glass Jar - Unpreserved (ED008) OC4-0.5 - EP1707626_037	17-Mar-2017	24-May-2017	14-Apr-2017	×	24-May-2017	14-Apr-2017	×

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Exchangeable Cations with pre-treatment	ED008	2	13	15.38	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Exchangeable Cations with pre-treatment	ED008	1	13	7.69	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Exchangeable Cations with pre-treatment	ED008	1	13	7.69	5.00	~	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Exchangeable Cations with pre-treatment	ED008	SOIL	In house: Referenced to Rayment & Higginson (2011) Method 15A2. Soluble salts are removed from the sample prior to analysis. Cations are exchanged from the sample by contact with Ammonium Chloride. They are then quantitated in the final solution by ICPAES and reported as meq/100g of original soil. This method is compliant with NEPM (2013) Schedule B(3) (Method 301)
Preparation Methods	Method	Matrix	Method Descriptions
Exchangeable Cations Preparation	ED007PR	SOIL	In house: Referenced to Rayment & Higginson (1992) method 15A1. A 1M NH4CI extraction by end over end
Method			tumbling at a ratio of 1:20. There is no pretreatment for soluble salts. Extracts can be run by ICP for cations.

Appendix C Laboratory Results

CERTIFICATE OF ANALYSIS

Work Order	EP1702676	Page	: 1 of 42
Client		Laboratory	: Environmental Division Perth
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA Australia 6090
Telephone	:	Telephone	: 08 9209 7606
Project	: 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017 10:55
Order number	:	Date Analysis Commenced	: 23-Mar-2017
C-O-C number	:	Issue Date	: 04-Apr-2017 07:20
Sampler	:		NATA
Site	:		
Quote number	: EP/814/15		Accreditation No. 825
No. of samples received	: 56		Accredited for compliance with
No. of samples analysed	: 37		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Amanda Conkie	Organic Chemist	Brisbane Organics, Stafford, QLD	
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics, Malaga, WA	
Daniel Fisher	Inorganics Analyst	Perth ASS, Malaga, WA	
Efua Wilson	Metals Chemist	Perth Inorganics, Malaga, WA	
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA	
Indra Astuty	Instrument Chemist	Perth Inorganics, Malaga, WA	
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Peter Keyte	Newcastle Manager	Newcastle - Inorganics, Mayfield West, NSW	
Satishkumar Trivedi	Acid Sulfate Soils Supervisor	Brisbane Acid Sulphate Soils, Stafford, QLD	
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- TOC and Organotins conducted by ALS Brisbane, NATA Site No. 818.
- PSD conducted by ALS Newcastle, NATA accreditation no. 825, site no 1656.
- EP132-SD: Poor surrogate recovery for some samples due to suspected matrix effects and interferences.
- EP132-SD: LOR has been raised for sample "IC5-0.5" for analyte "Dibenz(a,h)anthracene" due to suspected matrix effects and interferences.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	BP1	BP4	TC2-R1	TC1-0.5	TC1-1
	Cli	ient samplii	ng date / time	15-Mar-2017 10:20	16-Mar-2017 07:02	15-Mar-2017 11:06	15-Mar-2017 16:36	15-Mar-2017 16:36
Compound	CAS Number	LOR	Unit	EP1702676-001	EP1702676-004	EP1702676-005	EP1702676-007	EP1702676-008
			-	Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.6		9.4		9.4
Titratable Actual Acidity (23F)		2	mole H+ / t	<2		<2		<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02		<0.02		<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.073		0.105		0.162
acidity - Chromium Reducible Sulfur		10	mole H+ / t	45		66		101
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	9.06		13.5		10.2
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1810		2700		2030
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	2.90		4.32		3.25
EA033-E: Acid Base Accounting ANC Fineness Factor		0.5	<u>-</u>	1.5		1.5		1.5
		0.5	- % S	<0.02		<0.02		<0.02
Net Acidity (sulfur units) Net Acidity (acidity units)		10	mole H+/t	<10		<10		<0.02
Liming Rate		10	kg CaCO3/t	<1		<10		<10
		0.02	% S	0.07		0.11		0.16
Net Acidity excluding ANC (sulfur units) Net Acidity excluding ANC (acidity units)		10	mole H+ / t	45		66		101
Liming Rate excluding ANC (actually units)		10	kg CaCO3/t	3		5		8
		I	ky CaCO3/t	3		5		0
EA055: Moisture Content			0/					07.0
Moisture Content (dried @ 103°C)		1	%		19.3	39.7	23.6	27.8
EA150: Particle Sizing								
+75μm		1	%		99	70	95	47
+150μm		1	%		95	23	74	29
+300µm		1	%		63	1	28	5
+425µm		1	%		35	<1	14	2
+600µm		1	%		28	<1	10	1
+1180μm		1	%		17	<1	8	<1
+2.36mm		1	%		11	<1	5	<1
+4.75mm		1	%		5	<1	3	<1
+9.5mm		1	%		<1	<1	<1	<1
+19.0mm		1	%		<1	<1	<1	<1

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	BP1	BP4	TC2-R1	TC1-0.5	TC1-1
	Cli	ent sampli	ng date / time	15-Mar-2017 10:20	16-Mar-2017 07:02	15-Mar-2017 11:06	15-Mar-2017 16:36	15-Mar-2017 16:36
Compound	CAS Number	LOR	Unit	EP1702676-001	EP1702676-004	EP1702676-005	EP1702676-007	EP1702676-008
-				Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+37.5mm		1	%		<1	<1	<1	<1
+75.0mm		1	%		<1	<1	<1	<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%		<1	13	3	29
Silt (2-60 μm)		1	%		<1	12	<1	20
Sand (0.06-2.00 mm)		1	%		87	75	91	51
Gravel (>2mm)		1	%		13	<1	6	<1
Cobbles (>6cm)		1	%		<1	<1	<1	<1
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg		1370	7900	3440	7030
Iron	7439-89-6	50	mg/kg		9600	31000	14200	38100
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg		<0.50	<0.50	<0.50	<0.50
Arsenic	7440-38-2	1	mg/kg		16.0	23.2	12.9	15.4
Cadmium	7440-43-9	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1	mg/kg		10.0	39.4	19.7	52.9
Copper	7440-50-8	1	mg/kg		1.6	14.9	5.5	27.6
Cobalt	7440-48-4	0.5	mg/kg		3.0	10.3	5.0	16.8
Lead	7439-92-1	1	mg/kg		1.3	6.8	2.6	8.7
Manganese	7439-96-5	10	mg/kg		388	349	272	591
Nickel	7440-02-0	1	mg/kg		3.1	17.0	8.6	26.5
Selenium	7782-49-2	0.1	mg/kg		1.0	1.8	1.0	2.2
Silver	7440-22-4	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	2	mg/kg		24.0	63.0	28.4	70.3
Zinc	7440-66-6	1	mg/kg		5.2	30.2	13.7	43.0
EG035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.01	mg/kg		<0.01	<0.01	<0.01	<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg		<20	<20	<20	
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg		<0.1	<0.1	<0.1	
EK058G: Nitrate as N by Discrete	Analvser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg		<0.1	<0.1	<0.1	
EK059G: Nitrite plus Nitrate as N								

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	BP1	BP4	TC2-R1	TC1-0.5	TC1-1
	Cl	ient sampli	ng date / time	15-Mar-2017 10:20	16-Mar-2017 07:02	15-Mar-2017 11:06	15-Mar-2017 16:36	15-Mar-2017 16:36
Compound	CAS Number	LOR	Unit	EP1702676-001	EP1702676-004	EP1702676-005	EP1702676-007	EP1702676-008
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg		<0.1	<0.1	<0.1	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg		40	450	50	
EK062: Total Nitrogen as N (TKN + NC) X)							
Total Nitrogen as N		20	mg/kg		40	450	50	
EK067G: Total Phosphorus as P by Di	iscrete Analyser							
Total Phosphorus as P		2	mg/kg		98	182	113	
EK071G: Reactive Phosphorus as P b								
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg		<0.1	<0.1	<0.1	
EP003: Total Organic Carbon (TOC) in			59					
Total Organic Carbon (TOC) In Total Organic Carbon		0.02	%		0.04	0.03	0.33	0.11
_					0.04	0.03	0.00	0.11
EP080/071: Total Recoverable Hydroc >C10 - C16 Fraction		3 Fraction			<3	<3	<3	
>C16 - C34 Fraction		3	mg/kg		<3	7	4	
>C34 - C34 Fraction		5	mg/kg mg/kg		<5	<5	4 <5	
>C10 - C40 Fraction (sum)		3	mg/kg		<3	7	4	
. ,		3	mg/kg		<3	<3	<3	
>C10 - C16 Fraction minus Naphthalene (F2)		5	iiig/kg		~5	-5	~5	
EP080-SD / EP071-SD: Total Petroleur								
C6 - C9 Fraction		3	mg/kg		<3	<3	<3	
C10 - C14 Fraction		3	mg/kg		<3	<3	<3	
C15 - C28 Fraction		3	mg/kg		<3	6	3	
C29 - C36 Fraction		5	mg/kg		<5	<5	<5	
C10 - C36 Fraction (sum)		3	mg/kg		<3	6	3	
EP080-SD / EP071-SD: Total Recovera		-				-	-	1
C6 - C10 Fraction	C6 C10	3	mg/kg		<3	<3	<3	
	00_010		ing/kg				-0	
EP080-SD: BTEXN Benzene	71-43-2	0.2	mg/kg		<0.2	<0.2	<0.2	
Toluene	108-88-3	0.2	mg/kg		<0.2	<0.2	<0.2	
Ethylbenzene	108-88-3	0.2	mg/kg		<0.2	<0.2	<0.2	
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg		<0.2	<0.2	<0.2	
ortho-Xylene		0.2	mg/kg		<0.2	<0.2	<0.2	
Total Xylenes	95-47-6	0.2	mg/kg		<0.2	<0.2	<0.2	
Sum of BTEX	1330-20-7	0.3			<0.2	<0.2	<0.5	
		0.2	mg/kg		~U.Z	~U.2	<u>>∪.∠</u>	

Gub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	BP1	BP4	TC2-R1	TC1-0.5	TC1-1
	Cli	ent sampli	ng date / time	15-Mar-2017 10:20	16-Mar-2017 07:02	15-Mar-2017 11:06	15-Mar-2017 16:36	15-Mar-2017 16:36
Compound	CAS Number	LOR	Unit	EP1702676-001	EP1702676-004	EP1702676-005	EP1702676-007	EP1702676-008
-				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg		<0.2	<0.2	<0.2	
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg		0.5	<0.5	<0.5	
P132B: Polynuclear Aromatic H								
Naphthalene	91-20-3	5	µg/kg		<5	<5	<5	
2-Methylnaphthalene	91-57-6	5	µg/kg		<5	<5	<5	
Acenaphthylene	208-96-8	4	μg/kg		<4	<4	<4	
Acenaphthene	83-32-9	4	μg/kg		<4	<4	<4	
Fluorene	86-73-7	4	μg/kg		<4	<4	<4	
Phenanthrene	85-01-8	4	µg/kg		<4	<4	<4	
Anthracene	120-12-7	4	µg/kg		<4	<4	<4	
Fluoranthene	206-44-0	4	µg/kg		<4	<4	<4	
Pyrene	129-00-0	4	µg/kg		<4	<4	<4	
Benz(a)anthracene	56-55-3	4	µg/kg		<4	<4	<4	
Chrysene	218-01-9	4	µg/kg		<4	<4	<4	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg		<4	<4	<4	
Benzo(k)fluoranthene	207-08-9	4	µg/kg		<4	<4	<4	
Benzo(e)pyrene	192-97-2	4	µg/kg		<4	<4	<4	
Benzo(a)pyrene	50-32-8	4	µg/kg		<4	<4	<4	
Perylene	198-55-0	4	µg/kg		<4	<4	<4	
Benzo(g.h.i)perylene	191-24-2	4	µg/kg		<4	<4	<4	
Dibenz(a.h)anthracene	53-70-3	4	µg/kg		<4	<4	<4	
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg		<4	<4	<4	
Coronene	191-07-1	5	µg/kg		<5	<5	<5	
Sum of PAHs		4	µg/kg		<4	<4	<4	
EP080-SD: TPH(V)/BTEX Surroga	ates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%		81.9	77.7	91.1	
Toluene-D8	2037-26-5	0.2	%		79.3	71.2	87.5	
4-Bromofluorobenzene	460-00-4	0.2	%		79.6	77.4	87.6	
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%		117	105	89.3	
EP132T: Base/Neutral Extractabl								
2-Fluorobiphenyl	321-60-8	10	%		79.6	98.2	91.1	
Anthracene-d10	1719-06-8	10	%		68.2	91.6	98.5	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	BP1	BP4	TC2-R1	TC1-0.5	TC1-1
	Cli	ent samplir	ng date / time	15-Mar-2017 10:20	16-Mar-2017 07:02	15-Mar-2017 11:06	15-Mar-2017 16:36	15-Mar-2017 16:36
Compound	CAS Number	LOR	Unit	EP1702676-001	EP1702676-004	EP1702676-005	EP1702676-007	EP1702676-008
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%		76.2	77.6	106	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TC2	TC3	TC4	TC1-0.5-T2	IC1
	Cli	ient sampliı	ng date / time	15-Mar-2017 11:06	15-Mar-2017 10:25	15-Mar-2017 13:41	15-Mar-2017 16:36	18-Mar-2017 15:30
Compound	CAS Number	LOR	Unit	EP1702676-009	EP1702676-010	EP1702676-011	EP1702676-012	EP1702676-015
			-	Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		9.5			
Titratable Actual Acidity (23F)		2	mole H+ / t		<2			
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02			
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.083			
acidity - Chromium Reducible Sulfur		10	mole H+ / t		52			
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3		11.8			
acidity - Acid Neutralising Capacity		10	mole H+ / t		2350			
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S		3.77			
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5			
Net Acidity (sulfur units)		0.02	% S		<0.02			
Net Acidity (acidity units)		10	mole H+ / t		<10			
Liming Rate		1	kg CaCO3/t		<1			
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.08			
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		52			
Liming Rate excluding ANC		1	kg CaCO3/t		4			
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	37.9		26.9	21.7	12.0
EA150: Particle Sizing								
+75µm		1	%	79		91	92	98
+150µm		1	%	38		58	72	94
+300µm		1	%	7		9	27	56
+425μm		1	%	1		2	14	30
+600μm		1	%	<1		1	11	19
+1180µm		1	%	<1		<1	9	12
+2.36mm		1	%	<1		<1	7	7
+4.75mm		1	%	<1		<1	4	4
+9.5mm		1	%	<1		<1	<1	1
+19.0mm		1	%	<1		<1	<1	<1

ub-Matrix: SEDIMENT Matrix: SOIL)		Clie	ent sample ID	TC2	TC3	TC4	TC1-0.5-T2	IC1
	Cli	ent samplir	ng date / time	15-Mar-2017 11:06	15-Mar-2017 10:25	15-Mar-2017 13:41	15-Mar-2017 16:36	18-Mar-2017 15:30
Compound	CAS Number	LOR	Unit	EP1702676-009	EP1702676-010	EP1702676-011	EP1702676-012	EP1702676-015
				Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+37.5mm		1	%	<1		<1	<1	<1
+75.0mm		1	%	<1		<1	<1	<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%	12		4	3	1
Silt (2-60 µm)		1	%	6		3	4	<1
Sand (0.06-2.00 mm)		1	%	82		93	85	90
Gravel (>2mm)		1	%	<1		<1	8	9
Cobbles (>6cm)		1	%	<1		<1	<1	<1
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	6300		3730	3350	1300
Iron	7439-89-6	50	mg/kg	25600		16000	13300	12000
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg	<0.50		<0.50	<0.50	<0.50
Arsenic	7440-38-2	1	mg/kg	20.0		14.1	12.6	14.4
Cadmium	7440-43-9	0.1	mg/kg	<0.1		<0.1	<0.1	<0.1
Chromium	7440-47-3	1	mg/kg	32.8		21.1	18.8	9.0
Copper	7440-50-8	1	mg/kg	11.5		5.6	5.0	1.7
Cobalt	7440-48-4	0.5	mg/kg	8.6		5.2	5.0	3.5
Lead	7439-92-1	1	mg/kg	5.4		4.1	2.5	1.3
Manganese	7439-96-5	10	mg/kg	297		221	280	399
Nickel	7440-02-0	1	mg/kg	13.6		8.7	7.8	3.4
Selenium	7782-49-2	0.1	mg/kg	1.6		0.9	1.0	0.9
Silver	7440-22-4	0.1	mg/kg	<0.1		<0.1	<0.1	<0.1
Vanadium	7440-62-2	2	mg/kg	53.8		33.4	28.1	23.3
Zinc	7440-66-6	1	mg/kg	23.7		14.2	13.1	5.7
EG035T: Total Recoverable Merc	cury by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01		<0.01	<0.01	<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20			<20	<20
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1			<0.1	<0.1
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1			<0.1	<0.1
EK059G: Nitrite plus Nitrate as N								

