

EcoNomics

FLINDERS MINES LIMITED

Pilbara Iron Ore Project

Groundwater Impact Assessment Report

201012-00322

9-Mar-12

Level 7, QV1 Building 250 St Georges Terrace Perth WA 6000 Australia Tel: +61 8 9278 8111 Fax: +61 8 9278 8110 www.worleyparsons.com WorleyParsons Services Pty Ltd ABN 61 001 279 812

© Copyright 2012 WorleyParsons Services Pty Ltd

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

This report has been prepared on behalf of and for the exclusive use of Flinders Mines Limited, and is subject to and issued in accordance with the agreement between Flinders Mines Limited and WorleyParsons Services Pty Ltd. WorleyParsons Services Pty Ltd accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. Copying this report without the permission of Flinders Mines Limited or WorleyParsons Services Pty Ltd is not permitted.

PROJ	PROJECT 201012-00322 - PILBARA IRON ORE PROJECT										
REV	DESCRIPTION	ORIG	REVIEW	WORLEY- PARSONS APPROVAL	DATE	CLIENT APPROVAL	DATE				
A	Issued for internal review	L.Siraz	B Cravens	<u>N/A</u>	25-Feb-12	<u>N/A</u>					
в	Issued for Client Review	/L.Siraz	D Cravens	S. Atkinson	02-Mar-12	·	6-Mar-12				
0	Issued for Use	L.Siraz	D Cravens	S. Atkinson	09-Mar-12		9-Mar-12				

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

EXECUTIVE SUMMARY

WorleyParsons were commissioned by Flinders Mines Limited (FMS) to undertake hydrogeological assessments to assess the potential groundwater impacts associated with the Pilbara Iron Ore Project (PIOP). The PIOP comprises five main project areas in the mining lease E47/882 of which Delta, Champion and Eagle were of main interest to the current study.

The PIOP is situated within the Millstream Catchment Area, in a Priority 2 Public Drinking Water Source Area (PDSWA). This report presents the work undertaken to develop an understanding of the hydrogeology within the project area, and the results of groundwater modelling used to quantify the potential impact the PIOP may have on local and regional groundwater resources, with particular reference to the Millstream Water Resource. The PIOP was referred for an API level of assessment and accepted by the EPA (Category A). Referral guidelines and a request for additional information have been received by FMS. This report will accompany FMS's response to the EPA referral guidelines and contains relevant information requested by the EPA.

It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine (4GL/a over 15 years). This groundwater is to be sourced from mine dewatering systems, with any excess mine dewater returned to the aquifer off tenement to minimise drawdown impacts. Groundwater modelling was used to assess the net impact the abstraction of 4GL/a has on groundwater resources and whether mine dewatering can be used to meet the projects water demands for life of mine.

Detailed mine dewatering and aquifer reinjection systems have not been included in model simulations. Only the net impact of abstracting 4GL/a has been assessed. However sensitivity analysis was performed to assess the need for reinjection systems.

The results suggest that it may be possible to meet the projects water demands for life of mine (4GL/a over 15 years) by extracting 1.33GL/a from the Delta, Eagle and Champion deposits. The results also suggest that mine dewatering volumes may exceed the mine water demand, and therefore excess mine dewater may need to be returned to the aquifer via reinjection off tenement to minimise drawdown impacts.

Recharge calculations and groundwater modelling suggest that the majority of groundwater recharge at the Champion, Eagle, Delta deposits will be intercepted and removed by dewatering systems. The combined average annual recharge at these deposits is estimated at approximately 1.8 GL/a by assuming 5% of average annual rainfall. Therefore an additional 2.2 GL/a of mine dewater may need to be drawn in from off tenement areas to meet the project water demands (4GL/a).

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

The depths to total head¹ predicted by groundwater models at Serenity and north of Champion after 15 years of pumping 1.33 GL/a from the Champion, Eagle and Delta deposits (4 GL/a in total), vary between 30m bgl and 75m bgl within the model areas in the areas where GDEs have been identified. The actual depths to groundwater at Serenity are likely to be even greater in areas where there is an extensive clay layer overlying the CID/BID aquifer (semi confining conditions).

The results of groundwater modelling and impact assessments suggest that the PIOP may have the following impacts on groundwater resources during mining:

- Modelling suggests that mine dewatering will reduce water levels (total head) within aguifers • located at the Champion, Eagle, Delta, Blackjack and Ajax deposits and also within hydraulically connected off tenement aquifers. The maximum predicted reduction in total head off tenement at Serenity and Champion are expected to be in the order of 9.5m and 40m respectively;
- It is anticipated that the deposits will be mined from surface down to the BIF bedrock. Therefore the CID/BID aquifers and the water contained within will be removed via dewatering systems. Modelling suggests that mine dewatering may also draw some groundwater from off tenement areas;
- Mine dewatering may have the potential to impact approximately 38% of the estimated total local on and off tenement aguifer *area* considered by the groundwater models², by reducing the saturated aquifer thickness. This impact reduces to approximately 10% when the entire potential aguifer extent, inferred from available data within the Caliwigina Creek and Weelumurra Creek catchments is considered;
- Mine dewatering may have the potential to impact approximately 17% of the estimated total local on and off tenement aguifer *volume* considered by the groundwater models², by reducing the saturated aquifer thickness. Although there is insufficient data to assess regional impacts on aquifer volumes, comparison of aquifer volumes and areas suggests that the impact would reduce to less than 10% when the entire potential aquifer extent, inferred from available data within the Caliwigina Creek and Weelumurra Creek catchments is considered; and
- It is anticipated that mining will intercept and remove groundwater recharge at each of the deposits. Average annual recharge from the combined on tenement areas normally accounts for approximately 1.4% or between 0.25 to 0.39GL of the total average annual recharge to the

¹ Total head = sum of the elevation head and the pressure head (Freeze and Cherry, 1979)

² The groundwater models cover a limited area and do not account for the full extent of the interconnected regional aquifer system

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Millstream aquifer. Therefore the intercepted volume is small when compared with the total annual recharge.

The mine pits are to be backfilled with material that are expected to have similar or higher permeabilities than the existing geological units. This is expected to promote higher recharge rates during rainfall events and result in unconfined aquifer conditions.

The pits will be backfilled to ensure that the finished surface is at a higher elevation than the predicted post development groundwater levels, to prevent the formation of pit lakes. This will prevent salt accumulation which could impact on groundwater quality. The groundwater chemistry within the aquifer systems within the on tenement areas post closure will be a function of the geochemical composition of the backfilling material, which is discussed in detail in the report by Graeme Campbell and Associates (2011).

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

CONTENTS

1.		INTRO	DUCTION	9
	1.1	Backgr	round	9
	1.2	Consul	Itation with the Department of Water (DoW)	9
	1.3	Scope	of Work	10
2.		PROJE	ECT DESCRIPTION	12
	2.1	Mine P	lan and Mine Schedule	12
	2.2	Project	ted Water Requirements	12
3.		PROJE	ECT SETTING	13
	3.1	Locatio	on	13
	3.2	Climate	e	13
	3.3	Topogr	raphy	17
	3.4	Hydrol	ogy	17
		3.4.1	Catchments	17
		3.4.2	Watercourses	19
		3.4.3	Streamflow Data	19
4.		REGIC	NAL HYDROGEOLOGICAL SETTING	22
	4.1	Region	nal Geology	22
	4.2	Region	nal Hydrogeology	23
		4.2.1	Groundwater Occurrence	23
		4.2.2	Aquifer Recharge	23
		4.2.3	Groundwater Allocations	24
		4.2.4	FMS Water Supply Bores	24
5.		HYDR	OGEOLOGICAL INVESTIGATIONS	25
	5.1	On-Site	e Hydrogeological Drilling Programme	25
		5.1.1	Drilling and Bore Construction Results	26
	5.2	Aquifer	r Testing Programme	37
		5.2.1	Pump Test Setup	37

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

		5.2.2	Testing Details	37
		5.2.3	Data Correction	39
		5.2.4	Step Testing	
		5.2.5	Constant Rate Tests	46
		5.2.6	Summary of Aquifer Test Results	46
		5.2.7	Water Level Monitoring	46
	5.3	Groun	dwater Chemistry	53
6.		HYDR	OGEOLOGICAL CONCEPTUALISATION	57
	6.1	Source	es of Information	57
	6.2	Geolo	gical Units	57
		6.2.1	Classification of Units	57
		6.2.2	Stratigraphy and Depositional Environments	58
	6.3	Aquife	r Characteristics	62
	6.4	Groun	dwater Levels and Recharge	65
		6.4.1	Water Level Data Assessment	65
		6.4.2	Surface-Groundwater Water Interaction	68
		6.4.3	Potential Subsurface Inflows	70
	6.5	Conce	ptual Hydrogeology – Summary	84
		6.5.1	Conceptual Models	84
		6.5.2	Environmental and Social Considerations	85
7.		GROU	INDWATER MODELLING OF OFF-TENEMENT IMPACTS	87
	7.1	Sereni	ty System	87
		7.1.1	Model Set Up and Geometry	87
		7.1.2	Model Stresses	91
		7.1.3	General Modelling Assumptions	93
		7.1.4	Initial Parameters	93
		7.1.5	Model Calibration	94
		7.1.6	Model Results	96

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

		7.1.7	Sensitivity Analysis1	04				
	7.2		pion System1					
	/	7.2.1	Model Set Up and Geometry					
		7.2.2	Model Stresses1					
		7.2.3	General Modelling Assumptions1	09				
		7.2.4	Initial Parameters1	10				
		7.2.5	Model Calibration1	10				
		7.2.6	Model Results1	11				
		7.2.7	Sensitivity Analysis1	15				
8.		IMPAC	CT ASSESSMENT1	16				
	8.1	Dewat	ering Volumes1	16				
	8.2	Drawd	own1	16				
	8.3	Impact	ted Aquifers1	17				
		8.3.1	Areas1	17				
		8.3.2	Volumes1	18				
	8.4	Recha	rge1	18				
	8.5	Closur	e1	19				
9.		CONC	LUSIONS	21				
10.		REFE	RENCES1	23				
Ар	pen	dices						
AP	PEN	DIX 1: A	JAX CHARACTERISATION REPORT					
AP	PEN	DIX 2: G	EOPHYSICAL SURVEY RESULTS					
AP	APPENDIX 3: BOREHOLE LOGS							

APPENDIX 4: PUMP TEST RESULTS

APPENDIX 5: WATER LEVELS

APPENDIX 6: CONCEPTUAL CROSS SECTIONS

APPENDIX 7: RECHARGE ESTIMATES

APPENDIX 8: AREA AND VOLUME CALCULATIONS

FLINDERS MINES LIMITED

1. INTRODUCTION

1.1 Background

WorleyParsons were commissioned by Flinders Mines Limited (FMS) to undertake a hydrogeological investigation to assess the potential groundwater impacts associated with the Pilbara Iron Ore Project (PIOP). The project is a large scale, high quality iron ore mine situated in the Pilbara region of Western Australia (Figure 1-1). The PIOP site (the Site) comprises five deposits within the Blacksmith tenement (E47/882) of which the Delta, Champion and Eagle deposits were the main focus of this study. The Blackjack and Ajax deposits have also been investigated but in less detail.