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TC2	тсз	TC4	TC1-0.5-T2	IC1
	Cl	ient samplii	ng date / time	15-Mar-2017 11:06	15-Mar-2017 10:25	15-Mar-2017 13:41	15-Mar-2017 16:36	18-Mar-2017 15:30
Compound	CAS Number	LOR	Unit	EP1702676-009	EP1702676-010	EP1702676-011	EP1702676-012	EP1702676-015
			-	Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	() by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1			<0.1	<0.1
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	120			50	30
EK062: Total Nitrogen as N (TKN + NO	x)							
Total Nitrogen as N		20	mg/kg	120			50	30
K067G: Total Phosphorus as P by Dis	screte Analyser							1
Total Phosphorus as P		2	mg/kg	126			122	75
EK071G: Reactive Phosphorus as P by								
Reactive Phosphorus as P by	14265-44-2	0.1	mg/kg	<0.1			<0.1	<0.1
								•••
P003: Total Organic Carbon (TOC) in Total Organic Carbon		0.02	%	0.22		0.06	0.08	0.02
				0.22		0.00	0.00	0.02
EP080/071: Total Recoverable Hydroca >C10 - C16 Fraction		3 Fraction		<3			<3	<3
>C10 - C16 Fraction		3	mg/kg	5			<3	<3
		5	mg/kg	5 <5			<3	<3
>C34 - C40 Fraction		3	mg/kg	<u></u> 5			<3	<3
>C10 - C40 Fraction (sum)		3	mg/kg	<3			<3	<3
>C10 - C16 Fraction minus Naphthalene (F2)		3	mg/kg	<3			< 3	< 3
EP080-SD / EP071-SD: Total Petroleum C6 - C9 Fraction		3	ma/ka	<3			<3	<3
C10 - C14 Fraction		3	mg/kg	<3			<3	<3
C10 - C14 Fraction C15 - C28 Fraction		3	mg/kg	4			<3	<3
C15 - C28 Fraction C29 - C36 Fraction		5	mg/kg mg/kg	4			<5	<5
C10 - C36 Fraction (sum)		3	mg/kg	4			<3	<3
		5	mg/kg	4			-5	-5
EP080-SD / EP071-SD: Total Recoveral			maller				<2	<3
C6 - C10 Fraction	C6_C10	3	mg/kg	<3			<3	<3
EP080-SD: BTEXN		0.0					.0.0	-0.0
Benzene	71-43-2	0.2	mg/kg	<0.2			<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2			<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2			<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2			<0.2	<0.2
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2			<0.2	<0.2
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5			<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2			<0.2	<0.2

Gub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	TC2	TC3	TC4	TC1-0.5-T2	IC1
·	Cli	ent sampli	ng date / time	15-Mar-2017 11:06	15-Mar-2017 10:25	15-Mar-2017 13:41	15-Mar-2017 16:36	18-Mar-2017 15:30
Compound	CAS Number	LOR	Unit	EP1702676-009	EP1702676-010	EP1702676-011	EP1702676-012	EP1702676-015
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg	<0.2			<0.2	<0.2
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5		<0.5	<0.5	<0.5
P132B: Polynuclear Aromatic I								
Naphthalene	91-20-3	5	µg/kg	<5			<5	<5
2-Methylnaphthalene	91-57-6	5	μg/kg	<5			<5	<5
Acenaphthylene	208-96-8	4	µg/kg	<4			<4	<4
Acenaphthene	83-32-9	4	µg/kg	<4			<4	<4
Fluorene	86-73-7	4	µg/kg	<4			<4	<4
Phenanthrene	85-01-8	4	µg/kg	<4			<4	<4
Anthracene	120-12-7	4	µg/kg	<4			<4	<4
Fluoranthene	206-44-0	4	µg/kg	<4			<4	<4
Pyrene	129-00-0	4	µg/kg	<4			<4	<4
Benz(a)anthracene	56-55-3	4	µg/kg	<4			<4	<4
Chrysene	218-01-9	4	µg/kg	<4			<4	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4			<4	<4
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4			<4	<4
Benzo(e)pyrene	192-97-2	4	µg/kg	<4			<4	<4
Benzo(a)pyrene	50-32-8	4	µg/kg	<4			<4	<4
Perylene	198-55-0	4	µg/kg	<4			<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4			<4	<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4			<4	<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4			<4	<4
Coronene	191-07-1	5	µg/kg	<5			<5	<5
Sum of PAHs		4	µg/kg	<4			<4	<4
P080-SD: TPH(V)/BTEX Surrog	ates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.3			87.4	85.8
Toluene-D8	2037-26-5	0.2	%	82.0			85.8	81.8
4-Bromofluorobenzene	460-00-4	0.2	%	84.4			88.1	82.8
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	94.2		96.1	95.2	105
P132T: Base/Neutral Extractab	ole Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	79.3			96.8	77.5
Anthracene-d10	1719-06-8	10	%	76.1			89.5	75.9

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Cli	ent sample ID	TC2	TC3	TC4	TC1-0.5-T2	IC1
	Cli	ent sampli	ng date / time	15-Mar-2017 11:06	15-Mar-2017 10:25	15-Mar-2017 13:41	15-Mar-2017 16:36	18-Mar-2017 15:30
Compound	CAS Number	LOR	Unit	EP1702676-009	EP1702676-010	EP1702676-011	EP1702676-012	EP1702676-015
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%	68.9			109	80.6

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-1.0	IC2	IC3-0.5	IC4	IC5-0.5
	Cl	ient sampli	ng date / time	18-Mar-2017 15:30	15-Mar-2017 13:45	16-Mar-2017 16:49	16-Mar-2017 10:23	18-Mar-2017 09:50
Compound	CAS Number	LOR	Unit	EP1702676-016	EP1702676-017	EP1702676-018	EP1702676-020	EP1702676-021
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.8		9.9		
Titratable Actual Acidity (23F)		2	mole H+ / t	<2		<2		
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02		<0.02		
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.005		0.005		
acidity - Chromium Reducible Sulfur		10	mole H+/t	<10		<10		
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	46.5		42.4		
acidity - Acid Neutralising Capacity		10	mole H+ / t	9300		8460		
(a-19A2)								
sulfidic - Acid Neutralising Capacity		0.01	% pyrite S	14.9		13.6		
(s-19A2)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5		1.5		
Net Acidity (sulfur units)		0.02	% S	<0.02		<0.02		
Net Acidity (acidity units)		10	mole H+ / t	<10		<10		
Liming Rate		1	kg CaCO3/t	<1		<1		
Net Acidity excluding ANC (sulfur units)		0.02	% S	<0.02		<0.02		
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	<10		<10		
Liming Rate excluding ANC		1	kg CaCO3/t	<1		<1		
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%		21.0	18.9	23.0	18.4
EA150: Particle Sizing								
+75µm		1	%		98	98	99	96
+150µm		1	%		93	95	97	94
+300μm		1	%		65	74	19	80
+425μm		1	%		33	48	1	60
+600μm		1	%		17	41	<1	42
+1180µm		1	%		8	32	<1	27
+2.36mm		1	%		4	22	<1	17
+4.75mm		1	%		1	12	<1	10
+9.5mm		1	%		<1	2	<1	6
+19.0mm		1	%		<1	<1	<1	<1

Gub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-1.0	IC2	IC3-0.5	IC4	IC5-0.5
,	Cli	ent sampli	ng date / time	18-Mar-2017 15:30	15-Mar-2017 13:45	16-Mar-2017 16:49	16-Mar-2017 10:23	18-Mar-2017 09:50
Compound	CAS Number	LOR	Unit	EP1702676-016	EP1702676-017	EP1702676-018	EP1702676-020	EP1702676-021
			-	Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+37.5mm		1	%		<1	<1	<1	<1
+75.0mm		1	%		<1	<1	<1	<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%		1	1	<1	2
Silt (2-60 µm)		1	%		1	1	1	1
Sand (0.06-2.00 mm)		1	%		93	73	99	77
Gravel (>2mm)		1	%		5	25	<1	20
Cobbles (>6cm)		1	%		<1	<1	<1	<1
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg		1350	1340	1090	1300
Iron	7439-89-6	50	mg/kg		7780	9060	6460	8330
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg		<0.50	<0.50	<0.50	<0.50
Arsenic	7440-38-2	1	mg/kg		13.6	15.3	10.5	15.3
Cadmium	7440-43-9	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1	mg/kg		9.0	9.7	9.4	8.8
Copper	7440-50-8	1	mg/kg		1.8	2.0	1.5	1.8
Cobalt	7440-48-4	0.5	mg/kg		3.0	3.4	2.5	3.1
Lead	7439-92-1	1	mg/kg		1.2	1.4	1.0	1.2
Manganese	7439-96-5	10	mg/kg		348	433	172	439
Nickel	7440-02-0	1	mg/kg		3.1	3.8	3.4	3.0
Selenium	7782-49-2	0.1	mg/kg		1.0	1.1	0.6	1.0
Silver	7440-22-4	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	2	mg/kg		18.5	22.2	15.5	22.3
Zinc	7440-66-6	1	mg/kg		5.5	5.6	5.2	4.9
EG035T: Total Recoverable Merc	cury by FIMS							
Mercury	7439-97-6	0.01	mg/kg		<0.01	<0.01	<0.01	<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg		<20			<20
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg		<0.1			<0.1
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg		<0.1			<0.1
EK059G: Nitrite plus Nitrate as N	(NOx) by Discrete Ana	vser						

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-1.0	IC2	IC3-0.5	IC4	IC5-0.5
	Cli	ient samplii	ng date / time	18-Mar-2017 15:30	15-Mar-2017 13:45	16-Mar-2017 16:49	16-Mar-2017 10:23	18-Mar-2017 09:50
Compound	CAS Number	LOR	Unit	EP1702676-016	EP1702676-017	EP1702676-018	EP1702676-020	EP1702676-021
			-	Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg		<0.1			<0.1
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg		50			150
EK062: Total Nitrogen as N (TKN + NO)x)							
^ Total Nitrogen as N		20	mg/kg		50			150
EK067G: Total Phosphorus as P by Di								
Total Phosphorus as P		2	mg/kg		96			162
								102
EK071G: Reactive Phosphorus as P by Reactive Phosphorus as P	y discrete analyser 14265-44-2	0.1	mg/kg		<0.1			<0.1
		0.1	iiig/kg		50.1			50.1
EP003: Total Organic Carbon (TOC) in		0.00	0(10.00	10.00	0.00	0.00
Total Organic Carbon		0.02	%		<0.02	<0.02	0.03	0.06
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201							
>C10 - C16 Fraction		3	mg/kg		<3		<3	<3
>C16 - C34 Fraction		3	mg/kg		<3		<3	<3
>C34 - C40 Fraction		5	mg/kg		<5		<5	<5
>C10 - C40 Fraction (sum)		3	mg/kg		<3		<3	<3
>C10 - C16 Fraction minus Naphthalene		3	mg/kg		<3		<3	<3
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg		<3		<3	<3
C10 - C14 Fraction		3	mg/kg		<3		<3	<3
C15 - C28 Fraction		3	mg/kg		<3		<3	<3
C29 - C36 Fraction		5	mg/kg		<5		<5	<5
^ C10 - C36 Fraction (sum)		3	mg/kg		<3		<3	<3
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg		<3		<3	<3
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2		<0.2	<0.2
Toluene	108-88-3	0.2	mg/kg		<0.2		<0.2	<0.2
Ethylbenzene	100-41-4	0.2	mg/kg		<0.2		<0.2	<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg		<0.2		<0.2	<0.2
ortho-Xylene	95-47-6	0.2	mg/kg		<0.2		<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg		<0.5		<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg		<0.2		<0.2	<0.2

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-1.0	IC2	IC3-0.5	IC4	IC5-0.5
	Cli	ent sampli	ng date / time	18-Mar-2017 15:30	15-Mar-2017 13:45	16-Mar-2017 16:49	16-Mar-2017 10:23	18-Mar-2017 09:50
Compound	CAS Number	LOR	Unit	EP1702676-016	EP1702676-017	EP1702676-018	EP1702676-020	EP1702676-021
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg		<0.2		<0.2	<0.2
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg			<0.5	<0.5	<0.5
EP132B: Polynuclear Aromatic	Hydrocarbons							
Naphthalene	91-20-3	5	µg/kg		<5		<5	<5
2-Methylnaphthalene	91-57-6	5	μg/kg		<5		<5	<5
Acenaphthylene	208-96-8	4	μg/kg		<4		<4	<4
Acenaphthene	83-32-9	4	µg/kg		<4		<4	<4
Fluorene	86-73-7	4	µg/kg		<4		<4	<4
Phenanthrene	85-01-8	4	μg/kg		<4		<4	<4
Anthracene	120-12-7	4	μg/kg		<4		<4	<4
Fluoranthene	206-44-0	4	µg/kg		<4		<4	<4
Pyrene	129-00-0	4	µg/kg		<4		<4	<4
Benz(a)anthracene	56-55-3	4	µg/kg		<4		<4	<4
Chrysene	218-01-9	4	µg/kg		<4		<4	<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg		<4		<4	<4
Benzo(k)fluoranthene	207-08-9	4	µg/kg		<4		<4	<4
Benzo(e)pyrene	192-97-2	4	µg/kg		<4		<4	<4
Benzo(a)pyrene	50-32-8	4	µg/kg		<4		<4	<4
Perylene	198-55-0	4	µg/kg		<4		<4	<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg		<4		<4	<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg		<4		<4	<6
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg		<4		<4	<4
Coronene	191-07-1	5	µg/kg		<5		<5	<5
Sum of PAHs		4	µg/kg		<4		<4	<4
EP080-SD: TPH(V)/BTEX Surro	gates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%		76.0		78.9	81.8
Toluene-D8	2037-26-5	0.2	%		70.6		73.3	77.4
4-Bromofluorobenzene	460-00-4	0.2	%		75.8		75.2	79.7
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%			96.1	115	84.9
P132T: Base/Neutral Extractal	ble Surrogates							
2-Fluorobiphenyl	321-60-8	10	%		90.0		75.4	94.5
Anthracene-d10	1719-06-8	10	%		80.8		73.6	81.4

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Cli	ent sample ID	IC1-1.0	IC2	IC3-0.5	IC4	IC5-0.5
	Cli	ent sampli	ng date / time	18-Mar-2017 15:30	15-Mar-2017 13:45	16-Mar-2017 16:49	16-Mar-2017 10:23	18-Mar-2017 09:50
Compound	CAS Number	LOR	Unit	EP1702676-016	EP1702676-017	EP1702676-018	EP1702676-020	EP1702676-021
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	e Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%		88.2		76.3	84.6

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC5-1	IC6	IC7-0.5	IC7-1	1C8-0.5
	Cli	ient samplii	ng date / time	18-Mar-2017 09:50	16-Mar-2017 10:26	16-Mar-2017 17:41	16-Mar-2017 17:41	18-Mar-2017 09:25
Compound	CAS Number	LOR	Unit	EP1702676-022	EP1702676-023	EP1702676-024	EP1702676-025	EP1702676-026
			-	Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.1				9.7
Titratable Actual Acidity (23F)		2	mole H+ / t	<2				<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02				<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.489				0.076
acidity - Chromium Reducible Sulfur		10	mole H+ / t	305				47
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	6.10				40.3
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	1220				8060
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	1.95				12.9
EA033-E: Acid Base Accounting ANC Fineness Factor		0.5	-	1.5				1.5
Net Acidity (sulfur units)		0.02	- % S	<0.02				<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10				<10
Liming Rate		10	kg CaCO3/t	<1				<1
Net Acidity excluding ANC (sulfur units)		0.02	% S	0.49				0.08
Net Acidity excluding ANC (suith units)		10	mole H+ / t	305				47
Liming Rate excluding ANC (actually units)		10	kg CaCO3/t	23				47
		I	ky CaCO3/t	23				4
EA055: Moisture Content		4	0/					4= 6
Moisture Content (dried @ 103°C)		1	%		18.2	31.2	23.3	17.9
A150: Particle Sizing								
+75μm		1	%		99	79	98	97
+150μm		1	%		94	39	91	87
+300µm		1	%		14	22	66	67
+425μm		1	%		6	13	40	51
+600µm		1	%		5	11	28	37
+1180μm		1	%		4	10	20	25
+2.36mm		1	%		4	8	13	16
+4.75mm		1	%		3	5	8	6
+9.5mm		1	%		3	3	2	1
+19.0mm		1	%		2	<1	<1	<1

ub-Matrix: SEDIMENT Matrix: SOIL)		Clie	ent sample ID	IC5-1	IC6	IC7-0.5	IC7-1	1C8-0.5
	Cli	ent sampli	ng date / time	18-Mar-2017 09:50	16-Mar-2017 10:26	16-Mar-2017 17:41	16-Mar-2017 17:41	18-Mar-2017 09:2
Compound	CAS Number	LOR	Unit	EP1702676-022	EP1702676-023	EP1702676-024	EP1702676-025	EP1702676-026
			-	Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+37.5mm		1	%		<1	<1	<1	<1
+75.0mm		1	%		<1	<1	<1	<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%		<1	11	1	2
Silt (2-60 µm)		1	%		1	5	1	<1
Sand (0.06-2.00 mm)		1	%		95	76	83	79
Gravel (>2mm)		1	%		4	8	15	19
Cobbles (>6cm)		1	%		<1	<1	<1	<1
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg		1190	7650	1380	1530
Iron	7439-89-6	50	mg/kg		6280	28600	7680	10800
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg		<0.50	<0.50	<0.50	<0.50
Arsenic	7440-38-2	1	mg/kg		8.44	18.0	14.6	14.7
Cadmium	7440-43-9	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Chromium	7440-47-3	1	mg/kg		10.5	38.8	9.5	12.9
Copper	7440-50-8	1	mg/kg		1.7	16.1	1.9	2.1
Cobalt	7440-48-4	0.5	mg/kg		2.7	11.0	3.1	3.4
Lead	7439-92-1	1	mg/kg		1.1	6.0	1.3	1.7
Manganese	7439-96-5	10	mg/kg		160	379	413	304
Nickel	7440-02-0	1	mg/kg		3.4	17.7	3.9	4.2
Selenium	7782-49-2	0.1	mg/kg		0.6	1.8	1.0	0.9
Silver	7440-22-4	0.1	mg/kg		<0.1	<0.1	<0.1	<0.1
Vanadium	7440-62-2	2	mg/kg		14.4	59.0	19.0	25.3
Zinc	7440-66-6	1	mg/kg		5.9	26.6	5.8	6.1
EG035T: Total Recoverable Merc	cury by FIMS							
Mercury	7439-97-6	0.01	mg/kg		<0.01	<0.01	<0.01	<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg			<20		<20
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg			<0.1		<0.1
EK058G: Nitrate as N by Discrete								
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg			<0.1		<0.1
EK059G: Nitrite plus Nitrate as N								

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC5-1	IC6	IC7-0.5	IC7-1	1C8-0.5
	Cl	ient sampli	ng date / time	18-Mar-2017 09:50	16-Mar-2017 10:26	16-Mar-2017 17:41	16-Mar-2017 17:41	18-Mar-2017 09:25
Compound	CAS Number	LOR	Unit	EP1702676-022	EP1702676-023	EP1702676-024	EP1702676-025	EP1702676-026
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	k) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg			<0.1		<0.1
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg			410		100
EK062: Total Nitrogen as N (TKN + NO	x)							
^ Total Nitrogen as N		20	mg/kg			410		100
EK067G: Total Phosphorus as P by Di	screte Analyser							
Total Phosphorus as P		2	mg/kg			188		126
EK071G: Reactive Phosphorus as P by								
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg			<0.1		<0.1
EP003: Total Organic Carbon (TOC) in Total Organic Carbon		0.02	%		<0.02	0.14	<0.02	0.12
					40.02	0.14	~0.02	0.12
EP080/071: Total Recoverable Hydroca						-12		
>C10 - C16 Fraction		3	mg/kg			<3		
>C16 - C34 Fraction		3	mg/kg			7		
>C34 - C40 Fraction		5	mg/kg			<5		
>C10 - C40 Fraction (sum)		3	mg/kg			7		
>C10 - C16 Fraction minus Naphthalene		3	mg/kg			<3		
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons					-		
C6 - C9 Fraction		3	mg/kg			<3		
C10 - C14 Fraction		3	mg/kg			<3		
C15 - C28 Fraction		3	mg/kg			5		
C29 - C36 Fraction		5	mg/kg			<5		
C10 - C36 Fraction (sum)		3	mg/kg			5		
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg			<3		
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg			<0.2		
Toluene	108-88-3	0.2	mg/kg			<0.2		
Ethylbenzene	100-41-4	0.2	mg/kg			<0.2		
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg			<0.2		
ortho-Xylene	95-47-6	0.2	mg/kg			<0.2		
^ Total Xylenes	1330-20-7	0.5	mg/kg			<0.5		
[∿] Sum of BTEX		0.2	mg/kg			<0.2		

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC5-1	IC6	IC7-0.5	IC7-1	1C8-0.5
	Cli	ent sampli	ng date / time	18-Mar-2017 09:50	16-Mar-2017 10:26	16-Mar-2017 17:41	16-Mar-2017 17:41	18-Mar-2017 09:25
Compound	CAS Number	LOR	Unit	EP1702676-022	EP1702676-023	EP1702676-024	EP1702676-025	EP1702676-026
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg			<0.2		
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg		<0.5	<0.5		
EP132B: Polynuclear Aromatic								
Naphthalene	91-20-3	5	µg/kg			<5		
2-Methylnaphthalene	91-57-6	5	μg/kg			<5		
Acenaphthylene	208-96-8	4	μg/kg			<4		
Acenaphthene	83-32-9	4	μg/kg			<4		
Fluorene	86-73-7	4	μg/kg			<4		
Phenanthrene	85-01-8	4	μg/kg			<4		
Anthracene	120-12-7	4	µg/kg			<4		
Fluoranthene	206-44-0	4	μg/kg			<4		
Pyrene	129-00-0	4	μg/kg			<4		
Benz(a)anthracene	56-55-3	4	μg/kg			<4		
Chrysene	218-01-9	4	μg/kg			<4		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg			<4		
Benzo(k)fluoranthene	207-08-9	4	μg/kg			<4		
Benzo(e)pyrene	192-97-2	4	µg/kg			<4		
Benzo(a)pyrene	50-32-8	4	µg/kg			<4		
Perylene	198-55-0	4	µg/kg			<4		
Benzo(g.h.i)perylene	191-24-2	4	μg/kg			<4		
Dibenz(a.h)anthracene	53-70-3	4	µg/kg			<4		
Indeno(1.2.3.cd)pyrene	193-39-5	4	μg/kg			<4		
Coronene	190-09-0	5	μg/kg			<5		
Sum of PAHs		4	μg/kg			<4		
EP080-SD: TPH(V)/BTEX Surrog								
1.2-Dichloroethane-D4	17060-07-0	0.2	%			82.2		
Toluene-D8	2037-26-5	0.2	%			78.9		
4-Bromofluorobenzene	460-00-4	0.2	%			81.4		
	400-00-4	0.2	,,,					
P090S: Organotin Surrogate Tripropyltin		0.5	%		85.0	103		
		0.5	/0		00.0	103		
EP132T: Base/Neutral Extractal	_	10	0/			70.0		
2-Fluorobiphenyl	321-60-8	10	%			79.8		
Anthracene-d10	1719-06-8	10	%			76.3		

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC5-1	IC6	IC7-0.5	IC7-1	1C8-0.5
	Cli	ent sampli	ng date / time	18-Mar-2017 09:50	16-Mar-2017 10:26	16-Mar-2017 17:41	16-Mar-2017 17:41	18-Mar-2017 09:25
Compound	CAS Number	LOR	Unit	EP1702676-022	EP1702676-023	EP1702676-024	EP1702676-025	EP1702676-026
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable S	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%			66.9		

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-R2	IC5-1.5	OC1-0.5-T1	OC2-0.5	OC2-1
	Cli	ient samplii	ng date / time	18-Mar-2017 15:45	18-Mar-2017 09:50	17-Mar-2017 12:00	18-Mar-2017 08:30	18-Mar-2017 08:30
Compound	CAS Number	LOR	Unit	EP1702676-028	EP1702676-030	EP1702676-031	EP1702676-033	EP1702676-034
				Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit		9.5	9.5		
Titratable Actual Acidity (23F)		2	mole H+ / t		<2	<2		
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S		<0.02	<0.02		
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S		0.052	0.191		
acidity - Chromium Reducible Sulfur		10	mole H+ / t		32	119		
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3		22.1	23.5		
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t		4410	4700		
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S		7.07	7.53		
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-		1.5	1.5		
Net Acidity (sulfur units)		0.02	% S		<0.02	<0.02		
Net Acidity (acidity units)		10	mole H+ / t		<10	<10		
Liming Rate		1	kg CaCO3/t		<1	<1		
Net Acidity excluding ANC (sulfur units)		0.02	% S		0.05	0.19		
Net Acidity excluding ANC (acidity units)		10	mole H+ / t		32	119		
Liming Rate excluding ANC		1	kg CaCO3/t		2	9		
EA055: Moisture Content			9					
Moisture Content (dried @ 103°C)		1	%	11.0		25.0	15.3	16.0
EA150: Particle Sizing								
+75µm		1	%	99		91	90	93
+150µm		1	%	96		38	73	78
+300µm		1	%	74		14	39	46
+425µm		1	%	57		10	32	39
+600µm		1	%	47		9	28	34
+1180µm		1	%	36		8	23	29
+2.36mm		1	%	26		5	18	23
+4.75mm		1	%	17		<1	11	15
+9.5mm		1	%	7		<1	3	5
+19.0mm		1	%	<1		<1	<1	<1

ub-Matrix: SEDIMENT Matrix: SOIL)		Clie	ent sample ID	IC1-R2	IC5-1.5	OC1-0.5-T1	OC2-0.5	OC2-1
	Cli	ent sampli	ng date / time	18-Mar-2017 15:45	18-Mar-2017 09:50	17-Mar-2017 12:00	18-Mar-2017 08:30	18-Mar-2017 08:30
Compound	CAS Number	LOR	Unit	EP1702676-028	EP1702676-030	EP1702676-031	EP1702676-033	EP1702676-034
			-	Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued	i i i i i i i i i i i i i i i i i i i							
+37.5mm		1	%	<1		<1	<1	<1
+75.0mm		1	%	<1		<1	<1	<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%	<1		3	5	3
Silt (2-60 µm)		1	%	<1		4	3	2
Sand (0.06-2.00 mm)		1	%	71		87	73	70
Gravel (>2mm)		1	%	29		6	19	25
Cobbles (>6cm)		1	%	<1		<1	<1	<1
EG005-SD: Total Metals in Sedim	nents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	2050		3870	3930	3220
Iron	7439-89-6	50	mg/kg	13200		23200	20800	22200
EG020-SD: Total Metals in Sedim	nents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg	<0.50		<0.50	<0.50	<0.50
Arsenic	7440-38-2	1	mg/kg	25.9		21.4	23.4	29.2
Cadmium	7440-43-9	0.1	mg/kg	<0.1		<0.1	<0.1	<0.1
Chromium	7440-47-3	1	mg/kg	13.6		27.8	24.0	22.9
Copper	7440-50-8	1	mg/kg	3.0		6.3	6.3	3.9
Cobalt	7440-48-4	0.5	mg/kg	6.6		8.0	11.7	9.6
Lead	7439-92-1	1	mg/kg	2.1		3.8	4.0	3.7
Manganese	7439-96-5	10	mg/kg	419		316	383	435
Nickel	7440-02-0	1	mg/kg	5.0		11.1	9.8	7.8
Selenium	7782-49-2	0.1	mg/kg	2.0		1.3	1.6	1.8
Silver	7440-22-4	0.1	mg/kg	<0.1		<0.1	<0.1	<0.1
Vanadium	7440-62-2	2	mg/kg	30.5		47.1	44.0	46.5
Zinc	7440-66-6	1	mg/kg	7.6		16.0	14.1	12.2
EG035T: Total Recoverable Mer	cury by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01		<0.01	<0.01	<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20		<20	<20	
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1		<0.1	<0.1	
EK058G: Nitrate as N by Discret	e Analyser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	0.2		<0.1	<0.1	
EK059G: Nitrite plus Nitrate as N		vsor						

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-R2	IC5-1.5	OC1-0.5-T1	OC2-0.5	OC2-1
	Cli	ient sampli	ng date / time	18-Mar-2017 15:45	18-Mar-2017 09:50	17-Mar-2017 12:00	18-Mar-2017 08:30	18-Mar-2017 08:30
Compound	CAS Number	LOR	Unit	EP1702676-028	EP1702676-030	EP1702676-031	EP1702676-033	EP1702676-034
			-	Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	0.2		<0.1	<0.1	
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	40		360	140	
EK062: Total Nitrogen as N (TKN + NO	(x)							
[^] Total Nitrogen as N		20	mg/kg	40		360	140	
EK067G: Total Phosphorus as P by Di								
Total Phosphorus as P		2	mg/kg	100		43	276	
							210	1
EK071G: Reactive Phosphorus as P by Reactive Phosphorus as P	y discrete analyser 14265-44-2	0.1	mg/kg	<0.1		<0.1	0.1	
		0.1	iiig/kg			1.0-	V. I	
EP003: Total Organic Carbon (TOC) in		0.00	0(0.00		0.44	0.05	0.00
Total Organic Carbon		0.02	%	0.02		0.11	0.05	0.06
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201							
>C10 - C16 Fraction		3	mg/kg	<3		<3		
>C16 - C34 Fraction		3	mg/kg	<3		<3		
>C34 - C40 Fraction		5	mg/kg	<5		<5		
>C10 - C40 Fraction (sum)		3	mg/kg	<3		<3		
>C10 - C16 Fraction minus Naphthalene		3	mg/kg	<3		<3		
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg	<3		<3		
C10 - C14 Fraction		3	mg/kg	<3		<3		
C15 - C28 Fraction		3	mg/kg	<3		<3		
C29 - C36 Fraction		5	mg/kg	<5		<5		
C10 - C36 Fraction (sum)		3	mg/kg	<3		<3		
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg	<3		<3		
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		
Toluene	108-88-3	0.2	mg/kg	<0.2		<0.2		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2		<0.2		
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2		<0.2		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2		<0.2		
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5		<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2		<0.2		

ub-Matrix: SEDIMENT Matrix: SOIL)		Clie	ent sample ID	IC1-R2	IC5-1.5	OC1-0.5-T1	OC2-0.5	OC2-1
	Cli	ent sampli	ng date / time	18-Mar-2017 15:45	18-Mar-2017 09:50	17-Mar-2017 12:00	18-Mar-2017 08:30	18-Mar-2017 08:30
Compound	CAS Number	LOR	Unit	EP1702676-028	EP1702676-030	EP1702676-031	EP1702676-033	EP1702676-034
-				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg	<0.2		<0.2		
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5		<0.5	<0.5	
P132B: Polynuclear Aromatic H								
Naphthalene	91-20-3	5	µg/kg	<5		<5		
2-Methylnaphthalene	91-57-6	5	μg/kg	<5		<5		
Acenaphthylene	208-96-8	4	μg/kg	<4		<4		
Acenaphthene	83-32-9	4	μg/kg	<4		<4		
Fluorene	86-73-7	4	μg/kg	<4		<4		
Phenanthrene	85-01-8	4	µg/kg	<4		<4		
Anthracene	120-12-7	4	μg/kg	<4		<4		
Fluoranthene	206-44-0	4	μg/kg	<4		<4		
Pyrene	129-00-0	4	μg/kg	<4		<4		
Benz(a)anthracene	56-55-3	4	µg/kg	<4		<4		
Chrysene	218-01-9	4	μg/kg	<4		<4		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4		<4		
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4		<4		
Benzo(e)pyrene	192-97-2	4	µg/kg	<4		<4		
Benzo(a)pyrene	50-32-8	4	µg/kg	<4		<4		
Perylene	198-55-0	4	µg/kg	<4		<4		
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4		<4		
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4		<4		
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4		<4		
Coronene	191-07-1	5	µg/kg	<5		<5		
Sum of PAHs		4	µg/kg	<4		<4		
EP080-SD: TPH(V)/BTEX Surroga	ates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	93.4		87.3		
Toluene-D8	2037-26-5	0.2	%	89.3		81.1		
4-Bromofluorobenzene	460-00-4	0.2	%	94.7		85.3		
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	84.2		92.5	100	
EP132T: Base/Neutral Extractabl								
2-Fluorobiphenyl	321-60-8	10	%	86.6		95.3		
Anthracene-d10	1719-06-8	10	%	77.8		83.6		