The PIOP is situated within the Millstream Catchment Area, in a Priority 2 Public Drinking Water Source Area (PDSWA). This report presents the work undertaken to develop an understanding of the hydrogeology within the project area, as well as results of groundwater modelling used to quantify the potential impact the PIOP may have on local and regional groundwater resources, with particular reference to the Millstream Water Resource.

The PIOP was referred for an API level of assessment and accepted by the EPA (Category A). Referral guidelines and a request for additional information have been received by FMS. This report will accompany FMS's response to the EPA referral guidelines and contains relevant information requested by the EPA.

Groundwater dependant ecosystems (GDEs), stygofauna and troglofauna surveys have been undertaken by Consultants Bennelongia and Ecoscape. The results presented in this report will be used by these consultants to assess the potential impact the PIOP may have on GDEs, stygofauna and troglofauna communities. This report does not present the results of the GDE, stygofauna and troglofauna impact assessments.

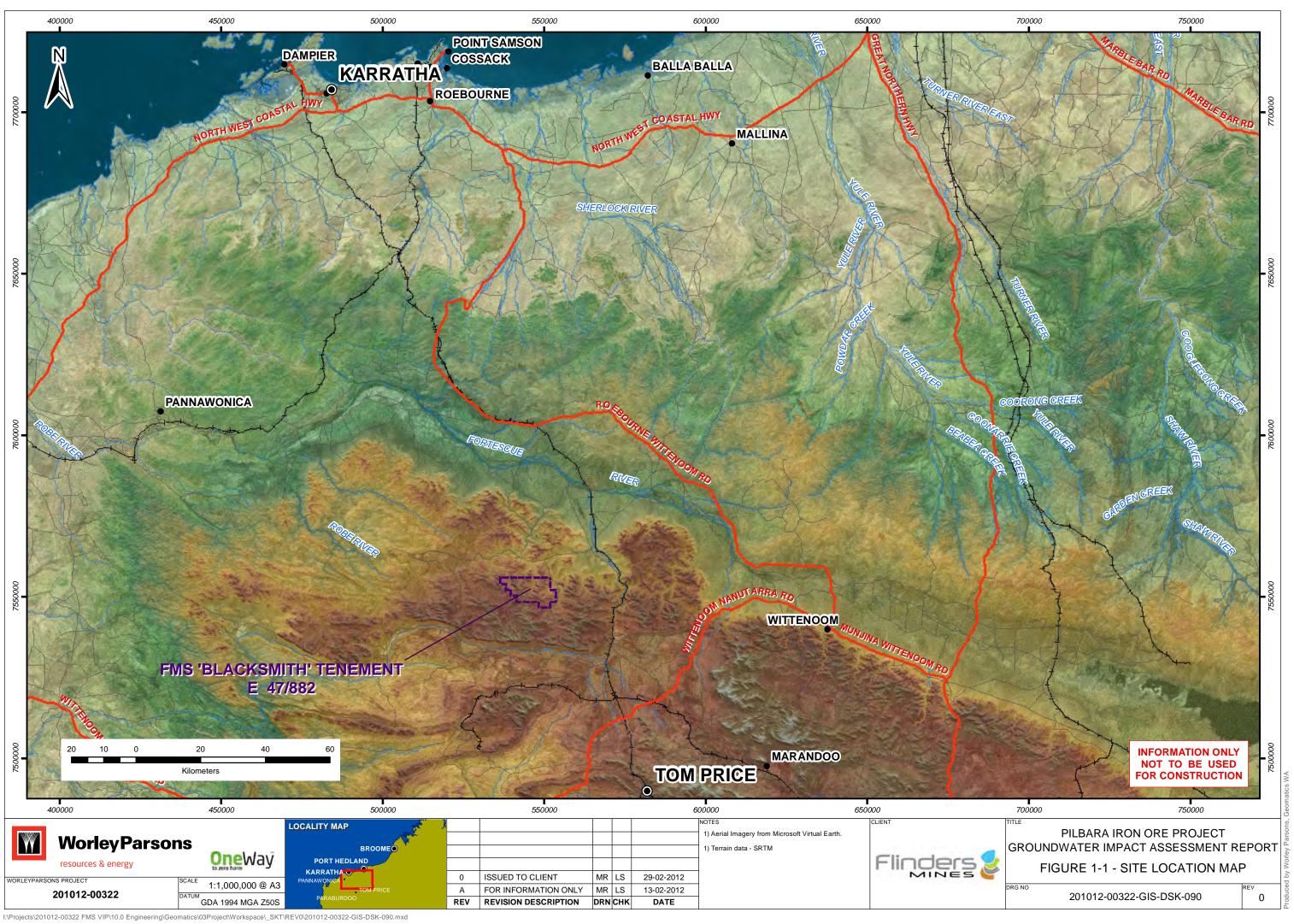
1.2 Consultation with the Department of Water (DoW)

WorleyParsons and FMS have met with the DoW on the following occasions to present the methodology adopted for the hydrogeological investigations presented in this report:

- Karratha Meeting 17th March 2011;
- Karratha Meeting 15th Dec 2011;
- Perth Meeting 20th Dec 2011; and
- Perth Meeting 30th Jan 2012.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

The following areas of interest relevant to this investigation were highlighted by the DoW at these meetings:


- Impacts of the PIOP on the Millstream Water Resource (quantity and quality);
- · Local and regional drawdown impacts associated with the PIOP; and
- Impacts of the PIOP on GDEs: stygofauna. and troglofauna communities.

1.3 Scope of Work

The scope of work for this investigation includes:

- Reporting on the desktop hydrogeological and surface water studies and field investigations completed to date;
- Development of conceptual hydrogeological models for Champion, Eagle, Delta, Blackjack and Ajax Deposits (on tenement) as well as adjacent off tenement areas;
- Development of groundwater models to quantify the potential off-tenement groundwater impacts associated with the PIOP;
- Preparation of drawdown contours based on indicative modelling outside the PIOP tenements; and
- Impact assessments with particular reference to the Millstream Water Resource and other groundwater users.
- The scope of work for this investigation does not include:
- Reporting the results of GDE, stygofauna and troglofauna impact assessments with respect to groundwater;
- Reporting the results of geochemical testing; and
- Reporting the mine closure plans developed to protect and preserve the quality of surface and groundwater within the local catchment and the wider Millstream catchment area (methodologies developed for backfilling of mine pits and management of acid mine drainage).

These scope items will be addressed in separate reports that will also accompany FMS's response to the EPA referral guidelines.

2. PROJECT DESCRIPTION

2.1 Mine Plan and Mine Schedule

Geological modelling and mineral resource estimates have been undertaken and preliminary life of mine schedules and summaries developed. The life of mine plan forecasts production of 15 Million tonne per annum (Mtpa) of total product for 15 years from year 1 onwards.

2.2 **Projected Water Requirements**

As part of the Preliminary and Definitive Feasibility Studies (PFS and DFS), FMS has recognised a need to identify a reliable water source or sources for its future operation and understand the dewatering requirements during open pit mining. WorleyParsons undertook preliminary estimations of water requirements to support the mining and processing operation. The estimated raw water demand is approximately 4GL/a for the 15 Mtpa base case scenario over 15 years.

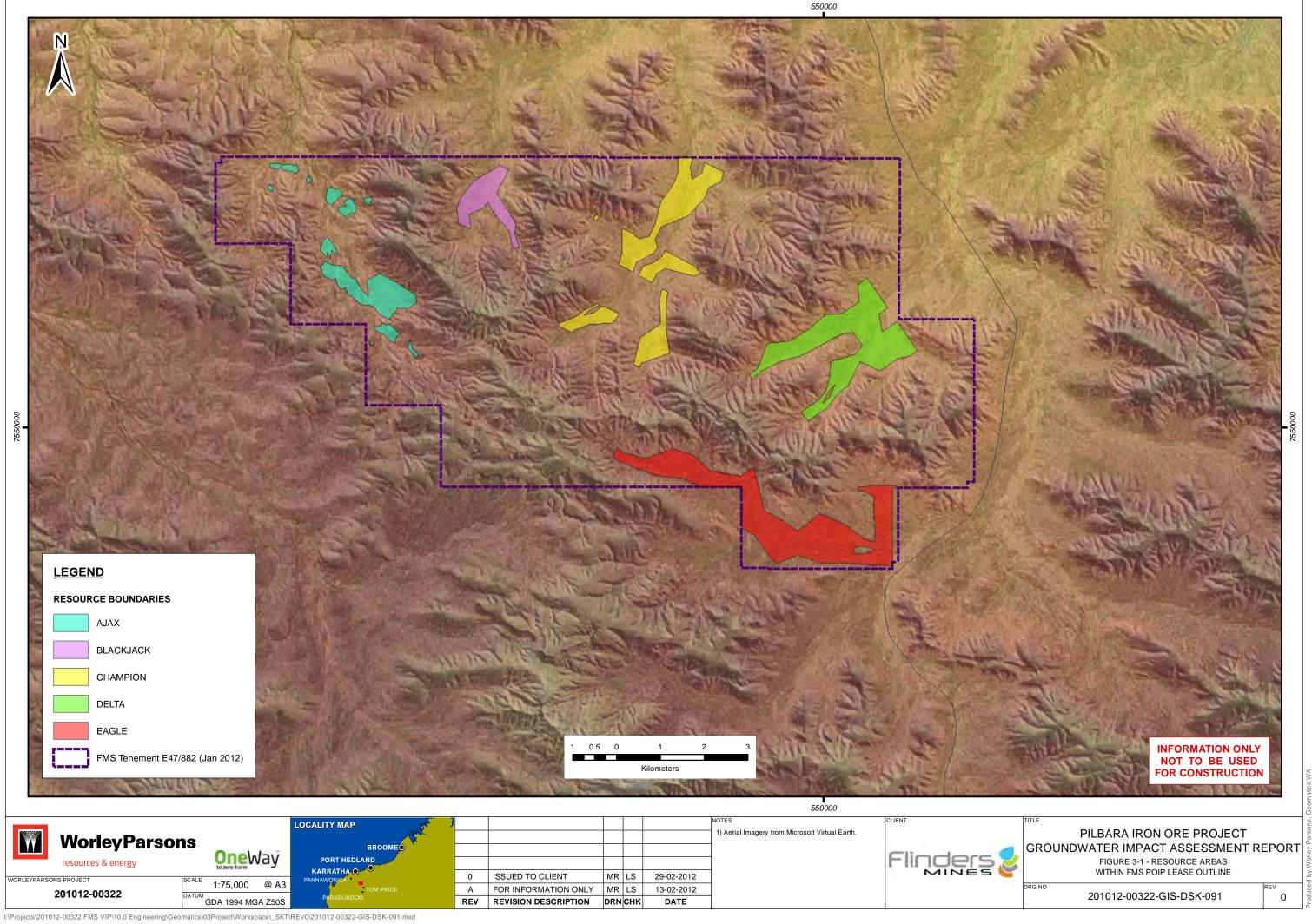
It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine. This groundwater is to be sourced from mine dewatering systems, with any excess mine dewater returned to the aquifer off tenement to minimise drawdown impacts.