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	IC1-R2	IC5-1.5	OC1-0.5-T1	OC2-0.5	OC2-1
	Cli	ent sampli	ng date / time	18-Mar-2017 15:45	18-Mar-2017 09:50	17-Mar-2017 12:00	18-Mar-2017 08:30	18-Mar-2017 08:30
Compound	CAS Number	LOR	Unit	EP1702676-028	EP1702676-030	EP1702676-031	EP1702676-033	EP1702676-034
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%	85.0		85.2		

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC3-0.5	OC3-1	OC4-0.5	OC4-1	OC5
,	Cli	ient samplir	ng date / time	17-Mar-2017 08:35	17-Mar-2017 08:35	17-Mar-2017 11:20	17-Mar-2017 11:20	18-Mar-2017 14:20
Compound	CAS Number	LOR	Unit	EP1702676-035	EP1702676-036	EP1702676-037	EP1702676-038	EP1702676-039
			-	Result	Result	Result	Result	Result
EA033-A: Actual Acidity			_					
pH KCI (23A)		0.1	pH Unit			9.2	9.1	9.8
Titratable Actual Acidity (23F)		2	mole H+ / t			<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S			<0.02	<0.02	<0.02
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S			0.577	0.567	0.008
acidity - Chromium Reducible Sulfur		10	mole H+ / t			360	353	<10
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3			31.5	18.8	51.2
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t			6300	3750	10200
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S			10.1	6.01	16.4
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-			1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S			<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+/t			<10	<10	<10
Liming Rate		1	kg CaCO3/t			<1	<1	<1
Net Acidity excluding ANC (sulfur units)		0.02	% S			0.58	0.57	<0.02
Net Acidity excluding ANC (acidity units)		10	mole H+ / t			360	353	<10
Liming Rate excluding ANC		1	kg CaCO3/t			27	27	<1
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	22.2	23.6	25.2		21.8
EA150: Particle Sizing								
+75µm		1	%	99	99	81		94
+150µm		1	%	89	73	60		83
+300µm		1	%	27	17	33		53
+425µm		1	%	6	5	27		43
+600µm		1	%	3	4	24		38
+1180µm		1	%	2	3	21		30
+2.36mm		1	%	1	2	16		23
+4.75mm		1	%	<1	1	9		14
+9.5mm		1	%	<1	1	2		3
+19.0mm		1	%	<1	<1	<1		<1

Bub-Matrix: SEDIMENT Matrix: SOIL)		Clie	ent sample ID	OC3-0.5	OC3-1	OC4-0.5	OC4-1	OC5
	Cli	ent samplii	ng date / time	17-Mar-2017 08:35	17-Mar-2017 08:35	17-Mar-2017 11:20	17-Mar-2017 11:20	18-Mar-2017 14:20
Compound	CAS Number	LOR	Unit	EP1702676-035	EP1702676-036	EP1702676-037	EP1702676-038	EP1702676-039
				Result	Result	Result	Result	Result
EA150: Particle Sizing - Continued								
+37.5mm		1	%	<1	<1	<1		<1
+75.0mm		1	%	<1	<1	<1		<1
EA150: Soil Classification based	on Particle Size							
Clay (<2 μm)		1	%	<1	<1	9		4
Silt (2-60 μm)		1	%	<1	<1	9		1
Sand (0.06-2.00 mm)		1	%	99	97	65		70
Gravel (>2mm)		1	%	1	3	17		25
Cobbles (>6cm)		1	%	<1	<1	<1		<1
EG005-SD: Total Metals in Sedim	ents by ICP-AES							
Aluminium	7429-90-5	50	mg/kg	1340	1350	5440		3650
Iron	7439-89-6	50	mg/kg	8580	7460	28800		24900
EG020-SD: Total Metals in Sedim	ents by ICPMS							
Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	<0.50		<0.50
Arsenic	7440-38-2	1	mg/kg	11.0	9.68	26.0		38.1
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	<0.1		<0.1
Chromium	7440-47-3	1	mg/kg	11.2	11.1	34.7		22.9
Copper	7440-50-8	1	mg/kg	2.0	2.2	9.2		4.5
Cobalt	7440-48-4	0.5	mg/kg	3.1	2.9	10.4		11.7
Lead	7439-92-1	1	mg/kg	1.4	1.3	5.6		4.1
Manganese	7439-96-5	10	mg/kg	196	171	430		625
Nickel	7440-02-0	1	mg/kg	4.0	4.0	12.6		8.2
Selenium	7782-49-2	0.1	mg/kg	0.7	0.6	1.7		2.1
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	<0.1		<0.1
Vanadium	7440-62-2	2	mg/kg	19.0	17.9	59.7		52.1
Zinc	7440-66-6	1	mg/kg	7.4	6.9	19.9		14.0
EG035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	<0.01		<0.01
EK055: Ammonia as N								
Ammonia as N	7664-41-7	20	mg/kg	<20		<20		
EK057G: Nitrite as N by Discrete	Analyser							
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1		<0.1		
EK058G: Nitrate as N by Discrete	Analyser							
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1		<0.1		
EK059G: Nitrite plus Nitrate as N		veor						

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC3-0.5	OC3-1	OC4-0.5	OC4-1	OC5
	Cli	ient sampli	ng date / time	17-Mar-2017 08:35	17-Mar-2017 08:35	17-Mar-2017 11:20	17-Mar-2017 11:20	18-Mar-2017 14:20
Compound	CAS Number	LOR	Unit	EP1702676-035	EP1702676-036	EP1702676-037	EP1702676-038	EP1702676-039
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO	x) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1		<0.1		
EK061G: Total Kjeldahl Nitrogen By D	iscrete Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg	30		180		
EK062: Total Nitrogen as N (TKN + NO)x)							
Total Nitrogen as N		20	mg/kg	30		180		
K067G: Total Phosphorus as P by Di			0.0					
Total Phosphorus as P		2	mg/kg	84		195		
		_						
EK071G: Reactive Phosphorus as P by Reactive Phosphorus as P	y discrete analyser 14265-44-2	0.1	mg/kg	<0.1		<0.1		
		0.1	mg/kg	-0.1		-0.1		
EP003: Total Organic Carbon (TOC) in		0.00	0(-0.00	-0.00	0.00		0.04
Total Organic Carbon		0.02	%	<0.02	<0.02	0.66		0.04
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201							
>C10 - C16 Fraction		3	mg/kg	<3		<3		<3
>C16 - C34 Fraction		3	mg/kg	<3		<3		5
>C34 - C40 Fraction		5	mg/kg	<5		<5		<5
>C10 - C40 Fraction (sum)		3	mg/kg	<3		<3		5
>C10 - C16 Fraction minus Naphthalene		3	mg/kg	<3		<3		<3
(F2)								
EP080-SD / EP071-SD: Total Petroleun	n Hydrocarbons							
C6 - C9 Fraction		3	mg/kg	<3		<3		<3
C10 - C14 Fraction		3	mg/kg	<3		<3		<3
C15 - C28 Fraction		3	mg/kg	<3		<3		4
C29 - C36 Fraction		5	mg/kg	<5		<5		<5
C10 - C36 Fraction (sum)		3	mg/kg	<3		<3		4
EP080-SD / EP071-SD: Total Recovera	ble Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg	<3		<3		<3
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2		<0.2		<0.2
Toluene	108-88-3	0.2	mg/kg	<0.2		<0.2		<0.2
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2		<0.2		<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2		<0.2		<0.2
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2		<0.2		<0.2
`Total Xylenes	1330-20-7	0.5	mg/kg	<0.5		<0.5		<0.5
Sum of BTEX		0.2	mg/kg	<0.2		<0.2		<0.2

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC3-0.5	OC3-1	OC4-0.5	OC4-1	OC5
	Cli	ent sampli	ng date / time	17-Mar-2017 08:35	17-Mar-2017 08:35	17-Mar-2017 11:20	17-Mar-2017 11:20	18-Mar-2017 14:20
Compound	CAS Number	LOR	Unit	EP1702676-035	EP1702676-036	EP1702676-037	EP1702676-038	EP1702676-039
				Result	Result	Result	Result	Result
P080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg	<0.2		<0.2		<0.2
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	0.5		<0.5		<0.5
EP132B: Polynuclear Aromatic								
Naphthalene	91-20-3	5	µg/kg	<5		<5		<5
2-Methylnaphthalene	91-57-6	5	μg/kg	<5		<5		<5
Acenaphthylene	208-96-8	4	μg/kg	<4		<4		<4
Acenaphthene	83-32-9	4	µg/kg	<4		<4		<4
Fluorene	86-73-7	4	μg/kg	<4		<4		<4
Phenanthrene	85-01-8	4	µg/kg	<4		<4		<4
Anthracene	120-12-7	4	µg/kg	<4		<4		<4
Fluoranthene	206-44-0	4	µg/kg	<4		<4		<4
Pyrene	129-00-0	4	µg/kg	<4		<4		<4
Benz(a)anthracene	56-55-3	4	µg/kg	<4		<4		<4
Chrysene	218-01-9	4	µg/kg	<4		<4		<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4		<4		<4
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4		<4		<4
Benzo(e)pyrene	192-97-2	4	µg/kg	<4		<4		<4
Benzo(a)pyrene	50-32-8	4	µg/kg	<4		<4		<4
Perylene	198-55-0	4	µg/kg	<4		<4		<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4		<4		<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4		<4		<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4		<4		<4
Coronene	191-07-1	5	µg/kg	<5		<5		<5
Sum of PAHs		4	µg/kg	<4		<4		<4
EP080-SD: TPH(V)/BTEX Surrog	gates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	76.1		86.4		81.2
Toluene-D8	2037-26-5	0.2	%	74.0		85.8		78.2
4-Bromofluorobenzene	460-00-4	0.2	%	76.5		87.7		78.2
EP090S: Organotin Surrogate								
Tripropyltin		0.5	%	96.3		90.5		91.2
EP132T: Base/Neutral Extractal	ble Surrogates							
2-Fluorobiphenyl	321-60-8	10	%	86.7		90.4		88.4
Anthracene-d10	1719-06-8	10	%	76.2		84.6		85.4

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC3-0.5	OC3-1	OC4-0.5	OC4-1	OC5
	Cli	ent sampli	ng date / time	17-Mar-2017 08:35	17-Mar-2017 08:35	17-Mar-2017 11:20	17-Mar-2017 11:20	18-Mar-2017 14:20
Compound	CAS Number	LOR	Unit	EP1702676-035	EP1702676-036	EP1702676-037	EP1702676-038	EP1702676-039
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%	77.5		99.9		79.3

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC6	OC7	OC8	OC9	OC10
· · · · · ·	Cl	ient sampli	ng date / time	17-Mar-2017 15:42	18-Mar-2017 15:30	17-Mar-2017 15:14	17-Mar-2017 15:21	17-Mar-2017 16:16
Compound	CAS Number	LOR	Unit	EP1702676-040	EP1702676-041	EP1702676-042	EP1702676-043	EP1702676-044
			-	Result	Result	Result	Result	Result
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit	9.8	9.8		9.8	
Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2		<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02		<0.02	
EA033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S	0.008	<0.005		0.005	
acidity - Chromium Reducible Sulfur		10	mole H+ / t	<10	<10		<10	
(a-22B)								
EA033-C: Acid Neutralising Capacity								
Acid Neutralising Capacity (19A2)		0.01	% CaCO3	37.1	44.4		45.5	
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t	7420	8880		9090	
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S	11.9	14.2		14.6	
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-	1.5	1.5		1.5	
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02		<0.02	
Net Acidity (acidity units)		10	mole H+/t	<10	<10		<10	
Liming Rate		1	kg CaCO3/t	<1	<1		<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S	<0.02	<0.02		<0.02	
Net Acidity excluding ANC (acidity units)		10	mole H+ / t	<10	<10		<10	
Liming Rate excluding ANC		1	kg CaCO3/t	<1	<1		<1	
EA055: Moisture Content								
Moisture Content (dried @ 103°C)		1	%	25.6	17.7	29.5	25.4	26.8
EA150: Particle Sizing								
+75µm		1	%	93	90	88	92	95
+150μm		1	%	71	70	71	78	68
+300µm		1	%	33	40	32	46	27
+425µm		1	%	24	29	21	35	19
+600µm		1	%	21	26	17	31	16
+1180μm		1	%	17	19	12	25	12
+2.36mm		1	%	13	12	7	18	8
+4.75mm		1	%	9	4	4	9	2
+9.5mm		1	%	4	2	<1	2	<1
+19.0mm		1	%	4	<1	<1	<1	<1

Compound CAS Number LOR Unit EP1702676-040 EP1702676-041 EP1702676-041 Result	OC8	OC9	OC10
Artison Result Result Result ATIS: Particle Sizing - Continued	Mar-2017 15:14	17-Mar-2017 15:21	17-Mar-2017 16:1
EA150: Particle Sizing - Continued 1 % <1	P1702676-042	EP1702676-043	EP1702676-044
*37.5mm 1 % <1	Result	Result	Result
*37.5mm 1 % <1			
Class Classification based on Particle Size Clay (<2 µm)	<1	<1	<1
Sit (2-0 µm) 1 % 3 4 Sand (0.06-2.00 nm) 1 % 80 77 Gravel (>2mm) 1 % 14 14 Cobbles (>5cm) 1 % 14 14 Cobbles (>5cm) 1 % <1	<1	<1	<1
Silt (2-60 µm) 1 % 3 4 Sand (0.06-2.00 nm) 1 % 80 77 Gravel (>2mm) 1 % 14 14 Cobbles (>6cm) 1 % 14 14 EC005-SD: Total Metals in Sediments by ICP-AES Aluminium 7429-90-5 50 mg/kg 3600 4610 4 EC005-SD: Total Metals in Sediments by ICP-MES 50 mg/kg 22300 29900 3 EC020-SD: Total Metals in Sediments by ICP-MES 1 mg/kg 2600 <0.50			
Sand (0.06-2.00 mm) 1 % 80 77 Gravel (>2mm) 1 % 14 14 14 Cobbles (>6cm) 1 % <1	6	5	3
Gravel (>2mm) 1 % 14 14 Cobbles (>6cm) 1 % <1	4	2	1
Cobbles (>6cm) 1 % <1 <1 EG005-SD: Total Metals in Sediments by ICP-AES 3600 4610 4 Iron 7439-89-6 50 mg/kg 28300 29900 3 EG020-SD: Total Metals in Sediments by ICPMS 3.4 3.4 3.4 Cadmium 7440-38-2 1 mg/kg <0.50	81	73	87
Colobs-Sp: Total Metals in Sediments by ICP-AES Aluminium 7429-90-5 50 mg/kg 3600 4610 4 Iron 7439-89-6 50 mg/kg 28300 29900 3 EG005-SD: Total Metals in Sediments by ICPMS U U U Second Seco	9	20	9
Aluminium 7429-90-5 50 mg/kg 3600 4610 4 Iron 7439-89-6 50 mg/kg 28300 29900 33 EG020-SD: Total Metals in Sediments by ICPMS 33 Antimony 7440-38-0 0.5 mg/kg <0.50	<1	<1	<1
Iron 7439-89-6 50 mg/kg 28300 29900 3 EG020-SD: Total Metals in Sediments by ICPMS Antimony 7440-36-0 0.5 mg/kg <0.50			
EG020-SD: Total Metals in Sediments by ICPMS Total Metals in Sediments by ICPMS Antimony 7440-36-0 0.5 mg/kg <0.50	4330	3760	3290
Antimony 7440-36-0 0.5 mg/kg <0.50 <0.50 <0.50 Arsenic 7440-38-2 1 mg/kg 27.4 33.4 :: Cadmium 7440-43-9 0.1 mg/kg <0.1 <0.1 <0.1 <0.1 Chromium 7440-47-3 1 mg/kg 26.9 29.8 <0.1 <0.1 Copper 7440-50-8 1 mg/kg 4.1 6.4 <0.1 <0.1 Cobalt 7440-84-4 0.5 mg/kg 4.1 6.4 <0.1 <0.1 Lead 7439-92-1 1 mg/kg 4.7 5.4 <0.1 Manganese 7439-92-5 10 mg/kg 4.18 634 <0.1 Nickel 7440-62-0 1 mg/kg 9.0 10.4 <0.1 Silver 7440-62-2 0.1 mg/kg 16.6 1.9 <0.1 <0.1 Go3551: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.01	32800	27100	29500
Arsenic 7440-38-2 1 mg/kg 27.4 33.4 :: Cadmium 7440-43-9 0.1 mg/kg 20.1 <0.1			
Cadmium 7440-43-9 0.1 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.50	<0.50	<0.50
Chromium 7440-47-3 1 mg/kg 26.9 29.8 3 Copper 7440-50-8 1 mg/kg 4.1 6.4 4 Cobalt 7440-48-4 0.5 mg/kg 11.8 12.3 4 Cobalt 7439-92-1 1 mg/kg 4.7 5.4 4 Manganese 7439-96-5 10 mg/kg 418 634 4 Nickel 7440-02-0 1 mg/kg 9.0 10.4 4 Selenium 7782-49-2 0.1 mg/kg 4.6 1.9 4 Vanadium 7440-62-2 2 mg/kg 14.9 17.2 4 Co357: Total Recoverable Mercury by FIMS 5 5 5 5 5 Zinc 7439-97.6 0.01 mg/kg 0.01 <0.01	27.4	26.6	29.2
Copper 7440-50-8 1 mg/kg 4.1 6.4 Cobalt 7440-48-4 0.5 mg/kg 11.8 12.3 1 Lead 7439-92-1 1 mg/kg 4.7 5.4 1 Manganese 7439-96-5 10 mg/kg 418 634 1 Nickel 7440-02-0 1 mg/kg 9.0 10.4 1 Selenium 7782-49-2 0.1 mg/kg 9.0 10.4 1 9 Silver 7440-62-2 2 mg/kg 1.6 1.9 1 Vanadium 7440-62-2 2 mg/kg 50.2 56.5 2 Zinc 7440-62-2 2 mg/kg 14.9 17.2 1 G035T: Total Recoverable Mercury by FIMS EG035T: Total Recoverable Mercury by FIMS 4 6 4 1 1 9 3 Mercury 7439-97-6 0.01 mg/kg <0.01 < <	<0.1	<0.1	<0.1
Cobalt 7440-48-4 0.5 mg/kg 11.8 12.3 Lead 7439-92-1 1 mg/kg 4.7 5.4 Manganese 7439-96-5 10 mg/kg 418 634 Nickel 7440-02-0 1 mg/kg 9.0 10.4 - Selenium 7782-49-2 0.1 mg/kg 0.1 <0.1	30.5	25.5	28.2
Lead 7439-92-1 1 mg/kg 4.7 5.4 Manganese 7439-96-5 10 mg/kg 418 634 1 Nickel 7440-02-0 1 mg/kg 9.0 10.4 1 Selenium 7782-49-2 0.1 mg/kg 1.6 1.9 1 Silver 7440-22-4 0.1 mg/kg <0.1	5.0	4.3	3.5
Manganese 7439-96-5 10 mg/kg 418 634 Nickel 7440-02-0 1 mg/kg 9.0 10.4	13.4	12.8	11.3
Nickel 7440-02-0 1 mg/kg 9.0 10.4 Selenium 7782-49-2 0.1 mg/kg 1.6 1.9 1.6 Silver 7440-22-4 0.1 mg/kg 6.1 1.9 1.6 Silver 7440-22-4 0.1 mg/kg	5.4	4.9	4.8
Selenium 7782-49-2 0.1 mg/kg 1.6 1.9 Silver 7440-22-4 0.1 mg/kg <0.1	435	439	401
Silver 7440-22-4 0.1 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	10.1	9.1	7.8
Vanadium 7440-62-2 2 mg/kg 50.2 56.5 32 Zinc 7440-66-6 1 mg/kg 14.9 17.2 16 EG035T: Total Recoverable Mercury by FIMS 14.9 17.2 16 EG035T: Total Recoverable Mercury by FIMS 14.9 17.2 16 EG035T: Total Recoverable Mercury by FIMS 17.2 16 EG035T: Total Recoverable Mercury by FIMS 17.2 17.2 16 EG035T: Total Recoverable Mercury by FIMS 17.2 <td>1.6</td> <td>1.7</td> <td>1.4</td>	1.6	1.7	1.4
Zinc 7440-66-6 1 mg/kg 14.9 17.2 1 EG035T: Total Recoverable Mercury by FIMS	<0.1	<0.1	<0.1
EG035T: Total Recoverable Mercury by FIMS Mercury 7439-97-6 0.01 mg/kg <0.01 <0.01 < EK055: Ammonia as N Ammonia as N 7664-41-7 20 mg/kg <20	53.2	48.4	51.7
Mercury 7439-97-6 0.01 mg/kg <0.01 <0.01 < EK055: Ammonia as N	18.1	16.0	14.2
EK055: Ammonia as N 7664-41-7 20 mg/kg <20 Ammonia as N 7664-41-7 20 mg/kg <20			
Ammonia as N 7664-41-7 20 mg/kg <20 EK057G: Nitrite as N by Discrete Analyser <t< td=""><td><0.01</td><td><0.01</td><td><0.01</td></t<>	<0.01	<0.01	<0.01
EK057G: Nitrite as N by Discrete Analyser Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg			
Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1			<20
Nitrite as N (Sol.) 14797-65-0 0.1 mg/kg <0.1			
EK058G: Nitrate as N by Discrete Analyser			<0.1
Nitrate as N (Sol.) 14797-55-8 0.1 mg/kg <0.1			<0.1

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC6	OC7	OC8	OC9	OC10
	Cli	ient samplii	ng date / time	17-Mar-2017 15:42	18-Mar-2017 15:30	17-Mar-2017 15:14	17-Mar-2017 15:21	17-Mar-2017 16:16
Compound	CAS Number	LOR	Unit	EP1702676-040	EP1702676-041	EP1702676-042	EP1702676-043	EP1702676-044
				Result	Result	Result	Result	Result
EK059G:Nitrite plus Nitrate as N (NOx) by Discrete Ana	lyser - Co	ntinued					
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg		<0.1			<0.1
EK061G: Total Kjeldahl Nitrogen By Dis	screte Analyser							
Total Kjeldahl Nitrogen as N		20	mg/kg		200			160
EK062: Total Nitrogen as N (TKN + NO	x)							
[^] Total Nitrogen as N		20	mg/kg		200			160
EK067G: Total Phosphorus as P by Dis	croto Analysor							
Total Phosphorus as P		2	mg/kg		256			293
			55					
EK071G: Reactive Phosphorus as P by Reactive Phosphorus as P	14265-44-2	0.1	mg/kg		<0.1			<0.1
		0.1	iiig/kg					1.01
EP003: Total Organic Carbon (TOC) in		0.00	0/	0.40	0.00	0.08	0.07	0.04
Total Organic Carbon		0.02	%	0.10	0.06	0.08	0.07	0.04
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201							
>C10 - C16 Fraction		3	mg/kg		<3			<3
>C16 - C34 Fraction		3	mg/kg		7			7
>C34 - C40 Fraction		5	mg/kg		<5			<5
>C10 - C40 Fraction (sum)		3	mg/kg		7			7
>C10 - C16 Fraction minus Naphthalene		3	mg/kg		<3			<3
(F2)								
EP080-SD / EP071-SD: Total Petroleum	Hydrocarbons							
C6 - C9 Fraction		3	mg/kg		<3			<3
C10 - C14 Fraction		3	mg/kg		<3			<3
C15 - C28 Fraction		3	mg/kg		5			5
C29 - C36 Fraction		5	mg/kg		<5			<5
C10 - C36 Fraction (sum)		3	mg/kg		5			5
EP080-SD / EP071-SD: Total Recoverat	ole Hydrocarbons							
C6 - C10 Fraction	C6_C10	3	mg/kg		<3			<3
EP080-SD: BTEXN								
Benzene	71-43-2	0.2	mg/kg		<0.2			<0.2
Toluene	108-88-3	0.2	mg/kg		<0.2			<0.2
Ethylbenzene	100-41-4	0.2	mg/kg		<0.2			<0.2
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg		<0.2			<0.2
ortho-Xylene	95-47-6	0.2	mg/kg		<0.2			<0.2
` Total Xylenes	1330-20-7	0.5	mg/kg		<0.5			<0.5
[∿] Sum of BTEX		0.2	mg/kg		<0.2			<0.2

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC6	OC7	OC8	OC9	OC10
	Cli	ent sampli	ng date / time	17-Mar-2017 15:42	18-Mar-2017 15:30	17-Mar-2017 15:14	17-Mar-2017 15:21	17-Mar-2017 16:16
Compound	CAS Number	LOR	Unit	EP1702676-040	EP1702676-041	EP1702676-042	EP1702676-043	EP1702676-044
				Result	Result	Result	Result	Result
EP080-SD: BTEXN - Continued								
Naphthalene	91-20-3	0.2	mg/kg		<0.2			<0.2
EP090: Organotin Compounds								
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	<0.5	<0.5	<0.5
EP132B: Polynuclear Aromatic								
Naphthalene	91-20-3	5	µg/kg		<5			<5
2-Methylnaphthalene	91-57-6	5	μg/kg		<5			<5
Acenaphthylene	208-96-8	4	μg/kg		<4			<4
Acenaphthene	83-32-9	4	µg/kg		<4			<4
Fluorene	86-73-7	4	µg/kg		<4			<4
Phenanthrene	85-01-8	4	µg/kg		<4			<4
Anthracene	120-12-7	4	µg/kg		<4			<4
Fluoranthene	206-44-0	4	µg/kg		<4			<4
Pyrene	129-00-0	4	µg/kg		<4			<4
Benz(a)anthracene	56-55-3	4	µg/kg		<4			<4
Chrysene	218-01-9	4	µg/kg		<4			<4
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg		<4			<4
Benzo(k)fluoranthene	207-08-9	4	µg/kg		<4			<4
Benzo(e)pyrene	192-97-2	4	µg/kg		<4			<4
Benzo(a)pyrene	50-32-8	4	µg/kg		<4			<4
Perylene	198-55-0	4	µg/kg		<4			<4
Benzo(g.h.i)perylene	191-24-2	4	µg/kg		<4			<4
Dibenz(a.h)anthracene	53-70-3	4	µg/kg		<4			<4
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg		<4			<4
Coronene	191-07-1	5	µg/kg		<5			<5
Sum of PAHs		4	µg/kg		<4			<4
EP080-SD: TPH(V)/BTEX Surrog	gates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%		81.4			83.9
Toluene-D8	2037-26-5	0.2	%		78.0			77.1
4-Bromofluorobenzene	460-00-4	0.2	%		80.6			79.1
P090S: Organotin Surrogate								
Tripropyltin		0.5	%	105	121	104	75.6	105
EP132T: Base/Neutral Extractab	ole Surrogates							
2-Fluorobiphenyl	321-60-8	10	%		78.1			94.9
Anthracene-d10	1719-06-8	10	%		69.9			82.4

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC6	OC7	OC8	OC9	OC10
	Cli	ent sampli	ng date / time	17-Mar-2017 15:42	18-Mar-2017 15:30	17-Mar-2017 15:14	17-Mar-2017 15:21	17-Mar-2017 16:16
Compound	CAS Number	LOR	Unit	EP1702676-040	EP1702676-041	EP1702676-042	EP1702676-043	EP1702676-044
				Result	Result	Result	Result	Result
EP132T: Base/Neutral Extractable	Surrogates - Continued							
4-Terphenyl-d14	1718-51-0	10	%		67.3			82.4

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC7-R2-0.5	OC1-0.2-T2	 	
	Ci	lient sampli	ng date / time	18-Mar-2017 15:30	17-Mar-2017 12:00	 	
Compound	CAS Number	LOR	Unit	EP1702676-045	EP1702676-047	 	
				Result	Result	 	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1	%	24.6	24.7	 	
EA150: Particle Sizing							
+75μm		1	%	86	89	 	
+150μm		1	%	66	51	 	
+300µm		1	%	38	19	 	
+425µm		1	%	29	13	 	
+600µm		1	%	27	11	 	
+1180µm		1	%	22	9	 	
+2.36mm		1	%	16	7	 	
+4.75mm		1	%	9	3	 	
+9.5mm		1	%	<1	<1	 	
+19.0mm		1	%	<1	<1	 	
+37.5mm		1	%	<1	<1	 	
+75.0mm		1	%	<1	<1	 	
EA150: Soil Classification based	on Particle Size						
Clay (<2 μm)		1	%	7	5	 	
Silt (2-60 µm)		1	%	5	4	 	
Sand (0.06-2.00 mm)		1	%	70	84	 	
Gravel (>2mm)		1	%	18	7	 	
Cobbles (>6cm)		1	%	<1	<1	 	
EG005-SD: Total Metals in Sedim	ents by ICP-AES						
Aluminium	7429-90-5	50	mg/kg	4790	3740	 	
Iron	7439-89-6	50	mg/kg	29800	21700	 	
EG020-SD: Total Metals in Sedim	ents by ICPMS						
Antimony	7440-36-0	0.5	mg/kg	<0.50	<0.50	 	
Arsenic	7440-38-2	1	mg/kg	29.0	19.8	 	
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	 	
Chromium	7440-47-3	1	mg/kg	30.5	24.9	 	
Copper	7440-50-8	1	mg/kg	6.8	5.4	 	
Cobalt	7440-48-4	0.5	mg/kg	11.4	7.4	 	
Lead	7439-92-1	1	mg/kg	5.6	3.5	 	
Manganese	7439-96-5	10	mg/kg	552	326	 	
Nickel	7440-02-0	1	mg/kg	11.1	9.3	 	
Selenium	7782-49-2	0.1	mg/kg	1.8	1.3	 	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC7-R2-0.5	OC1-0.2-T2	 	
	Cl	ient sampli	ing date / time	18-Mar-2017 15:30	17-Mar-2017 12:00	 	
Compound	CAS Number	LOR	Unit	EP1702676-045	EP1702676-047	 	
				Result	Result	 	
EG020-SD: Total Metals in Sediments	by ICPMS - Continue	ed					
Silver	7440-22-4	0.1	mg/kg	<0.1	<0.1	 	
Vanadium	7440-62-2	2	mg/kg	55.5	42.6	 	
Zinc	7440-66-6	1	mg/kg	17.7	15.0	 	
EG035T: Total Recoverable Mercury b	y FIMS						
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	 	
EK055: Ammonia as N							
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	 	
EK057G: Nitrite as N by Discrete Anal	vser						
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	 	
EK058G: Nitrate as N by Discrete Ana	lvser						
Nitrate as N (Sol.)	_	0.1	mg/kg	<0.1	<0.1	 	
EK059G: Nitrite plus Nitrate as N (NO)		lvser					1
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	 	
EK061G: Total Kjeldahl Nitrogen By Di	iscrete Analyser						1
Total Kjeldahl Nitrogen as N		20	mg/kg	260	200	 	
EK062: Total Nitrogen as N (TKN + NO	v)						
 [^] Total Nitrogen as N 	~) 	20	mg/kg	260	200	 	
EK067G: Total Phosphorus as P by Dis	scroto Apolysor	-	3 3				
Total Phosphorus as P	Screte Analysei	2	mg/kg	240	167	 	
EK071G: Reactive Phosphorus as P by							
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	<0.1	<0.1	 	
		0.1	ing/itg	-0.1	-0.1		
EP003: Total Organic Carbon (TOC) in Total Organic Carbon		0.02	%	0.08	0.22		
				0.00	0.22	 	
EP080/071: Total Recoverable Hydroca				<3	<3		
>C10 - C16 Fraction >C16 - C34 Fraction		3	mg/kg	<u></u>	<3	 	
>C16 - C34 Fraction >C34 - C40 Fraction		5	mg/kg mg/kg	<5	<5	 	
>C10 - C40 Fraction (sum)		3	mg/kg	9	<3	 	
>C10 - C40 Fraction (sum)		3	mg/kg	<3	<3	 	
 (F2) 		5	iiig/kg	<u>.</u>	<u>ت</u>	 	
EP080-SD / EP071-SD: Total Petroleum	hudrocarbone						1
C6 - C9 Fraction	n Hydrocarbons	3	mg/kg	<3	<3	 	
C10 - C14 Fraction		3	mg/kg	<3	<3	 	
		5	inging	-0	<u>ر</u>	 	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC7-R2-0.5	OC1-0.2-T2	 	
	Cli	ent sampli	ng date / time	18-Mar-2017 15:30	17-Mar-2017 12:00	 	
Compound	CAS Number	LOR	Unit	EP1702676-045	EP1702676-047	 	
				Result	Result	 	
EP080-SD / EP071-SD: Total Petro	oleum Hydrocarbons - C	ontinued					
C15 - C28 Fraction		3	mg/kg	7	<3	 	
C29 - C36 Fraction		5	mg/kg	<5	<5	 	
^ C10 - C36 Fraction (sum)		3	mg/kg	7	<3	 	
EP080-SD / EP071-SD: Total Reco	overable Hydrocarbons						
C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3	 	
EP080-SD: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	 	
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2	 	
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2	 	
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2	<0.2	 	
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2	 	
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	 	
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	 	
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2	 	
EP090: Organotin Compounds							
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5	 	
EP132B: Polynuclear Aromatic H	vdrocarbons						
Naphthalene	91-20-3	5	µg/kg	<5	<5	 	
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5	 	
Acenaphthylene	208-96-8	4	µg/kg	<4	<4	 	
Acenaphthene	83-32-9	4	µg/kg	<4	<4	 	
Fluorene	86-73-7	4	µg/kg	<4	<4	 	
Phenanthrene	85-01-8	4	µg/kg	<4	<4	 	
Anthracene	120-12-7	4	µg/kg	<4	<4	 	
Fluoranthene	206-44-0	4	µg/kg	<4	<4	 	
Pyrene	129-00-0	4	µg/kg	<4	<4	 	
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4	 	
Chrysene	218-01-9	4	µg/kg	<4	<4	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4	 	
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4	 	
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4	 	
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4	 	
Perylene	198-55-0	4	µg/kg	<4	<4	 	
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4	 	