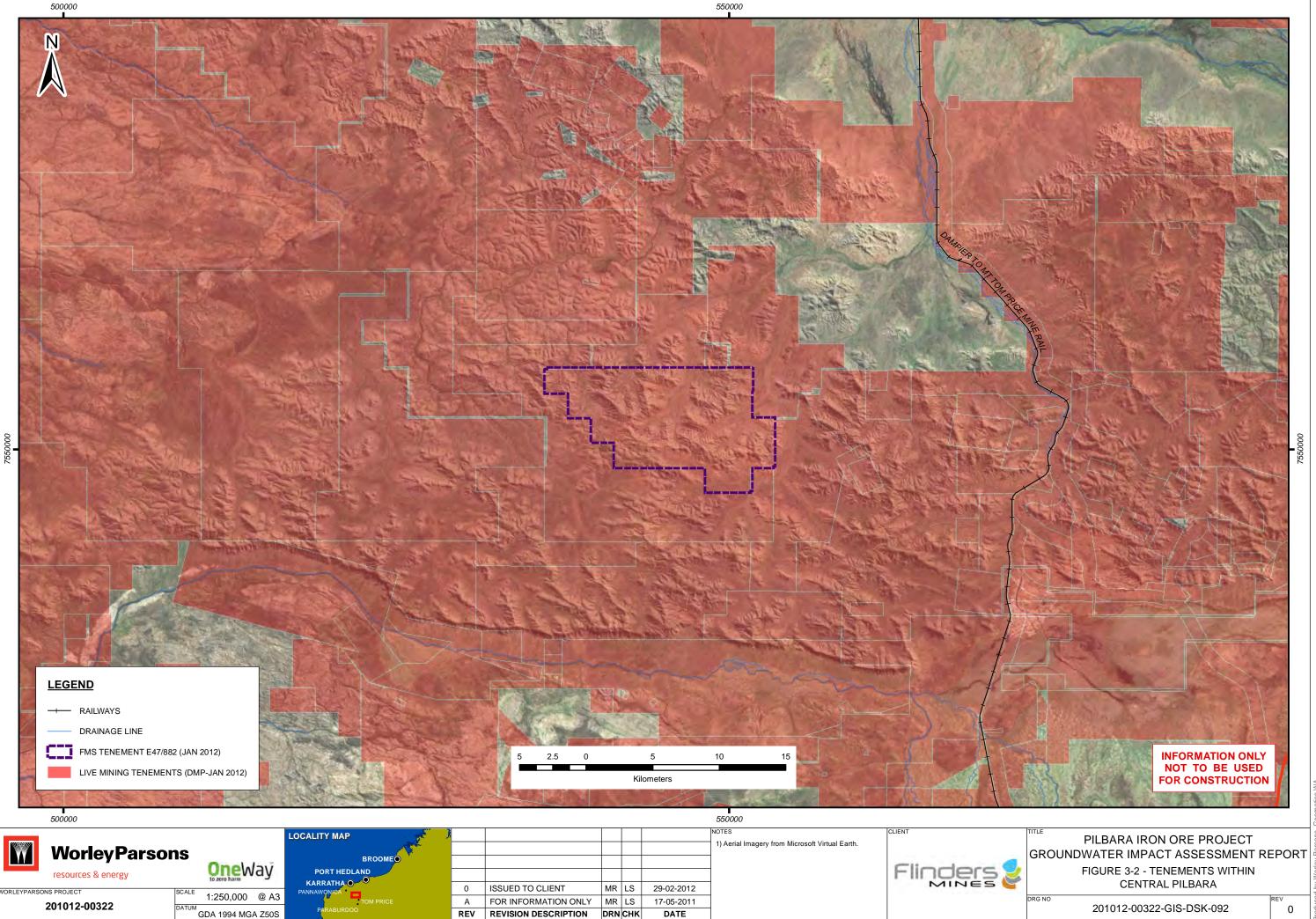
Further investigations will be undertaken during the DFS to confirm the PIOP water demand and dewatering requirements.

3. PROJECT SETTING

3.1 Location

The PIOP Project site (the Site) is located approximately 70 km northwest of Tom Price, in the Pilbara Region of Western Australia. The study area is situated within the Hamersley Range, to the north and west of FMG's Serenity deposit and 175 km south of Dampier, in the Central Hamersley Channel Iron Deposit (CID) Province. Access to the tenement is via Rio Tinto's Pilbara Iron railway access road, which follows the railway north from Tom Price and then via well-graded pastoral and power line access tracks (Mt Brockman Road).


The PIOP comprises the Ajax, Blackjack, Champion, Delta and Eagle deposits located within the Blacksmith tenement area (E47/882) and shown in Figure 3-1. The main ore types of economic interest in the tenement are Detrital Iron Deposits (DID), Channel Iron Deposits (CID), and Bedded Iron Deposits (BID). Other iron ore mining tenements in the Central Pilbara in the vicinity of the Site are shown in Figure 3-2.


3.2 Climate

The Pilbara region has hot summers and mild winters. Rainfall is highly variable and largely falls in the wet summer months between December and April. Most significant rainfall events have high rainfall intensities and are associated with cyclonic events. There is a flash flooding potential associated with such events; dependent on the track, speed and spatial extent of the tropical low. It is reported that rainfall above 100 mm is common with cyclonic systems that move slowly over land over many days. It is not uncommon for there to be little or no rainfall over the dry season (June to November).

Monthly climatic data recorded at Wittenoom (BoM #5026) has been plotted in Figure 3-3. This weather station is approximately 90km east of the site and is considered representative of site conditions. The maximum temperatures presented in Figure 3-3 vary between 24.2 to 39.6 ℃ and minimum temperatures between 11.5 and 26.1 °C. The maximum average monthly rainfall recorded at Wittenoom is 112.2mm in February and has a minimum of 3.3mm in September. The average annual rainfall recorded at Wittenoom between 1950 and 2011 is 457mm (BoM #5026) while the average annual evaporation exceeds 3000 mm (BoM).

A pluviometer recording rainfall at 5 minute intervals was installed at the exploration camp located in the Eagle catchment area, and has recorded rainfall data from 16/11/2011 to 30/01/2012. Daily rainfall measured by the rain gauge over this period is presented in Figure 3-4.

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-092.mxd

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

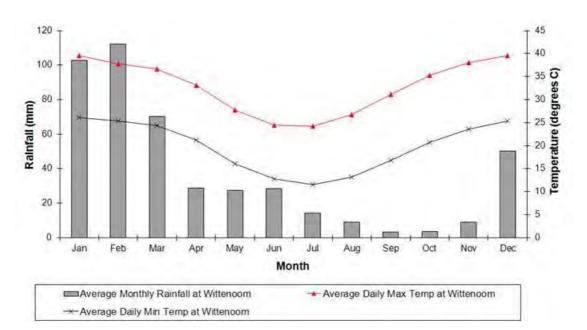


Figure 3-3: Average Monthly Climate Data Wittenoom, 1950 to 2011 (BoM #5026)

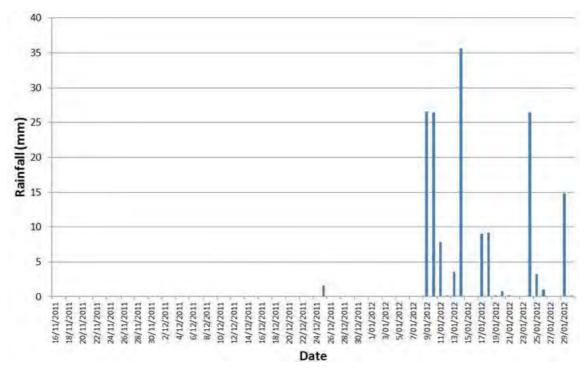


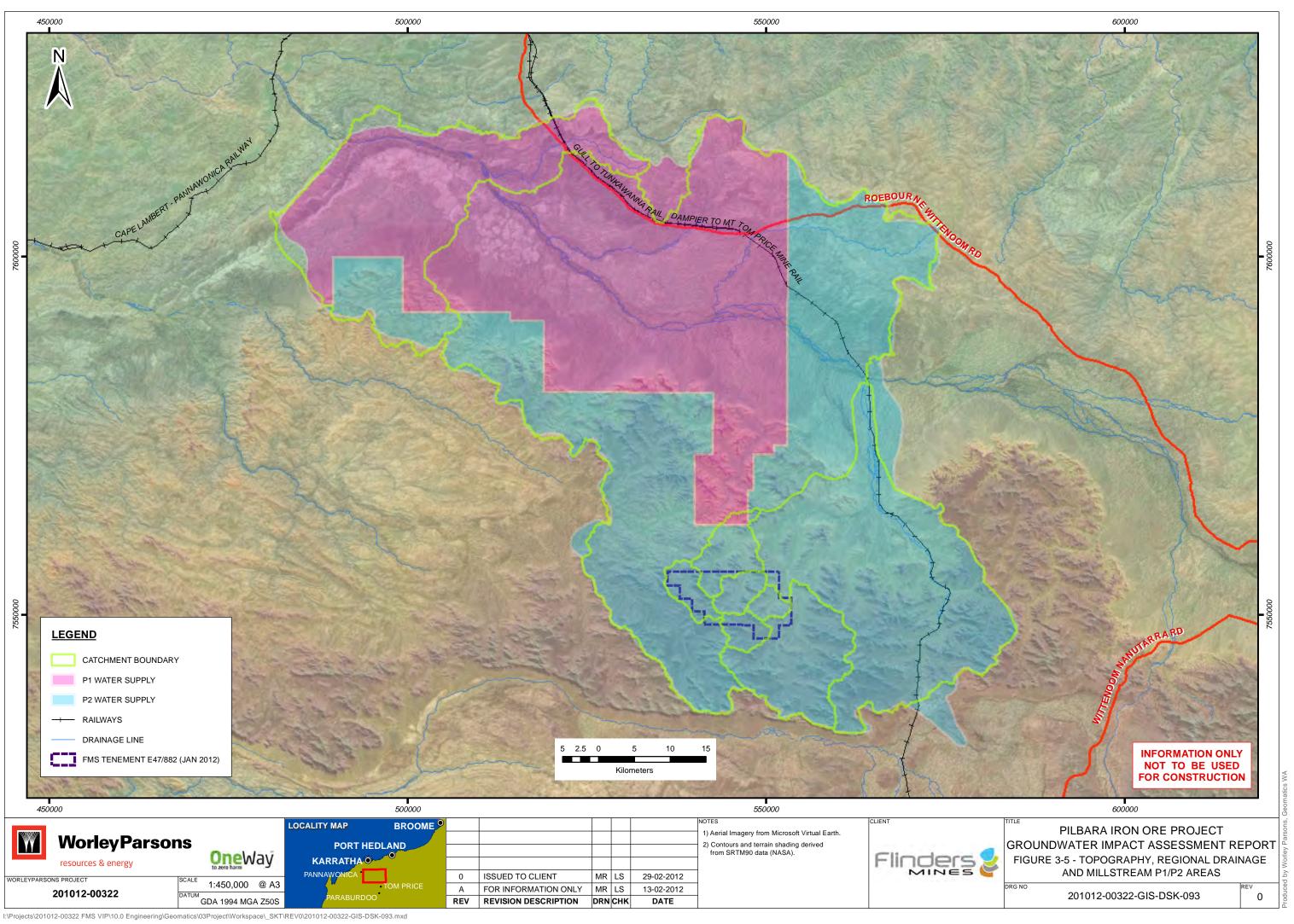
Figure 3-4: Daily rainfall data recorded at Eagle between 16/11/2011 and 30/01/2012

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

3.3 Topography

The Central Pilbara region is characterised by a series of narrow connected valleys formed within steep hills of the bedrock of the Hamersley Ranges. Hamersley Basin rocks give rise to a varied topography of high, rounded hills, plateaus, and strike ridges. The most extensive upland areas are associated with the iron formations of the Hamersley Group, especially the Brockman Iron Formation. Regionally, the Fortescue River valley, which runs to the south east of the study area, separates Hamersley Basin rocks in the Chichester Range from those in the Hamersley Range.