Sub-Matrix: SEDIMENT (Matrix: SOIL)		Clie	ent sample ID	OC7-R2-0.5	OC1-0.2-T2	 	
	Clie	ent sampli	ng date / time	18-Mar-2017 15:30	17-Mar-2017 12:00	 	
Compound	CAS Number	LOR	Unit	EP1702676-045	EP1702676-047	 	
				Result	Result	 	
EP132B: Polynuclear Aromatic Hydro	ocarbons - Continued						
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4	 	
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4	 	
Coronene	191-07-1	5	µg/kg	<5	<5	 	
^ Sum of PAHs		4	µg/kg	<4	<4	 	
EP080-SD: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	82.3	89.5	 	
Toluene-D8	2037-26-5	0.2	%	76.9	83.4	 	
4-Bromofluorobenzene	460-00-4	0.2	%	78.5	80.9	 	
EP090S: Organotin Surrogate							
Tripropyltin		0.5	%	104	98.6	 	
EP132T: Base/Neutral Extractable Su	irrogates						
2-Fluorobiphenyl	321-60-8	10	%	81.3	90.4	 	
Anthracene-d10	1719-06-8	10	%	80.0	88.1	 	
4-Terphenyl-d14	1718-51-0	10	%	77.0	93.8	 	

Surrogate Control Limits

Sub-Matrix: SEDIMENT		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	70	130
Toluene-D8	2037-26-5	70	130
4-Bromofluorobenzene	460-00-4	70	130
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
4-Terphenyl-d14	1718-51-0	70	130

CERTIFICATE OF ANALYSIS

Work Order	EP1703525	Page	: 1 of 8
Client	: WA MARINE PTY LTD	Laboratory	: Environmental Division Perth
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA Australia 6090
Telephone	:	Telephone	: 08 9209 7606
Project	: Ex EP1702676 17-WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017 10:55
Order number	:	Date Analysis Commenced	: 12-Apr-2017
C-O-C number	:	Issue Date	22-Apr-2017 21:32
Sampler	:		IC-MRA NATA
Site	:		
Quote number	: EP/814/15		Accreditation No. 825
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ben Felgendrejeris		Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Metals Instrument Chemist	Perth Inorganics, Malaga, WA	
Daniel Fisher	Inorganics Analyst	Perth ASS, Malaga, WA	
Diana Mesa	2IC Organic Chemist	Brisbane Organics, Stafford, QLD	
Dianne Blane	Laboratory Coordinator (2IC)	Newcastle - Inorganics, Mayfield West, NSW	
Efua Wilson	Metals Chemist	Perth Inorganics, Malaga, WA	
Huynh Huynh	Organic Chemist	Perth Organics, Malaga, WA	
Vanessa Nguyen	Organic Chemist	Perth Organics, Malaga, WA	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
 - LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - \sim = Indicates an estimated value.
- EA150H: Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1 2006 was not requested by the client. Typical sediment SPD values used for calculations and consequently NATA endorsement does not apply to hydrometer results.
- EK061G (TKN): Poor spike recovery due to possible sample heterogeneity.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TC1-1	TC1-T2-1	TC5	
	CI	ient sampli	ing date / time	15-Mar-2017 00:00	15-Mar-2017 00:00	17-Mar-2017 00:00	
Compound	CAS Number	LOR	Unit	EP1703525-001	EP1703525-002	EP1703525-003	
				Result	Result	Result	
EA033-A: Actual Acidity							
pH KCI (23A)		0.1	pH Unit			9.9	
Titratable Actual Acidity (23F)		2	mole H+ / t			<2	
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S			<0.02	
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)		0.005	% S			<0.005	
acidity - Chromium Reducible Sulfur		10	mole H+ / t			<10	
(a-22B)							
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A2)		0.01	% CaCO3			10.4	
acidity - Acid Neutralising Capacity (a-19A2)		10	mole H+ / t			2090	
sulfidic - Acid Neutralising Capacity (s-19A2)		0.01	% pyrite S			3.35	
EA033-E: Acid Base Accounting							
ANC Fineness Factor		0.5	-			1.5	
Net Acidity (sulfur units)		0.02	% S			<0.02	
Net Acidity (acidity units)		10	mole H+/t			<10	
Liming Rate		1	kg CaCO3/t			<1	
Net Acidity excluding ANC (sulfur units)		0.02	% S			<0.02	
Net Acidity excluding ANC (acidity units)		10	mole H+/t			<10	
Liming Rate excluding ANC		1	kg CaCO3/t			<1	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1	%	25.6	22.9	18.0	
EA150: Particle Sizing							
+75μm		1	%		68	96	
- +150μm		1	%		46	40	
		1	%		7	7	
+425μm		1	%		3	1	
+600µm		1	%		3	<1	
+1180µm		1	%		2	<1	
+2.36mm		1	%		2	<1	
+4.75mm		1	%		<1	<1	
+9.5mm		1	%		<1	<1	
+19.0mm		1	%		<1	<1	

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TC1-1	TC1-T2-1	TC5	
	Cli	ent samplii	ng date / time	15-Mar-2017 00:00	15-Mar-2017 00:00	17-Mar-2017 00:00	
Compound	CAS Number	LOR	Unit	EP1703525-001	EP1703525-002	EP1703525-003	
				Result	Result	Result	
A150: Particle Sizing - Continued							
+37.5mm		1	%		<1	<1	
+75.0mm		1	%		<1	<1	
A150: Soil Classification based	on Particle Size						
Clay (<2 μm)		1	%		21	1	
Silt (2-60 µm)		1	%		9	2	
Sand (0.06-2.00 mm)		1	%		68	97	
Gravel (>2mm)		1	%		2	<1	
Cobbles (>6cm)		1	%		<1	<1	
G005-SD: Total Metals in Sedim	ents by ICP-AES						
Aluminium	7429-90-5	50	mg/kg		5820	2540	
Iron	7439-89-6	50	mg/kg		27700	16700	
G020-SD: Total Metals in Sedim	ents by ICPMS						
Antimony	7440-36-0	0.5	mg/kg		<0.50	<0.50	
Arsenic	7440-38-2	1	mg/kg		15.8	18.6	
Cadmium	7440-43-9	0.1	mg/kg		<0.1	<0.1	
Chromium	7440-47-3	1	mg/kg		39.6	23.0	
Copper	7440-50-8	1	mg/kg		17.8	5.3	
Cobalt	7440-48-4	0.5	mg/kg		13.1	6.2	
Lead	7439-92-1	1	mg/kg		6.7	3.3	
Manganese	7439-96-5	10	mg/kg		535	330	
Nickel	7440-02-0	1	mg/kg		18.6	8.4	
Selenium	7782-49-2	0.1	mg/kg		2.6	1.5	
Silver	7440-22-4	0.1	mg/kg		<0.1	<0.1	
Vanadium	7440-62-2	2	mg/kg		54.2	36.1	
Zinc	7440-66-6	1	mg/kg		32.3	15.5	
EG035T: Total Recoverable Merc	ury by FIMS						
Mercury	7439-97-6	0.01	mg/kg		<0.01	<0.01	
EK055: Ammonia as N							
Ammonia as N	7664-41-7	20	mg/kg	<20	<20		
K057G: Nitrite as N by Discrete	Analyser						
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1		
K058G: Nitrate as N by Discrete	Analvser						
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1	<0.1		
K059G: Nitrite plus Nitrate as N							

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TC1-1	TC1-T2-1	TC5	
	Cli	ent sampli	ng date / time	15-Mar-2017 00:00	15-Mar-2017 00:00	17-Mar-2017 00:00	
Compound	CAS Number	LOR	Unit	EP1703525-001	EP1703525-002	EP1703525-003	
				Result	Result	Result	
EK059G: Nitrite plus Nitrate as N (NO)	() by Discrete Ana	lyser - Co	ntinued				
Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1		
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser						
Total Kjeldahl Nitrogen as N		20	mg/kg	200	190		
EK062: Total Nitrogen as N (TKN + NO	x)						
^ Total Nitrogen as N		20	mg/kg	200	190		
EK067G: Total Phosphorus as P by Dis	screte Analyser						
Total Phosphorus as P		2	mg/kg	216	212		
EK071G: Reactive Phosphorus as P by	/ discrete analyser						
Reactive Phosphorus as P	14265-44-2	0.1	mg/kg	0.3	0.2		
EP003: Total Organic Carbon (TOC) in							
Total Organic Carbon		0.02	%		0.22	0.07	
EP080/071: Total Recoverable Hydroca						••••	
>C10 - C16 Fraction		3	mg/kg	<3	<3		
>C16 - C34 Fraction		3	mg/kg	<3	<3		
>C34 - C40 Fraction		5	mg/kg	<5	<5		
>C10 - C40 Fraction (sum)		3	mg/kg	<3	<3		
 >C10 - C16 Fraction minus Naphthalene 		3	mg/kg	<3	<3		
(F2)		Ũ	mg/ng		, v		
EP080-SD / EP071-SD: Total Petroleum	1 Hydrocarbons						
C6 - C9 Fraction		3	mg/kg	<3	<3		
C10 - C14 Fraction		3	mg/kg	<3	<3		
C15 - C28 Fraction		3	mg/kg	<3	<3		
C29 - C36 Fraction		5	mg/kg	<5	<5		
[^] C10 - C36 Fraction (sum)		3	mg/kg	<3	<3		
EP080-SD / EP071-SD: Total Recoveral	ble Hydro <u>carbons</u>						
C6 - C10 Fraction	C6_C10	3	mg/kg	<3	<3		
EP080-SD: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		
Toluene	108-88-3	0.2	mg/kg	<0.2	<0.2		
Ethylbenzene	100-41-4	0.2	mg/kg	<0.2	<0.2		
meta- & para-Xylene	108-38-3 106-42-3	0.2	mg/kg	<0.2	<0.2		
ortho-Xylene	95-47-6	0.2	mg/kg	<0.2	<0.2		
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5		
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2		

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TC1-1	TC1-T2-1	TC5	
	Cli	ent sampli	ng date / time	15-Mar-2017 00:00	15-Mar-2017 00:00	17-Mar-2017 00:00	
Compound	CAS Number	LOR	Unit	EP1703525-001	EP1703525-002	EP1703525-003	
				Result	Result	Result	
EP080-SD: BTEXN - Continued							1
Naphthalene	91-20-3	0.2	mg/kg	<0.2	<0.2		
EP090: Organotin Compounds							
Tributyltin	56573-85-4	0.5	µgSn/kg	<0.5	<0.5		
EP132B: Polynuclear Aromatic I							
Naphthalene	91-20-3	5	µg/kg	<5	<5		
2-Methylnaphthalene	91-57-6	5	µg/kg	<5	<5		
Acenaphthylene	208-96-8	4	µg/kg	<4	<4		
Acenaphthene	83-32-9	4	µg/kg	<4	<4		
Fluorene	86-73-7	4	µg/kg	<4	<4		
Phenanthrene	85-01-8	4	µg/kg	<4	<4		
Anthracene	120-12-7	4	µg/kg	<4	<4		
Fluoranthene	206-44-0	4	µg/kg	<4	<4		
Pyrene	129-00-0	4	µg/kg	<4	<4		
Benz(a)anthracene	56-55-3	4	µg/kg	<4	<4		
Chrysene	218-01-9	4	µg/kg	<4	<4		
Benzo(b+j)fluoranthene	205-99-2 205-82-3	4	µg/kg	<4	<4		
Benzo(k)fluoranthene	207-08-9	4	µg/kg	<4	<4		
Benzo(e)pyrene	192-97-2	4	µg/kg	<4	<4		
Benzo(a)pyrene	50-32-8	4	µg/kg	<4	<4		
Perylene	198-55-0	4	µg/kg	<4	<4		
Benzo(g.h.i)perylene	191-24-2	4	µg/kg	<4	<4		
Dibenz(a.h)anthracene	53-70-3	4	µg/kg	<4	<4		
Indeno(1.2.3.cd)pyrene	193-39-5	4	µg/kg	<4	<4		
Coronene	191-07-1	5	µg/kg	<5	<5		
^ Sum of PAHs		4	µg/kg	<4	<4		
EP080-SD: TPH(V)/BTEX Surrog	ates						
1.2-Dichloroethane-D4	17060-07-0	0.2	%	98.0	71.0		
Toluene-D8	2037-26-5	0.2	%	72.6	97.9		
4-Bromofluorobenzene	460-00-4	0.2	%	97.4	92.3		
EP090S: Organotin Surrogate							
Tripropyltin		0.5	%	90.7	104		
EP132T: Base/Neutral Extractab	le Surrogates						
2-Fluorobiphenyl	321-60-8	10	%	110	101		
Anthracene-d10	1719-06-8	10	%	104	96.1		

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	TC1-1	TC1-T2-1	TC5	
	Clie	ent sampli	ng date / time	15-Mar-2017 00:00	15-Mar-2017 00:00	17-Mar-2017 00:00	
Compound	CAS Number	LOR	Unit	EP1703525-001	EP1703525-002	EP1703525-003	
				Result	Result	Result	
EP132T: Base/Neutral Extractable Su	rrogates - Continued						
4-Terphenyl-d14	1718-51-0	10	%	103	88.2		

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery I	Limits (%)
Compound	CAS Number	Low	High
EP080-SD: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	70	130
Toluene-D8	2037-26-5	70	130
4-Bromofluorobenzene	460-00-4	70	130
EP090S: Organotin Surrogate			
Tripropyltin		35	130
EP132T: Base/Neutral Extractable Surrogates			
2-Fluorobiphenyl	321-60-8	70	130
Anthracene-d10	1719-06-8	70	130
4-Terphenyl-d14	1718-51-0	70	130

CERTIFICATE OF ANALYSIS

Work Order	EP1705039	Page	: 1 of 2
Client	: WA MARINE PTY LTD	Laboratory	Environmental Division Perth
Contact	: TRAVIS HURLEY	Contact	: Lauren Ockwell
Address	: SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH WA, AUSTRALIA 6281	Address	: 10 Hod Way Malaga WA Australia 6090
Telephone	:	Telephone	: 08 9209 7606
Project	: Ex EP1702676 17WAU-0008 Onslow Marine Support Base	Date Samples Received	: 22-Mar-2017 10:55
Order number	:	Date Analysis Commenced	: 24-May-2017
C-O-C number	:	Issue Date	25-May-2017 07:46
Sampler	:		Iac MRA NATA
Site	:		
Quote number	: EP/814/15		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Kim McCabe	Senior Inorganic Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

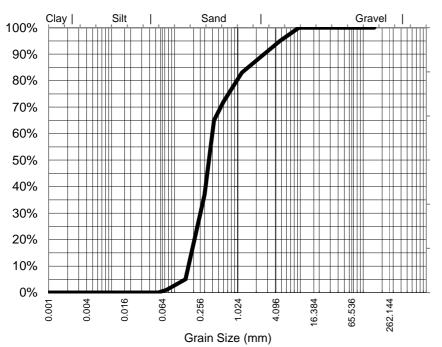
• CEC conducted by ALS Brisbane, NATA Site No. 818.