The iron ore resources generally lie within major drainages and the associated minor tributary valleys. There are broad, flat valleys constrained by bedrock hills within the three deposits of interest. The Site elevations range between 500m and 900metres above Australian Height datum (mAHD).


3.4Hydrology

3.4.1 Catchments

The FMS Blacksmith tenement area (E47/882) is located on a catchment divide running north east through the tenement area (Figure 3-5). The Eagle and Delta catchments drain east into the Serenity area before flowing north into Weelumurra Creek and then into the Fortescue River. The Champion, Blackjack and Ajax catchments drain north into Caliwingina Creek before discharging to the Fortescue River at Millstream approximately 350km north of the study area. Therefore the entire Blacksmith tenement area is located within the Fortescue River Catchment and also within the Millstream Priority 2 Public Drinking Water Source Area (PDSWA).

Table 3-1 presents the estimated surface water catchment areas for the Eagle, Delta, Champion, Blackjack and Ajax deposits within the Blacksmith tenement area. It also presents the Millstream catchment area estimated at approximately 5,480km² by Barnett and Commander (1985). The catchment area for Millstream excludes the upper Fortescue River catchment area, which dissipates into the Fortescue Marsh and is not considered to contribute recharge to Millstream. Catchments were delineated using topographic contours generated using LIDAR survey data and 90m SRTM data. Catchment areas are also expressed as a percentage of the Millstream catchment area in Table 3-1.

Table 3-1 suggests that the total area of the Blacksmith tenement (111km²) accounts for only 2.0% of the total Millstream catchment area (5,480km²), and therefore provides a minor contribution of surface water runoff and recharge to Millstream.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 3-1: Delineated catchment areas

Catchment Name	Catchment Area (km ²)	% of Millstream Catchment Area
Millstream	5,480	100%
Blacksmith tenement	111	2.0%
Ajax	36	0.7%
Blackjack	11	0.2%
Champion	31	0.6%
Delta	19	0.3%
Eagle	27	0.5%

3.4.2 Watercourses

The major watercourses within the Fortescue River catchment area are ephemeral, have low hydraulic gradients and are located in wide valleys bounded by moderate to steep rocky terrain. The watercourses generally comprise wide braided channels bounded by floodplains which are seasonally inundated during cyclonic flood events. The main channels and floodplains are populated with riverine vegetation.

As a large proportion of the catchments contain steep and rocky terrain, surface water runoff during rainfall events is expected to be rapid in response to rainfall resulting in flash floods during extreme events. Floodwater can persist in the receiving floodplains due to low hydraulic gradients. This can cause long term surface water inundation lasting several weeks.

The hydrology within the Blacksmith tenement area is relatively similar in most areas. The main watercourses within the Champion, Eagle, Delta and Blackjack catchments are located in wide valleys bounded by moderate to steep rocky terrain. The main channels of these watercourses are normally dry during the dry season (June to November) and no permanent pools or significant GDEs have been identified. The Ajax catchment is elongated and the main watercourse flows through deeply incised valleys bounded by steep rocky terrain. The main channel at Ajax is narrower and contains some permanent pools and GDEs. Plates 1 and 2 show photographs taken at typical watercourses within the FMS tenement area. A more detailed description of the hydrology and hydrogeology at Ajax is provided in Appendix 1.

3.4.3 Streamflow Data

A shallow standpipe piezometer has been installed along a creek line at the Delta deposit and fitted with an automatic water level recorder to act as a stream gauge. This stream gauge was installed to allow for comparison of surface and groundwater response to rainfall, which could then be used to confirm the conceptual model adopted for recharge.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Cross sectional survey data has been collected at the stream gauge location as well as at upstream and downstream locations. The data collected at this location will be used to generate a stagedischarge relationship so water levels recorded during flood events can be converted easily to flows. The data collected during the most recent rainfall event is plotted in . This figure shows a very rapid runoff response to rainfall. This data will be converted to flows once the hydraulic modelling has been completed and validated.

Plate 1: A Typical Ephemeral Creek at Delta, Eagle, Champion and Blackjack

Plate 2: A Permanent Pool at Ajax

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

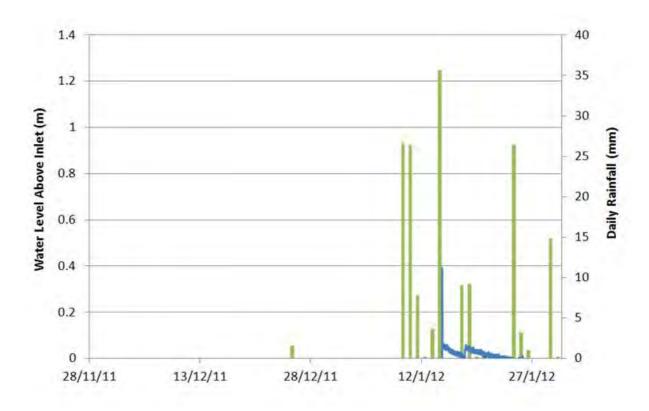


Figure 3-6: Water levels recorded at the stream gauge at Delta compared with Eagle between 28/11/2011 and 30/01/2012

4. REGIONAL HYDROGEOLOGICAL SETTING

4.1 Regional Geology

The regional geology of the area is described in the 1:250,000 Mt. Bruce map sheet (SF 50-11) and associated explanatory notes as first and second editions (de la Hunty, 1965; Thorn et al (GSWA), 1997). In general, the Blacksmith tenement lies within the ancient Hamersley Basin. This depositional Basin consists of Archaen to Lower Proterozoic (2765-2470 Ma) sedimentary rocks, and overlies the older Archaen granites and greenstones of the Archaean Pilbara Block (Trendall, 1990). These formations are classified as the Mount Bruce Supergroup and are sub-divided into the following three Groups:

- **The Fortescue Group** the oldest, rests unconformably over the basement granites and greenstones and comprises interlayered sedimentary sequences of volcanic and volcaniclastic rocks intruded by doleritic dykes and sills.
- The Hamersley Group characterises the geology of the Hamersley Iron province, isa late Archaean and early Proterozoic rock formation conformably overlying the Fortescue Group; and
- **The Turee Creek Group** consists of sequences of siltstone, greywacke, sandstones and quartzites.

The Hamersley Group hosts the tenements described in the report, and in general, is formed by chemical precipitation and depositional sedimentation of minerals in a marine environment. It contains metasedimentary rocks termed Banded Iron Formations (BIF) interbedded with felsic volcanics and intrusions of dolerite dykes. The BIF contains bands of iron minerals (magnetite and hematite) and gangue minerals (mostly carbonates, silicates and chert). Within the BIF of the Hamersley Group are the following three major formations:

- The basal Marra Mamba Formation consisting of carbonates, shales and minor cherts;
- **The Brockman Iron Formation** which formed during long periods of fairly stable and calmer depositional environments, and consists of thin sands and shales; and
- **The Weeli Wolli Iron Formation** which was accompanied by intense 2,450 Ma bimodal volcanism and mafic sills, overlain by a suite of felsic volcanic rocks.

The Brockman Iron Formation lies within the Blacksmith tenement. Geomorphological events during the last 100-20 Ma (and even more recently), have resulted in a secondary reconcentration of economically viable iron deposits.

In the case of the Champion, Delta, and Eagle deposits, the ore bodies can be described as aquifers as well as the host rock. The main rock rocks units which are the Detrital Iron deposits (DID), Channel

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

Iron Deposits (CID) and Bedded Iron Deposits (BID) are tertiary age channel and detrital sediments, and will be the primary consideration of this report. In order to understand the hydrogeological characterisation of the channels and detritals, it is important to recognise the various depositional environments associated within the tenements, which control the ore deposit as well as the aquifer hydrogeological parameters. On-site hydrostratigraphical units and their depositional environments are discussed in Section 6.

4.2 **Regional Hydrogeology**

4.2.1 **Groundwater Occurrence**

The study area is located within the upper reaches of the Caliwigina Creek and Weelumurra Creek catchments. The majority of groundwater within the upper reaches of these catchments, including the study area is located within the more permeable CID and BID units. Localised groundwater may also be found in some areas within shallow alluvial deposits associated with watercourses, and perched above clay layers. There is insufficient regional data to confirm the extent of these perched aquifers and the degree of connectivity between shallow and deeper CID/BID aquifers.

A review of the regional groundwater data and a search of the DoW WIN database for groundwater information around a 25 km search around the Delta deposit was undertaken by Golder Associates in 2010 (Golder, March 2010) and has not been repeated here. Complete lithological logs and yield information is not available for most bores. The shallower bores (<30 m) reported a yield between 0.05 to 0.8 L/s. A Hamersley bore to the south east of the site records 2.5 L/s at a drilled depth of 47 m and a bore is most likely screened in the Quaternary alluvial to the northeast records a yield of 2.3 L/s. Production bores drilled as part of the current groundwater investigation yielded quantities as much as 30 L/s in each of Champion, 25 L/s in Delta and 30 L/s in Eagle pit areas.

4.2.2 **Aquifer Recharge**

The Caliwigina Creek and Weelumurra Creek catchments have been estimated to supply 7.7 GL/a and 16 GL/a respectively to the Millstream aquifer located approximately 350km north of the study area (Barnett and Commander, 1985). This contributes approximately 85% of the total recharge to the Millstream aguifer, which is estimated by Barnett and Commander (1985) to be in the order of 27.7GL/a. Recharge to the CID and BID aquifers within the upper reaches of these catchments can be via the following three mechanisms:

- River recharge;
- · Recharge from mid-slopes or the valley flanks; and
- Rainfall recharge.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

The contribution from each recharge mechanism is not well defined for areas outside of FMS Blacksmith tenement area, due to a lack of published data. It is possible that the contributions may vary depending on relative positions within the catchment. Detailed investigations are being undertaken within the FMS Blacksmith tenement to better understand and quantify recharge and the recharge mechanisms. This approach is discussed in more detail in Section 6.

Groundwater Allocations 4.2.3

Groundwater allocation data for tenements in the vicinity of the Site was obtained from the DoW database. There are ten existing licences, including the FMS licences, within a 10 km distance from the project area and 63 licences within a distance of 20 km. The allocated volumes within a 10km radial distance range between 1500 and 45,000 kilolitres/annum (KL/a or m3/a). The volumes of allocation may indicate that these are short term supply bores supplying nominal volume of water from exploration and or recreational purposes.

4.2.4 **FMS Water Supply Bores**

There are two existing water supply bores within the tenement. The Camp bore within Eagle deposit, and the Delta Bore at Delta deposit (HPRC2076). The Camp bore is used as a water supply source for the Camp located at Eagle whereas the Delta bore supplies water for drilling and exploration. Both bores are screened within the upper CID unit.

5. HYDROGEOLOGICAL INVESTIGATIONS

5.1 On-Site Hydrogeological Drilling Programme

The on-tenement drilling programme was carried out from August to October 2011 and focused on three main deposits within the Flinders tenement; Eagle, Delta and Champion. These three deposits are the largest deposits holding approximately 85% of the mineral inventory on tenement. No on site hydrogeological investigations have been undertaken at Ajax and Blackjack, however a separate desk top investigation study was undertaken for Ajax to assess the associated surface and groundwater characteristics (Appendix 1).

A previous desktop study was performed by WorleyParsons on behalf of FMS to hydrogeologically characterise the aquifers, establish baseline groundwater conditions, and to determine the most ideal location for production and monitoring bores.

An airborne geophysical survey was also conducted using electromagnetic conductivity via fly overs and the results used to identify areas with greatest saturated thickness. These areas were selected as target areas for drilling because of their inferred high potential to yield groundwater. The results of the geophysical surveys are presented in Appendix 2.

WorleyParsons then designed a drilling and bore installation program for Champion, Delta and Eagle and developed a scope of work for drilling contractors. Austral Drilling Services Pty Ltd was engaged by FMS to undertake the drilling and bore construction program using their Schramm T64 drill rig. Hydrogeological supervision was carried out by WorleyParsons hydrogeologists.

One production bore was drilled in each of Delta, Champion and Eagle deposits. Three explorations holes were initially drilled at each of the deposit and airlifted. The production bores were then drilled and completed adjacent to the exploration holes that yielded the highest volumes of groundwater while air lifting. The following section provides a general summary of the work carried out within each deposit:

- Drilling of three 5.5 inch exploration holes using a combination of air-core and reversecirculation percussion (RC) techniques:- Once drilled, the holes were completed as monitoring bores by installing a 50mm PVC standpipe screened from the static water level to the base of the aquifer. The bores were completed with 50mm class 12 uPVC casing and 1mm machine slotted 50mm class 12 uPVC screens. Bores were backfilled with graded 8/16 gravel pack to 2 metres above the slotted interval followed by a 2 meter bentonite plug and backfilled to the surface with gravel. Bores were completed with a 1x1 m cement pad and lockable standpipe;
- Drilling and construction of one test production bore within each deposit at the most productive exploration site: - Sites were chosen based on airlift yields, aquifer material, and aquifer thickness encountered during the exploration drilling. Production bores were drilled with a

201012-00322 : Rev 0 : 9-Mar-12

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

12.25 inch tricone bit using mud rotary techniques and completed with 8 inch class 12 uPVC casing and 1mm machine slotted class 12 uPVC screens. Bores were backfilled with graded 8/16 gravel pack to 2 metres above the slotted interval followed by a 2 meter bentonite plug and backfilled to the surface with gravel. Bores were completed with a 1x1 m cement pad and lockable standpipe. Production bores were sited 15m from the completed exploration/monitoring bores;

- Drilling and construction of one nested monitoring location with screens set at varying depths within a single 8.5inch drill hole. The hole was drilled using an 8.5inch tricone bit with mud rotary techniques. Individual bores were completed with 50mm class 12 uPVC casing with 1mm aperture 50m class 12 uPVC screens. Screens were set against selected aquifer zones with the aim of determining aquifer parameters on selected aquifer units. Up to three screens were set within a single borehole. Bores were completed with graded 8/16 gravel pack and bentonite to isolate individual screens. The bores were completed with a 1x1 m cement pad and lockable standpipe;
- Conversion of 43 existing RC holes to monitoring bores in selected areas: Flinders Mines have completed an extensive network of resource drilling predominately using RC drilling methods. Selected RC holes were identified and converted to monitoring bores using 50mm class 12 uPVC casing with 1mm aperture 50mm class 12 uPVC screens. Bores were completed with graded 8/16 gravel pack and bentonite to isolate the aquifer of interest. The bores were completed with a 1x1 m cement pad and lockable standpipe;
- An abundance of exposed BID has been identified in some of the upper reaches/flanks of all three deposits. Some of this BID is intersected by large watercourses in areas where the watercourse is constricted on either side by outcropping bedrock. There is high potential for groundwater recharge in these areas. Several open exploration holes were converted and constructed as monitoring bores in the vicinity of these recharge areas to monitor groundwater response to rainfall; and
- Automatic water level loggers were installed in 32 of the monitoring bores.

5.1.1 Drilling and Bore Construction Results

EAGLE

The following key observations were made during the drilling programme and during site walkover surveys at the Eagle deposit:

Exploration Holes:

• The major geological units intersected during the exploration drilling programme from top to bottom include the Recent Sediments (alluvium and colluvium), DID, CID, BID and BIF;

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

- The upper CID unit was found to have relatively lower permeability and yielded lower volume of water. The vugs and cavities in the lower CID unit were found to hold a larger supply of water and acted as the major groundwater supply zone;
- The DID was generally found to be dry during drilling with no significant groundwater flows/yields encountered. The potentiometric head rose after drilling through an intercalated clay and sand unit, and rests within the DID suggesting that the DID with intercalations of clay within and also a basal unit of clay at places acts as a confining to semi-confining layer;
- Of the three exploration holes drilled, Eagle-obs-02 was chosen as the preferred production bore location as it had the highest recorded yields during drilling and the largest saturated aquifer thickness.

Production Bore:

• The production bore was screened against the Upper and Lower CID from 57 to 114.3 metres below ground level. An airlift yield of 15L/s was recorded.

Nested Bore:

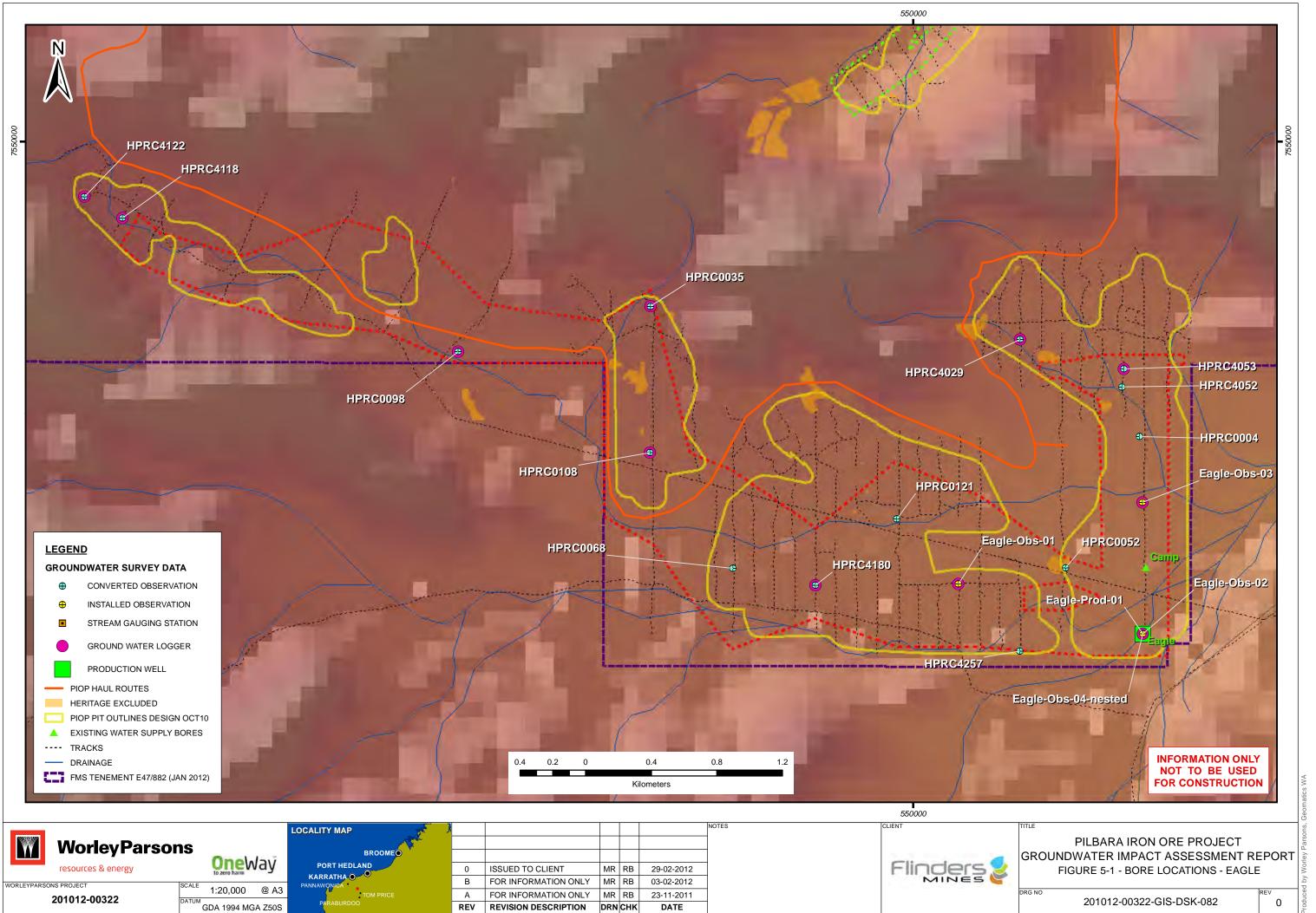
- The nested monitoring bore was constructed to determine vertical gradients under natural conditions and during pump testing. Three 50mm PVC standpipes were installed:
 - the first screened against the Upper CID;
 - the second against the lower CID; and
 - the third against the Lower CID conglomerate/BID unit.