ED007 and ED008: When Exchangeable AI is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI - Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + AI3+).

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			OC4-0.5 EP1707626_037	 	
	Cl	ient samplii	ng date / time	17-Mar-2017 11:20	 	
Compound	CAS Number	LOR	Unit	EP1705039-001	 	
				Result	 	
ED008: Exchangeable Cations						
Exchangeable Calcium		0.1	meq/100g	25.6	 	
Exchangeable Magnesium		0.1	meq/100g	7.2	 	
Exchangeable Potassium		0.1	meq/100g	0.7	 	
Exchangeable Sodium		0.1	meq/100g	0.9	 	
Cation Exchange Capacity		0.1	meq/100g	34.5	 	

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-004 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine BP4

Particle Size Distribution

Particle Size (mm) Passing 100% 9.50 4.75 95% 2.36 89% 1.18 83% 0.600 72% 0.425 65% 0.300 37% 0.150 5% 0.075 1% Particle Size (microns) 1% 75 55 0% Median Particle Size (mm)* 0.358

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analy</u>
Loss on Pretreatment	NA	<u>Limit</u>
Sample Description:	SAND, STONE, SHELL	<u>Dispe</u>
Test Method:	AS1289.3.6.3 2003	<u>Hydro</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

<u>ysed:</u>

28-Mar-17

cof Reporting: 1%

ersion Method Shaker

ometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-005 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine TC2-R1

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, VEG, STONE
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

0.600	100%
0.425	99%
0.300	99%
0.150	77%
0.075	30%
Particle Size (microns)	
71	26%
50	24%
36	24%
19	21%
10	20%
5	17%
1	11%
Madian Dartiala Ciza (mm)*	0 107

Particle Size (mm)

Median Particle Size (mm)* 0.107

Analysed:

Limit of Reporting: 1%

Dispersion Method Shaker

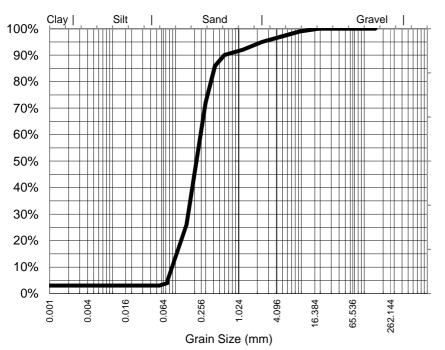
Hydrometer Type

ASTM E100

28-Mar-17

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-007 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine TC1-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	99%
4.75	97%
2.36	95%
1.18	92%
0.600	90%
0.425	86%
0.300	72%
0.150	26%
0.075	5%
Particle Size (microns)	
75	4%
55	3%
39	3%
19	3%
10	3%
5	3%
1	3%

Median Particle Size (mm)* 0.228

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

Peter Keyte Manager Newcastle

Authorised Signatory

Template Version PKV6a-151125

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-008 / PSD **PROJECT:** 17Wau-0008 Onslow Marine SAMPLE ID: TC1-1

Particle Size Distribution

Samples analysed as received.

Sample Comments:

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Loss on Pretreatment NA **Sample Description:** FINES, SAND Test Method: AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

2.36	100%
1.18	99%
0.600	99%
0.425	98%
0.300	95%
0.150	71%
0.075	53%
Particle Size (microns)	
65	49%
46	48%
34	47%
17	45%
9	42%
4	39%
1	26%
Madian Dantiala Oina (man)*	0.069

Particle Size (mm)

Median Particle Size (mm)* 0.068

Analysed: 28-Mar-17

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

ASTM E100

Peter Keyte

Manager Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-009 / PSD **PROJECT:** 17Wau-0008 Onslow Marine SAMPLE ID: TC2

Particle Size Distribution

Samples analysed as received.

Sample Comments:

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Loss on Pretreatment NA **Sample Description:** SAND, FINES Test Method: AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

	raceing
1.18	100%
0.600	99%
0.425	99%
0.300	93%
0.150	62%
0.075	21%
Particle Size (microns)	
75	18%
53	17%
37	16%
19	16%
10	16%
5	14%
1	11%
	-
	0.400

Particle Size (mm)

Median Particle Size (mm)* 0.128

Analysed: 28-Mar-17

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

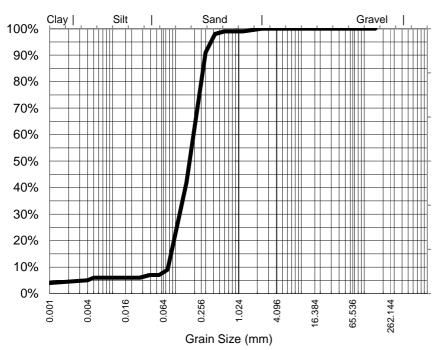
ASTM E100

Peter Keyte Manager Newcastle Authorised Signatory

Template Version PKV6a-151125

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-011 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine TC4

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, FINES, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
2.36	100%
1.18	99%
0.600	99%
0.425	98%
0.300	91%
0.150	42%
0.075	9%
Particle Size (microns)	
75	9%
55	7%
39	7%
19	6%
10	6%
5	6%
1	4%
	1
	0 4 7 4

Median Particle Size (mm)* 0.174

28-Mar-17

cof Reporting: 1%

ersion Method Shaker

ometer Type

ASTM E100

Peter Keyte

Manager Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-012 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine TC1-0.5-T2

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
9.50	100%
4.75	96%
2.36	93%
1.18	91%
0.600	89%
0.425	86%
0.300	73%
0.150	28%
0.075	8%
Particle Size (microns)	
74	8%
55	7%
39	6%
19	5%
10	5%
5	5%
1	3%
Modion Dorticlo Sizo (mm)*	0.222

Median Particle Size (mm)* 0.223

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

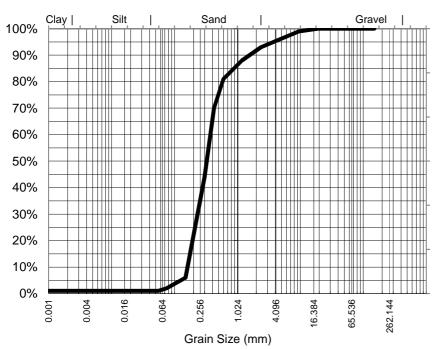
Peter Keyte

Manager Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-015 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine IC1

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	99%
4.75	96%
2.36	93%
1.18	88%
0.600	81%
0.425	70%
0.300	44%
0.150	6%
0.075	2%
Particle Size (microns)	
75	2%
55	1%
39	1%
19	1%
10	1%
5	1%
1	1%
	-
Madian Dartiala Ciza (mm)*	0 2 2 0

Particle Size (mm)

Median Particle Size (mm)* 0.329

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

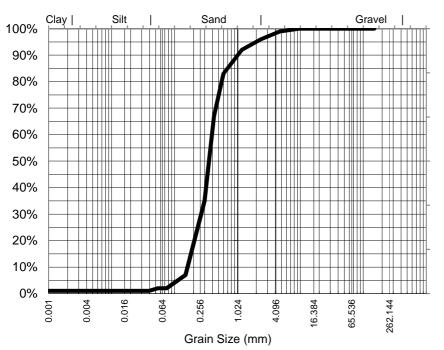
ASTM E100

Peter Keyte Manager Newcastle

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

CLIENT:	Travis Hurley	DATE REPORTED:	31-Mar-2017
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017
ADDRESS:		REPORT NO:	EP1702676-017 / PSD
PROJECT:	17Wau-0008 Onslow Marine	SAMPLE ID:	IC2

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
9.50	100%
4.75	99%
2.36	96%
1.18	92%
0.600	83%
0.425	67%
0.300	35%
0.150	7%
0.075	2%
Particle Size (microns)	
75	2%
55	2%
39	1%
19	1%
10	1%
5	1%
1	1%
Madian Dantiala Olar (mana)*	0.250

Median Particle Size (mm)* 0.359

28-Mar-17

it of Reporting: 1%

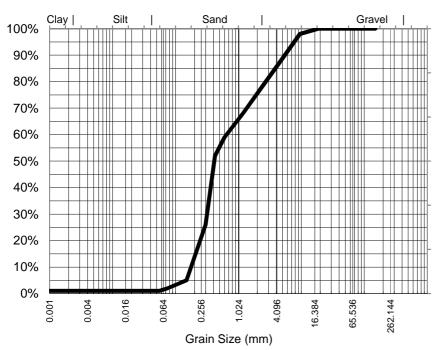
persion Method Shaker

rometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-018 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine IC3-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	98%
4.75	88%
2.36	78%
1.18	68%
0.600	59%
0.425	52%
0.300	26%
0.150	5%
0.075	2%
Particle Size (microns)	
75	2%
55	1%
39	1%
19	1%
10	1%
5	1%
1	1%

Median Particle Size (mm)* 0.415

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

Peter Keyte Manager Newcastle

Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

<u>CLIENT:</u>	Travis Hurley	DATE REPORTED:	31-Mar-2017
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017
ADDRESS:		REPORT NO:	EP1702676-020 / PSD
PROJECT:	17Wau-0008 Onslow Marine	SAMPLE ID:	IC4

Particle Size Distribution

	i aboing
0.600	100%
0.425	99%
0.300	81%
0.150	3%
0.075	1%
Particle Size (microns)	
75	1%
55	0%
Median Particle Size (mm)*	0.240

Particle Size (mm)

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

28-Mar-17

Reporting: 1%

sion Method Shaker

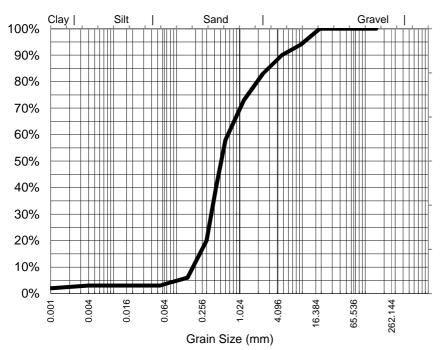
eter Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

CLIENT:	Travis Hurley	DATE REPORTED:	31-Mar-2017
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017
ADDRESS:		REPORT NO:	EP1702676-021 / PSD
PROJECT:	17Wau-0008 Onslow Marine	SAMPLE ID:	IC5-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

19.0	100%
9.50	94%
4.75	90%
2.36	83%
1.18	73%
0.600	58%
0.425	40%
0.300	20%
0.150	6%
0.075	4%
Particle Size (microns)	
75	4%
55	3%
39	3%
19	3%
10	3%
5	3%
1	2%
	0 5 0 0

Particle Size (mm)

Median Particle Size (mm)* 0.522

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

Peter Keyte Manager Newcastle

Authorised Signatory

Template Version PKV6a-151125

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-023 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine IC6

Particle Size Distribution

	i ussing
37.5	100%
19.0	98%
9.50	97%
4.75	97%
2.36	96%
1.18	96%
0.600	95%
0.425	94%
0.300	86%
0.150	6%
0.075	1%
Particle Size (microns)	
75	1%
55	1%
39	1%
19	1%
10	0%

Particle Size (mm)

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analyse</u>
Loss on Pretreatment	NA	Limit of
Sample Description:	SAND, SHELL	<u>Dispers</u>
Test Method:	AS1289.3.6.3 2003	<u>Hydron</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

sed:

28-Mar-17

0.233

of Reporting: 1%

sion Method Shaker

meter Type

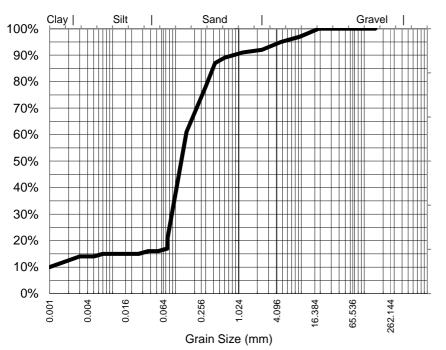
Median Particle Size (mm)*

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-024 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine IC7-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Falticle Size (IIIII)	Fassing
19.0	100%
9.50	97%
4.75	95%
2.36	92%
1.18	91%
0.600	89%
0.425	87%
0.300	78%
0.150	61%
0.075	21%
Particle Size (microns)	
74	17%
53	16%
37	16%
19	15%
10	15%
5	14%
1	10%

Particle Size (mm)

Median Particle Size (mm)* 0.129

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

Analysed:

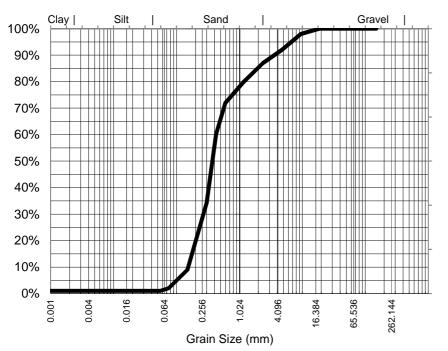
ASTM E100

28-Mar-17

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

CLIENT:	Travis Hurley	DATE REPORTED:	31-Mar-2017
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017
ADDRESS:		REPORT NO:	EP1702676-025 / PSD
PROJECT:	17Wau-0008 Onslow Marine	SAMPLE ID:	IC7-1

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

19.0	100%
9.50	98%
4.75	92%
2.36	87%
1.18	80%
0.600	72%
0.425	60%
0.300	34%
0.150	9%
0.075	2%
Particle Size (microns)	
75	2%
55	1%
39	1%
19	1%
10	1%
5	1%
1	1%
	0.077

Particle Size (mm)

Median Particle Size (mm)* 0.377

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

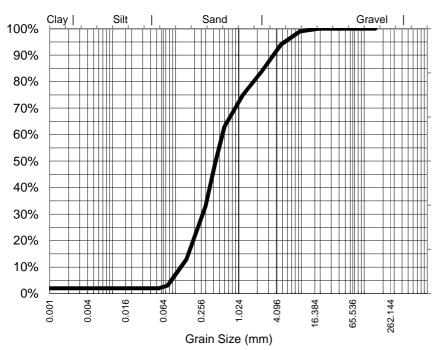
Peter Keyte

Manager Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

CLIENT:	Travis Hurley	DATE REPORTED:	31-Mar-2017
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017
ADDRESS:		REPORT NO:	EP1702676-026 / PSD
PROJECT:	17Wau-0008 Onslow Marine	SAMPLE ID:	1C8-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

19.0	100%
9.50	99%
4.75	94%
2.36	84%
1.18	75%
0.600	63%
0.425	49%
0.300	33%
0.150	13%
0.075	3%
Particle Size (microns)	
75	3%
55	2%
39	2%
19	2%
10	2%
5	2%
1	2%
	0.400

Particle Size (mm)

Median Particle Size (mm)* 0.438

28-Mar-17

it of Reporting: 1%

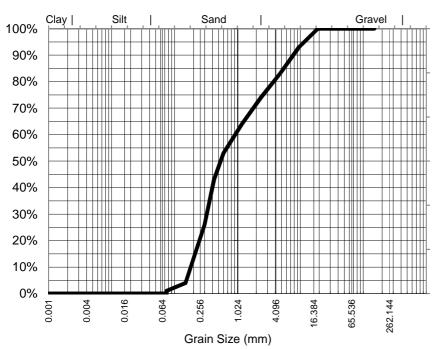
persion Method Shaker

Irometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-028 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine IC1-R2