RC Holes Converted to Monitoring Bores at Eagle:

A total of 14 existing holes drilled as part of the FMS exploration works using RC methods, were converted into monitoring bores as part of the Phase 3 drilling works (Table 5-1). These bores were selected to provide long-term information on groundwater levels and assist with recharge estimation.

The DID was found to be dry during drilling. To assess whether there is any recharge to the DID system and any potential gradients between the DID unit and the underlying aquifers, two adjacent exploration holes were converted to monitoring bores at two locations within the tenement, with one screened solely against the DID, with the other screened below this unit. Automatic groundwater loggers were then installed to monitor groundwater response to rainfall.

Monitoring bores located within the central part of the catchment, in low lying areas, were screened approximately 2-5 m above the static water level to the base of the aquifer, with the remaining bores located around the flanks of the catchment screened from approximately 2 m below ground level (bgl) to the base of the aquifer.


FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

A summary of the construction details for each of the bores installed in the Eagle deposit is provided in Table 5-1. The locations of the exploration holes, production bores and monitoring bores are provided in Figure 5-1 to Figure 5-3. Bore logs with detailed geological and construction information are provided in Appendix 3.

Bore ID Easting Northing Screen Geology Standing Water Level											
Bore ID	Easting	Northing		Screened	(SWL) (m bgl)						
			(m bgl) oduction Bo								
					(2.22						
Eagle-Prod-1	551396	7547002	57-114	CID	43.28						
Eagle-Obs-4-	551407	7547011	56-65	Upper CID							
Shallow					43.30						
Eagle-Obs-4-	551407	7547011	70-82	Lower CID							
Medium					43.27						
Eagle-Obs-4-	551407	7547011	88.5-114	Lower CID/BID							
Deep					43.25						
Eagle-Obs-1	550278	7547284	41.5-	DID/CID/BID	53.69						
			113.15								
			nnels and flo	•							
Eagle-Obs-3	551373	7547810	40-82	DID/CID	43.78						
Eagle-Obs-2	551404	7546985	41.15-	CID	43.03						
			113.15								
HPRC0098	547225	7548718	53-71.4	BID	61.6						
HPRC0108	548395	7548102	48.5-60.5	DID/BID	54.5						
HPRC0068	548901	7547396	59-83	CID/BID/BIF	61.2						
HPRC4180	549404	7547292	55.74-	BID/BIF	59.8						
			73.83								
HPRC0121	549900	7547696	52-70	BID/BIF	-						
HPRC4257	550650	7546890	48.5-93.5	CID/BID	49.85						
HPRC0052	550929	7547398	43.85-74	DID/BID/BIF	48.4						
HPRC0004	551380	7548198	35.88-60	ALL/CID	38.3						
		R	echarge bore	pairs							
HPRC4122	544946	7549663	1-37	DID/BID/BIF	34.3						
HPRC4118	545177	7549533	3-25.5	DID/BID	Dry						
HPRC4053	551285	7548613	25.56-	BID/SHL	32.6						
			43.65								
HPRC4052	551272	7547398	11.5-43.5	DID	Dry						
		1	Flanks	II	-						
HPRC4029	550653	7548792	2-62.5	CID/DID/BIF/C	49.8						
				НТ							
HPRC0035	548399	7548996	2-51.5	DID/BID/CHT	-						

Table 5-1: Summary of Drilling and Construction Details for Exploration Holes, ProductionBores and Monitoring Bores at Eagle

ALL = Alluvium COL = Colluvium DID = Detrital Iron Deposit CID = Channel Iron Deposit BID = Bedded Iron Deposit BIF = Banded Iron Formation CHT = Chert SHL = Shale

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-082.mxd

FLINDERS MINES LIMITED

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

CHAMPION

The following key observations were made during the drilling programme and during site walkover surveys at the Champion deposit:

Exploration Holes:

- The major geological units intersected during the exploration drilling programme from top to bottom include the Recent Sediments including (alluvium and colluvium), DID, CID, BID, some weathered BIF and BIF;
- The upper CID unit was found to have relatively lower permeability whereas the vugs and cavities in the lower CID unit where found to hold a larger supply of water and act as the major groundwater supply zone;
- The DID was generally found to be dry during drilling with no significant groundwater flows/yields encountered;
- During exploration hole air core drilling, it was determined that groundwater at the production bore was located in a weathered BIF zone, as well as the CID/BID unit. After the CID unit was drilled through, the static water level rose up slightly; and
- Of the three exploration holes drilled, Champion obs-02 was chosen as the preferred production site as it had the highest recorded yields during drilling and the largest saturated aquifer thickness.

Production Bore:

• The production bore was screened against the CID, BID and weathered BIF from 59.19 to 99.9 metres below ground level. An airlift yield of 22.5L/s was recorded.

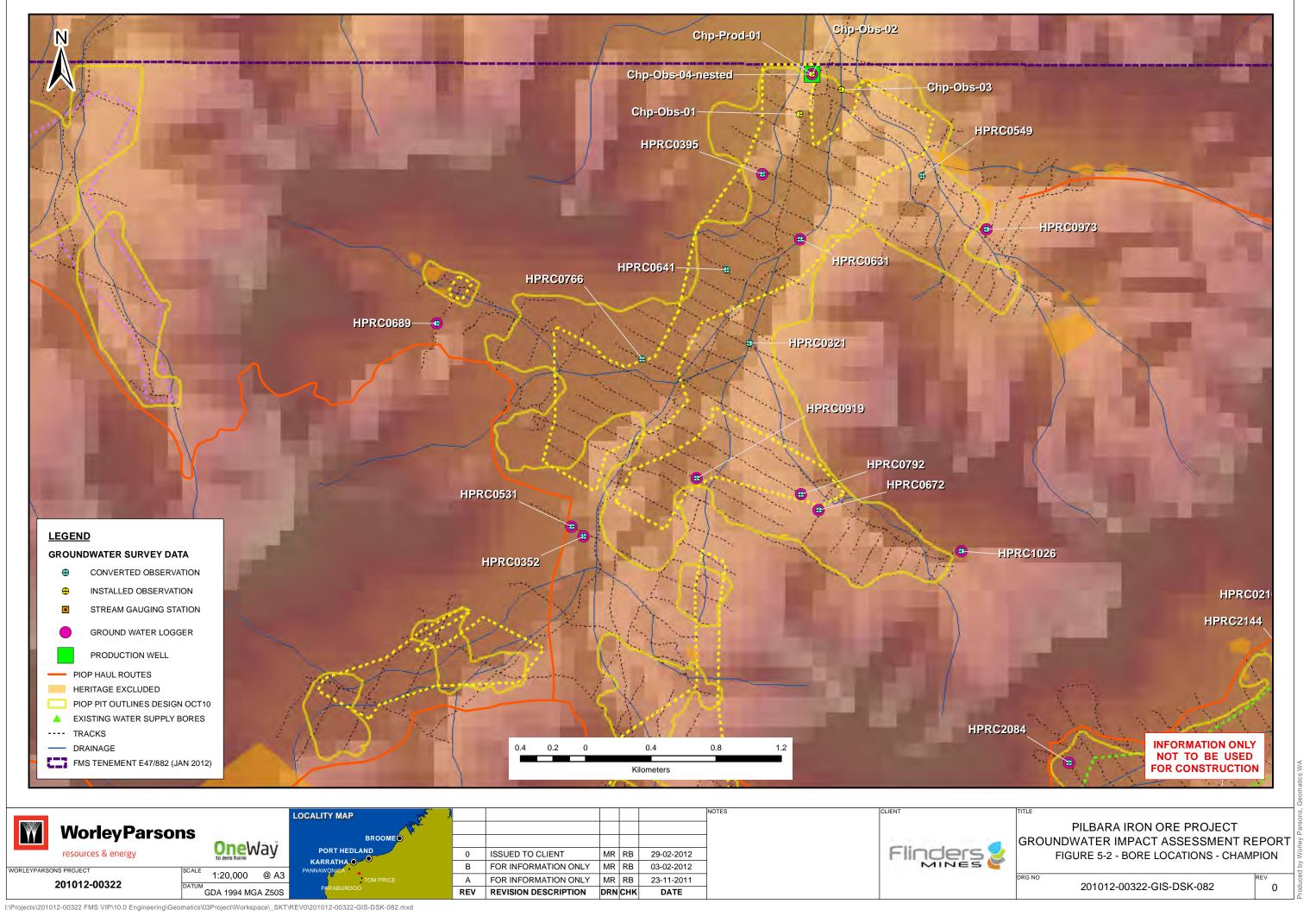
Nested Bore:

- The nested monitoring bore was constructed approximately 15m from the production bore to determine the presence of vertical gradients under natural conditions and during pump testing. Three PVC standpipes were installed:
 - the first screened against the CID;
 - the second against the BID; and
 - the third against the weathered BIF.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

RC Holes Converted to Monitoring Bores:

A total of 14 existing holes drilled as part of the FMS exploration works were converted to monitoring bores as part of the Phase 3 drilling works. These holes were selected in order to provide long-term information on groundwater trends and assist with recharge estimates. Holes located within the central part of the catchment, in low lying areas, were screened approximately 2-5 m above the static water level to the base of the aquifer, with the remaining holes located around the flanks of the catchment screened from approximately 2 m below ground level (bgl) to the base of the aquifer. A further two RC holes were screened against the unsaturated DID to provide information on recharge mechanisms. The location of the exploration holes, production bores and monitoring bores are provided in Figure 5-2, with a summary of the bore data outlined in Table 5-2.



FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-2: Summary of Drilling and Construction Details for Exploration Holes, Production Bores and Monitoring Bores at Champion

Bore ID	Easting	Northing	Screen	Geology	Standing
			(m bgl)	Screened	Water Level
					(SWL)(m bgl)
			n Bore Pad	1	1
Champ-Prod-01	546977	7556128	59.19-99.9	CID/BID/BIF	33.155
Champ-Obs4-Shallow	546970	7556140	59-69	CID	33.98
Champ-Obs4-Medium	546970	7556140	73-80	BID	33.98
Champ-Obs-4-Deep	546970	7556140	91-100	BIF	33.98
Champ-Obs2	546966	7556118	30-96	DID/CID/BID	33.35
		Channels ar	d floodplain	•	
Champ-Obs1	546891	7555872	30-90	DID/CID/BID	36.77
Champ-Obs3	547146	7556023	56.5-84.5	CID/BIF	29.00
HPRC0549	547642	7555493	24.5-59.5	DID/BID/BIF	30.46
HPRC0395	546661	7555504	39.2-51.2	BID/BIF	39.80
HPRC0631	546894	7555105	30.1-48.1	BIF/CHT	35.54
HPRC0641	546442	7554919	40-70	DID/BID/BIF	49.63
HPRC0321	546581	7554468	22-34	DID/BIF	30.98
HPRC0766	545924	7554370	32-56	BID/BIF	39.87
HPRC0919	546260	7553640	42-59	CID/CHT/BIF	38.13
HPRC0973	548036	7555165	16-52	DID/SHL	22.93
		Recharge	bore pairs	•	•
HPRC0792	546899	7553541	11-38	DID	Dry
HPRC0672	547008	7553444	32-56	DID/BIF/CHT	47.17
HPRC0352	545565	7553283	15-30	DID	Dry
HPRC0531	545490	7553342	18-42	COL/DID/BID/CHT	36.14
			nks	•	·
HPRC1026	547883	7553187	2-22	ALL/SHL	16.46
HPRC0689	544663	7554588	2-29	BID/BIF	25.39

ALL = Alluvium COL = Colluvium DID = Detrital Iron Deposit CID = Channel Iron Deposit BID = Bedded Iron Deposit BIF = Banded Iron Formation CHT = Chert SHL = Shale

			· · · · · · · · · · · · · · · · · · ·			1			NOTES	CLIENT
										OLIENT
		ne								
	Worley Parso		BROOME							1
	resources & energy	One Way	PORT HEDLAND	0	ISSUED TO CLIENT	MR	RB	29-02-2012]	Flinders
WORL	EYPARSONS PROJECT	SCALE / AD ADA		В	FOR INFORMATION ONLY	MR	RB	03-02-2012		MINES
	201012-00322	1:20,000 @ A3	TOM PRICE	Α	FOR INFORMATION ONLY	MR	RB	23-11-2011]	
	201012-00322	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN	СНК	DATE	1	

FLINDERS MINES LIMITED

PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

DELTA

The following key observations were made during the drilling programme and during site walkover surveys at the Delta deposit:

Exploration Holes:

- The major geological units intersected during the exploration drilling programme from top to bottom include the Recent Sediments (alluvium and colluvium), DID, CID, BID and BIF;
- The upper CID unit was found to have relatively lower permeability whereas the vugs and cavities in the lower CID unit where found to hold a larger supply of water and act as the major groundwater supply zone;
- There are two distinct clay units mapped at Delta, an upper clay unit and a lower clay unit which extends eastwards;
- The DID was generally found to be dry during drilling with no significant groundwater flows/yields encountered. The static water level in the CID rose up significantly after drilling through a semi-cofining thin clay unit, and upon rising, the potentiometric head rested within the DID suggesting that the basal clays beneath DID and the interlayered clay units within the CID act as a confining to semi-confining layer; and
- Of the three exploration holes drilled, the one with the highest recorded yields during drilling and the largest saturated aquifer thickness was selected as the preferred production site.

Production Bore:

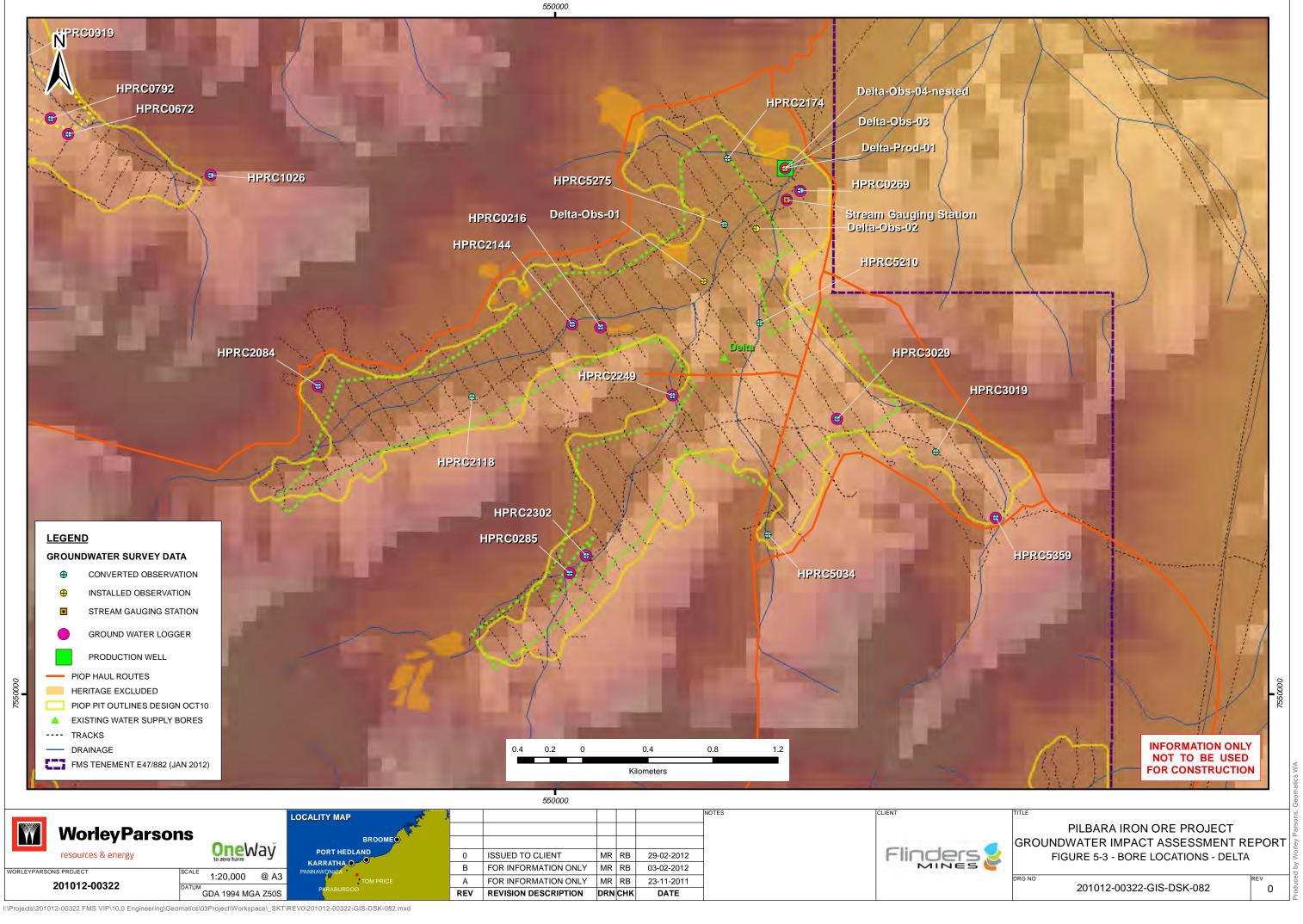
 The production bore was screened against the CID from 68 to 104 metres below ground level. An airlift yield of 13L/s was recorded.

Nested Bore:

• The nested monitoring bore was constructed approximately 15m from the production bore to determine the presence of vertical gradients under natural conditions and during pump testing. Two bores were set, the first against the upper clay rich CID, and a second deep bore screened against the lower mineralised CID.

RC Holes Converted to Monitoring Bores:

A total of 15 existing holes drilled as part of the exploration works using RC methods, were converted into monitoring bores as part of the works. These bores were selected to provide long-term information on groundwater levels and assist with recharge estimation. At two locations within the tenement, two existing bores were converted in close proximity to one another, one screened solely against the DID (Table 5-3 and Figure 5-3), with the other screened below this unit.


FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Bores located in the central part of the catchment, in low lying areas, were screened approximately 2-5 m above the static water level to the base, with the remaining bores located around the flanks of the catchment screened from approximately 2m below ground level (bgl) to the base.

Bore ID	Easting	Northing	Screen	Geology Screened	SWL (m bgl)
		•	(m bgl)		
		Produ	iction Bore Pa	d	
Delta-Prod-1	551425	7553228	68-106	CID	38.56
Delta-Obs-4-Shallow	551418	7553214	68.33-77.41	Upper CID	38.79
Delta-Obs-4-Deep	551418	7553214	84.42-98.55	Lower CID	38.80
Delta-Obs-3	551412	7553239	40-106	DID/CID	38.85
			els and floodpl		
Delta-Obs-1	550923	7552537	44-95	DID/CID	45.27
Delta-Obs-2	551237	7552862	41-101	DID/CID	40.61
HPRC2174	551059	7553294	41.5-85.5	DID/BID/CHT	47.12
HPRC5210	551257	7552282	40-52	DID/SHL	45.37
HPRC5275	551040	7552891	39.5-63.5	DID/BID	43.74
HPRC2249	550720	7551836	35.5-53.5	BIF	43.61
HPRC2118	549487	7551828	46-64	DID/BID/CHT	51.18
HPRC3029	551731	7551694	46-76	SHL/BIF	51.99
HPRC3019	552340	7551490	41-77	SHL/BID/CHT/SHL	58.08
		Recha	arge bore pair	<u>s</u>	
HPRC0216	550278	7552258	19-31	DID	29.7
HPRC2144	550103	7552277	52-69	BIF	46.82
HPRC2302	550190	7550852	9-33	DID	23.46
HPRC0285	550089	7550744	27-51	BID/B IF/SHL/CHT/BIF	40.22
			Flanks		
HPRC5359	552705	7551089	2.3-28.3		23.03
HPRC5034	551308	7550982	2-21.5	DID/BID/BIF	18.68
HPRC2084	548542	7551894	2-76	DID/BID/BIF/SHL	64.79
		Stream	flow gauge be	ore	
HPRC0269	551508	7553096	24-27.5		Dry

Table 5-3: Summary of Drilling and Construction Details for Exploration Holes, Production Bores and Monitoring Bores at Delta

ALL = Alluvium COL = Colluvium DID = Detrital Iron Deposit CID = Channel Iron Deposit BID = Bedded Iron Deposit BIF = Banded Iron Formation CHT = Chert SHL = Shale

5.2 Aquifer Testing Programme

5.2.1 Pump Test Setup

A pump testing programme was undertaken between the 15th of November 2011 and the 3rd of December 2011 to assess the hydraulic properties of the screened aquifer units. The pump testing was performed by Boretec Test Pumping Pty Ltd and supervised by WorleyParsons Hydrogeologists.

Pump testing was performed at each of the production bores installed in Eagle, Delta and Champion deposits. Testing of each bore included a step drawdown test and constant rate discharge test with recovery.

A Grundfos SP95-9/45 electric submersible pump on a Wellmaster rising main was used for testing. Discharge was controlled using a manual gate valve, and the rate measured using an Emflux EM2020 electromagnetic flow metre.

Prior to the commencement of the pumping tests, the following activities were conducted:

- Installation of InSitu RuggedTROLL 100 groundwater loggers to measure water levels all loggers were set to measure water depths at 1 minute intervals for the duration of the pump testing programme;
- Installation of a single BaroTROLL to measure barometric pressure, used for correction of the RuggedTROLL data;
- Setup and lowering of the pump and riser main into the production bore. A direct read InSitu
 Vented LevelTROLL 500 was attached to the riser main above the pump assembly, in order
 to provide both real-time monitoring and recorded logging of water depths in the production
 bore. The LevelTROLL was set to log water depths at an interval of 30 seconds; and
- A discharge hose was set up to carry pumped water to an existing dry creek over 200m away from the site.

The transducers were installed approximately 24 hours prior to the start of the pumping testing in order to monitor background natural groundwater level variations. No significant rainfall was recorded during the pump tests.