Particle Size Distribution

Particle Size (mm)	Passing
19.0	100%
9.50	93%
4.75	83%
2.36	74%
1.18	64%
0.600	53%
0.425	43%
0.300	26%
0.150	4%
0.075	1%
Particle Size (microns)	
Median Particle Size (mm)*	0.548

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analy</u>
Loss on Pretreatment	NA	<u>Limit</u>
Sample Description:	SAND, STONE, SHELL	<u>Dispe</u>
Test Method:	AS1289.3.6.3 2003	<u>Hydro</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

<u>ysed:</u>

28-Mar-17

cof Reporting: 1%

ersion Method Shaker

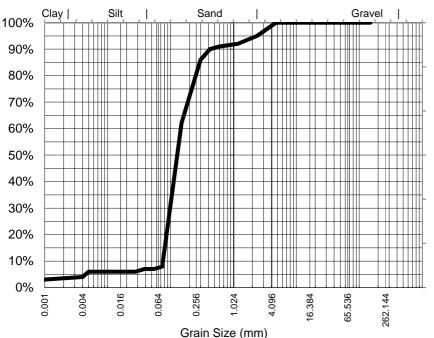
ometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-031 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC1-0.5-T1

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	FINES, SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
4.75	100%
2.36	95%
1.18	92%
0.600	91%
0.425	90%
0.300	86%
0.150	62%
0.075	9%
Particle Size (microns)	
75	8%
55	7%
39	7%
19	6%
10	6%
5	6%
1	3%
Median Particle Size (mm)*	0 133

Particle Size (mm)

Median Particle Size (mm)* 0.133

28-Mar-17

it of Reporting: 1%

persion Method Shaker

Irometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-033 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC2-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

()	0
19.0	100%
9.50	97%
4.75	89%
2.36	82%
1.18	77%
0.600	72%
0.425	68%
0.300	61%
0.150	27%
0.075	10%
Particle Size (microns)	
75	8%
55	8%
39	8%
19	7%
10	7%
5	6%
1	5%
	-
	0.054

Particle Size (mm)

Median Particle Size (mm)* 0.251

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

Analysed:

ASTM E100

28-Mar-17

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-034 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC2-1

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	FINES, SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

	: accing
19.0	100%
9.50	95%
4.75	85%
2.36	77%
1.18	71%
0.600	66%
0.425	61%
0.300	54%
0.150	22%
0.075	7%
Particle Size (microns)	
75	5%
55	5%
39	5%
19	5%
10	5%
5	4%
1	3%
	0.004

Particle Size (mm)

Median Particle Size (mm)* 0.281

28-Mar-17

nit of Reporting: 1%

persion Method Shaker

Irometer Type

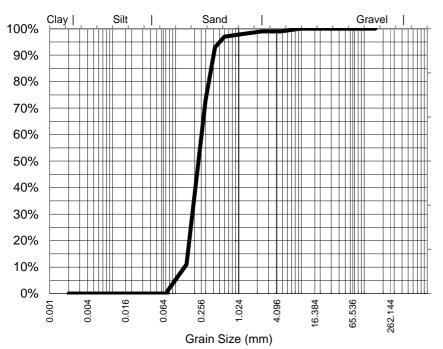
ASTM E100

Peter Keyte

Manager Newcastle Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-035 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC3-0.5

Particle Size Distribution

Particle Size (mm)	Passing
9.50	100%
4.75	99%
2.36	99%
1.18	98%
0.600	97%
0.425	93%
0.300	73%
0.150	11%
0.075	1%
Particle Size (microns)	
Median Particle Size (mm)*	0.244

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analyse</u>
Loss on Pretreatment	NA	Limit of
Sample Description:	SAND, SHELL	<u>Dispers</u>
Test Method:	AS1289.3.6.3 2003	<u>Hydrom</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

ed:

28-Mar-17

f Reporting: 1%

sion Method Shaker

neter Type

ASTM E100

Peter Keyte

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-036 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC3-1

Particle Size Distribution

Particle Size (mm) Passing 19.0 100% 99% 9.50 4.75 99% 2.36 98% 1.18 97% 0.600 96% 0.425 95% 0.300 83% 27% 0.150 0.075 1% Particle Size (microns)

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analyse</u>
Loss on Pretreatment	NA	Limit of
Sample Description:	SAND, SHELL	<u>Dispers</u>
Test Method:	AS1289.3.6.3 2003	<u>Hydrom</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

ed:

Median Particle Size (mm)*

28-Mar-17

0.212

f Reporting: 1%

sion Method Shaker

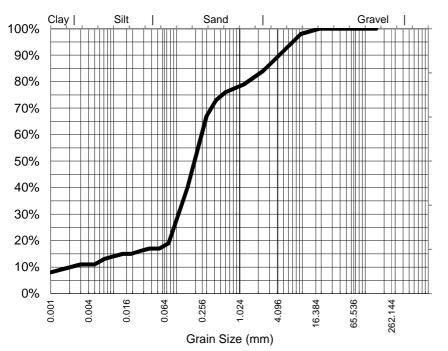
neter Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-037 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC4-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

19.0	100%
9.50	98%
4.75	91%
2.36	84%
1.18	79%
0.600	76%
0.425	73%
0.300	67%
0.150	40%
0.075	19%
Particle Size (microns)	
75	19%
53	17%
37	17%
19	15%
10	14%
5	11%
1	8%
Madian Dartiala Olar (mar)*	0.206

Particle Size (mm)

Median Particle Size (mm)* 0.206

Analysed:

28-Mar-17

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

ASTM E100

Peter Keyte

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-039 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:
Loss on Pretreatment	NA	Limit of Re
Sample Description:	FINES, SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
	U
19.0	100%
9.50	97%
4.75	86%
2.36	77%
1.18	70%
0.600	62%
0.425	57%
0.300	47%
0.150	17%
0.075	6%
Particle Size (microns)	
75	6%
55	5%
39	5%
19	5%
10	5%
5	4%
1	3%
	1

Median Particle Size (mm)* 0.338

28-Mar-17

nit of Reporting: 1%

persion Method Shaker

Irometer Type

ASTM E100

Peter Keyte Manager Newcastle

Authorised Signatory

Template Version PKV6a-151125

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-040 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC6

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:
Loss on Pretreatment	NA	Limit of Re
Sample Description:	FINES, SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
37.5	100%
19.0	97%
9.50	97%
4.75	91%
2.36	87%
1.18	83%
0.600	79%
0.425	76%
0.300	67%
0.150	29%
0.075	7%
Particle Size (microns)	
75	6%
55	6%
39	6%
19	6%
10	6%
5	5%
1	3%

Median Particle Size (mm)* 0.233

28-Mar-17

nit of Reporting: 1%

persion Method Shaker

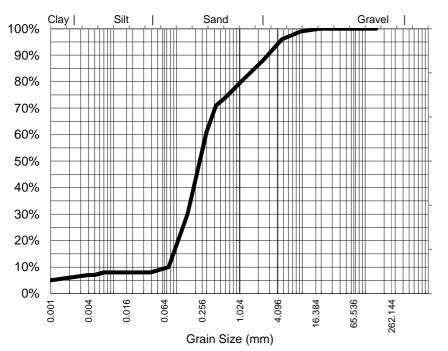
Irometer Type

ASTM E100

Peter Keyte

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-041 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC7

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	99%
4.75	96%
2.36	88%
1.18	81%
0.600	74%
0.425	71%
0.300	61%
0.150	30%
0.075	10%
Particle Size (microns)	
75	10%
55	9%
39	8%
19	8%
10	8%
5	7%
1	5%
1	5%

Median Particle Size (mm)* 0.247

Analysed:

28-Mar-17

Limit of Reporting: 1%

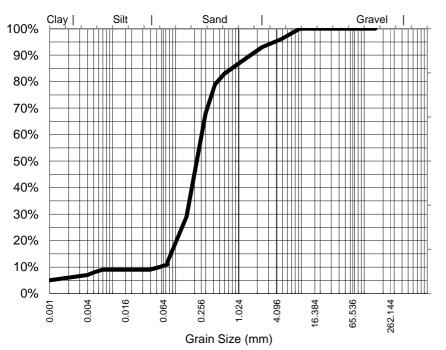
Dispersion Method Shaker

Hydrometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental


Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-042 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine **OC8**

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
9.50	100%
4.75	96%
2.36	93%
1.18	88%
0.600	83%
0.425	79%
0.300	68%
0.150	29%
0.075	12%
Particle Size (microns)	
75	11%
55	10%
39	9%
19	9%
10	9%
5	8%
1	5%
	0.001

Median Particle Size (mm)* 0.231

Analysed:

28-Mar-17

Limit of Reporting: 1%

Dispersion Method Shaker

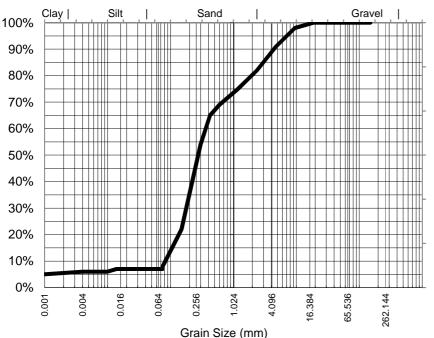
Hydrometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Daccino

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-043 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC9

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	FINES, SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	98%
4.75	91%
2.36	82%
1.18	75%
0.600	69%
0.425	65%
0.300	54%
0.150	22%
0.075	8%
Particle Size (microns)	
75	7%
55	7%
39	7%
19	7%
10	6%
5	6%
1	5%
Madian Dartiala Ciza (mm)*	0.201

Particlo Sizo (mm)

Median Particle Size (mm)* 0.281

28-Mar-17

nit of Reporting: 1%

persion Method Shaker

Irometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-044 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC10

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	<u>Analysed:</u>
Loss on Pretreatment	NA	Limit of Re
Sample Description:	SAND, STONE, SHELL	Dispersion
Test Method:	AS1289.3.6.3 2003	<u>Hydromete</u>

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
19.0	100%
9.50	99%
4.75	98%
2.36	92%
1.18	88%
0.600	84%
0.425	81%
0.300	73%
0.150	32%
0.075	5%
Particle Size (microns)	
75	4%
55	4%
39	4%
19	4%
10	4%
5	4%
1	3%

Median Particle Size (mm)* 0.216

28-Mar-17

it of Reporting: 1%

persion Method Shaker

rometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

Percent

Passing

100%

91%

84%

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-045 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC7-R2-0.5

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

1.18	78%
0.600	73%
0.425	71%
0.300	62%
0.150	34%
0.075	13%
Particle Size (microns)	
75	13%
53	12%
37	12%
19	11%
10	11%
5	10%
1	6%

Particle Size (mm)

9.50

4.75

2.36

Median Particle Size (mm)* 0.236

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

Analysed:

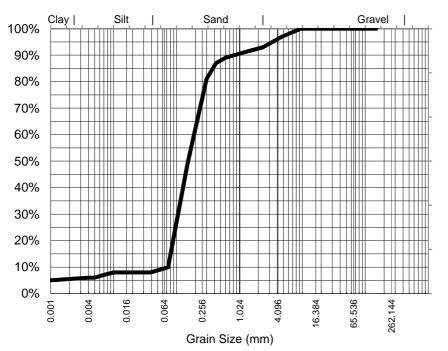
ASTM E100

28-Mar-17

ALS Laboratory Group Pty Ltd 5/585 Maitland Road 2304 Mayfield West, NSW pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW



Percent

Passing

DATE REPORTED: 31-Mar-2017 **Travis Hurley** CLIENT: DATE RECEIVED: 22-Mar-2017 COMPANY: WA MARINE PTY LTD ADDRESS: **REPORT NO:** EP1702676-047 / PSD SAMPLE ID: **PROJECT:** 17Wau-0008 Onslow Marine OC1-0.2-T2

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment	NA
Sample Description:	FINES, SAND, STONE, SHELL
Test Method:	AS1289.3.6.3 2003

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

9.50	100%
4.75	97%
2.36	93%
1.18	91%
0.600	89%
0.425	87%
0.300	81%
0.150	49%
0.075	11%
Particle Size (microns)	
75	10%
55	9%
39	8%
19	8%
10	8%
5	6%
1	5%
Median Particle Size (mm)*	0.155

Particle Size (mm)

Analysed:

28-Mar-17

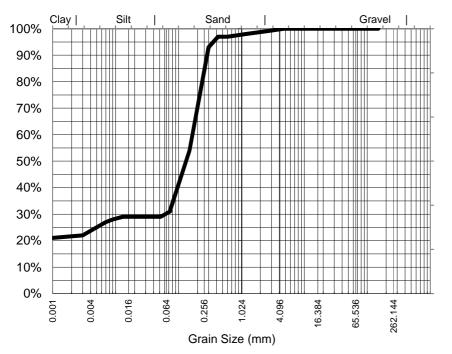
Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type

ASTM E100

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 fax 02 4968 0349 samples.newcastle@alsenviro.com


ALS Environmental

Newcastle, NSW

CLIENT:	Travis Hurley	DATE REPORTED:	20-Apr-2017	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370 DUNSBOROUGH, PERTH	REPORT NO:	EP1703525-002 / PSI	D
PROJECT:	Ex EP1702676 17-WAU-0008 Onslow Marine Support Base	SAMPLE ID:	TC1-T2-1	
				Percent

Particle Size Distribution

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1—2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:

Loss on Pretreatment NA

Sample Description:SAND, FINESTest Method:AS1289.3.6.3 2003

Soil Particle Density (<2.36mm) #N/A

g/cm3

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Particle Size (mm)	Passing
4.75	100%
2.36	99%
1.18	98%
0.600	97%
0.425	97%
0.300	93%
0.150	54%
0.075	32%
Particle Size (microns)	
73	31%
52	29%
37	29%
18	29%
9	28%
5	25%
1	21%
	,
Madian Dartiala Siza (mm)*	0 1 2 6

Median Particle Size (mm)* 0.136

Analysed: 18-Apr-17

Limit of Reporting: 1%

Dispersion Method Shaker

Hydrometer Type AS

ASTM E100

Dianne Blane Laboratory Coordinator Authorised Signatory

ALS Laboratory Group Pty Ltd 5/585 Maitland Road Mayfield West, NSW 2304 pH 02 4014 2500 . fax 02 4968 0349 samples.newcastle@alsenviro.com

ALS Environmental

Newcastle, NSW

CLIENT:	Travis Hurley	DATE REPORTED:	20-Apr-2017	
COMPANY:	WA MARINE PTY LTD	DATE RECEIVED:	22-Mar-2017	
ADDRESS:	SUITE 5, 5/18 GRIFFON DRIVE PO BOX 1370	REPORT NO:	EP1703525-003 / PS	D
PROJECT:	DUNSBOROUGH, PERTH Ex EP1702676 17-WAU-0008 Onslow Marine Support Base	SAMPLE ID:	TC5	
Particle Size Distributio	<u>n</u>		Particle Size (mm)	Percent Passing
Clay Silt	Sand	Gravel		

Samples analysed as received.

* Soil Particle Density required for Hydrometer analysis according to AS 1289.3.5.1-2006 was not requested by the client . Typical sediment SPD values used for calculations and consequently, NATA endorsement does not apply to hydrometer results

Median Particle Size is not covered under the current scope of ALS's NATA accreditation.

Sample Comments:	AS1289.3.6.3 states that this method is not applicable for samples containing <10% fines (<75um). Results should be assessed accordingly	Analysed:
Loss on Pretreatment	NA	Limit of Repor
Sample Description:	SAND	Dispersion Me
Test Method:	AS1289.3.6.3 2003	Hydrometer Ty

Soil Particle Density (<2.36mm) #N/A

g/cm3

NATA Accreditation: 825 Site: Newcastle This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.

Faiticle Size (IIIII)	rassing
0.600	100%
0.425	99%
0.300	93%
0.150	60%
0.075	4%
Particle Size (microns)	
75	4%
56	3%
40	3%
20	2%
10	2%
5	2%
1	1%
	0 4 0 7

Median Particle Size (mm)* 0.137

18-Apr-17

orting: 1%

ethod Shaker

ype

ASTM E100

Dianne Blane Laboratory Coordinator Authorised Signatory