5.2.2 Testing Details

Details of the pump testing program including pumping rates and durations, monitored observation bores and drawdown at selected time intervals are summarised below in Table 5-4 for Eagle, Delta and Champion deposits.

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-4: Pump Testing Data for Eagle, Delta and Champion

Pumping Bore	Observation Bores	Distance from Pumping	Drawdown (m)			Test Period	Test Information				
		Bore (m)	t = 540min	t = 1440min	t = 2880min		Step Rate	Constant Rate	Recovery		
	Eag-O1	1152.8	0.011	0.037	0.083						
	Eag-O2	18.3	0.547	0.634	0.701			2880min			
Eagle	Eag-O3	807.9	0.004	0.040	0.033	25-28NOV2011	5 steps 60min duration; Q	duration;	1500min		
Production	Eag-O4 Shallow		0.646	0.769	0.834	23-28110 2011	increasing 6, 12, 18, 24, 30L/s	Q = 30L/s	130011111		
	Eag-O4 Middle	13.9	0.512	0.600	0.657						
	Eag-O4 Deep		0.388	0.467	0.545						
Delta	Dlt-03	16.7	0.598	0.638	0.66		4 steps 60min, 5th 40min duration;	2880min			
Production	Dlt-O4 Shallow	15.5	0.808	0.848	0.869	21-23NOV2011	Q increasing 5, 10, 15, 20, 25L/s	duration;	650min		
FIGUUCTION	Dlt-O4 Deep	15.5	0.855	0.887	0.912		Q mereasing 5, 10, 15, 20, 250's	Q = 20L/s			
	Chp-O1	265.9	0.058	0.109	0.156						
	Chp-O2	15.7	1.681	1.706	1.728			2880min			
Champion	Chp-O3	198.3	1.682	1.788	1.850	29NOV-02DEC2011	4 steps 60min duration; Q	duration;	2000min		
Production	Chp-O4 Shallow		1.698	1.767	1.809		increasing 15, 20, 25, 30L/s	Q = 28L/s	20001111		
	Chp-O4 Middle	14.0	2.005	2.059	2.090						
	Chp-O4 Deep		4.318	4.397	4.468						

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

5.2.3 **Data Correction**

Analysis of the continuous water level data from the in-situ data logger's and the atmospheric pressure readings recorded by a BaroTROLL installed at the site, indicated a strong influence of atmospheric pressure changes. When the atmospheric pressure decreases, the water levels rise in compensation, and vice versa. By comparing the atmospheric changes, expressed in metres of water, with the actual changes in water levels, the barometric efficiency (BE) of the aquifer can be calculated. The BE is defined as the ratio of change in water level in the bore to the corresponding change in atmospheric pressure. BE usually range from 0.2 to 0.75. The pre-test data was used to calculate the BE for Eagle, Delta and Champion and are presented in Table 5-5. The results were then used to correct the water level data recorded.

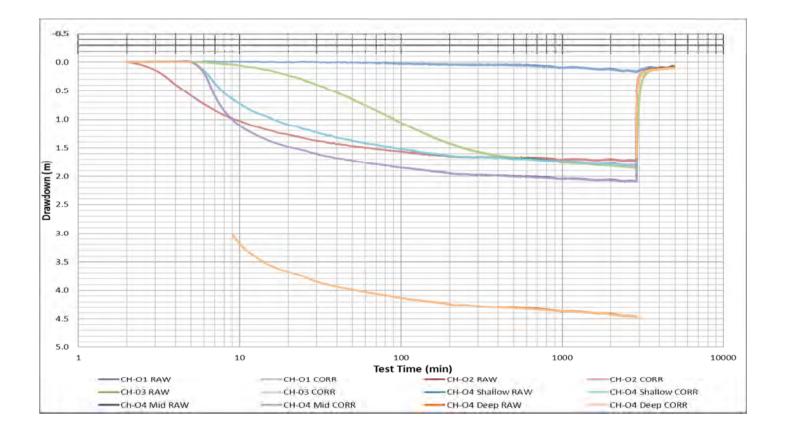
A graph of corrected versus uncorrected drawdown data for the constant rate and recovery test for Delta is presented in Figure 5-4 to Figure 5-6.

Deposit	Calculated BE Ratio				
Eagle	0.90				
Delta	0.80				
Champion	0.38				

Table 5-5: Calculated Barometric Efficiency Values

5.2.4 Step Testing

The data recorded during the step drawdown tests at Champion, Eagle and Delta are presented in Figures 5-7 to 5-9 and Tables 5-6 to 5-8.


Analysis of the step drawdown test provides an indication of the sustainable pumping rate for the constant rate test, as well as providing information on the bore efficiency.

EcoNomics

resources & energy

FLINDERS MINES LIMITED
PILBARA IRON ORE PROJECT
GROUNDWATER IMPACT ASSESSMENT REPORT

Figure 5-4: Champion Corrected and Uncorrected Drawdown Data

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx Page 40 201012-00322 : Rev 0 : 9-Mar-12

WorleyParsons[®]

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

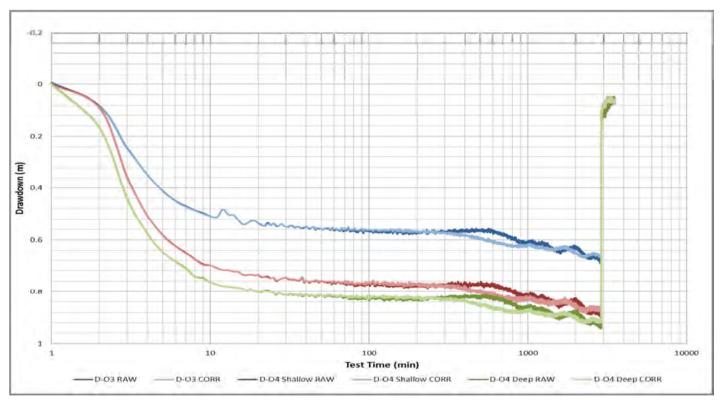


Figure 5-5: Delta Corrected and Uncorrected Drawdown Data

WorleyParsons[®]

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Figure 5-6: Eagle Corrected and Uncorrected Drawdown Data

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Table 5-6: Delta Step-Test Pumping Rates and Durations

Step Number	Step Duration (min)	Pumping Rate (L/s)	Maximum Drawdown (m)
1	60	5	5.50
2	60	10	13.30
3	60	15	22.94
4	60	20	35.25
5	40	25	51.22



Figure 5-7: Drawdown and Recovery at Delta Production Bore During Step-Discharge Test

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Table 5-7: Eagle Step-Test Pumping Rates and Durations

Step Number	Step Duration (min)	Pumping Rate (L/s)	Maximum Drawdown (m)		
1	60	6	1.16		
2	60	12	2.55		
3	60	18	4.27		
4	60	24	6.34		
5	60	30	9.30		

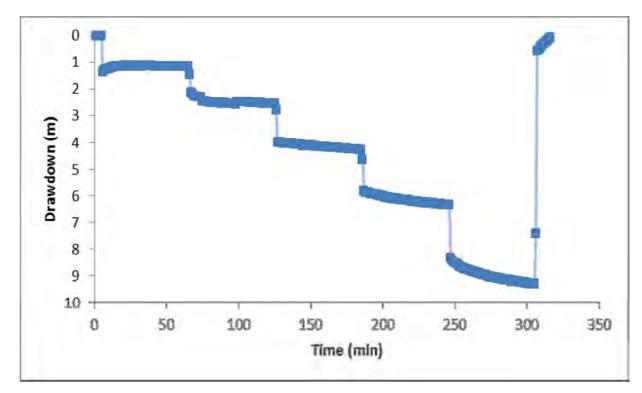


Figure 5-8: Drawdown and Recovery at Eagle Production Bore During Step-Discharge Test

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Table 5-8: Champion Step-Test Pumping Rates and Durations

Step Number	Step Duration (min)	Pumping Rate (L/s)	Maximum Drawdown (m)
1	60	6	1.16
2	60	12	2.55
3	60	18	4.27
4	60	24	6.34
5	60	30	9.30

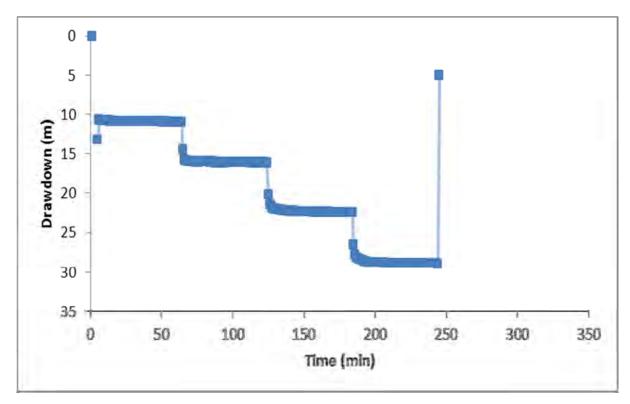


Figure 5-9: Drawdown and Recovery at Champion Production Bore during Step-Discharge Test

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

5.2.5 **Constant Rate Tests**

Diagnostic plots have been used to determine the appropriate analytical solution to analyse the hydraulic data. Geological and hydraulic data obtained during the drilling program has also been used to develop a conceptual model of the groundwater system at each pump testing site.

The following observations are consistent for all testing sites.

- Groundwater levels throughout Delta showed a strong correlation between atmospheric pressure and groundwater levels which is typical of either confined or leaky aquifer systems;
- Drilling indicated that the DID unit which has a clay matrix, within and below acts as a partially confining layer to the CID aquifer unit;
- No significant yields (all recorded yields less than 0.1L/s) were intersected when drilling through the DID suggesting that it largely an unsaturated unit; and
- The fact that the slope at late time does not reach zero indicates that for the duration of the test, the bore's area of influence did not intersect a recharge boundary.

Based on the observations the aquifer test data has been analysed assuming both confined and leaky aquifer systems. The Theis (1935)/Hantush (1961) which analyses both drawdown and recovery and Theis (1935) residual drawdown method which analysing recovery alone have been used to analyse the constant rate data.

Summary of Aquifer Test Results 5.2.6

Aquifer properties based on pump test results are summarised in Table 5-9 to able 5-11. Detailed analytical solutions and plots are presented in Appendix 4.

Results suggest that the hydraulic parameters in the three deposits are similar. Hydraulic conductivities and storativities of the two CID units and BID are very similar although a clear change in air lift yields was noted between the upper and lower CID units during drilling.

5.2.7 Water Level Monitoring

Groundwater levels were monitored using a dip meter after the bores were drilled and aquifer stabilised. Thirty two (32) of the monitoring bores installed across Champion, Eagle and Delta have been equipped with automatic water level loggers (InSitu Rugged TROLL's). Results of water level monitoring data for selected open exploration holes, all constructed bores and groundwater hydrographs collected using the InSitu Rugged TROLL's analyses are presented in Appendix 5 and interpreted and discussed in Section 6.

EcoNomics

resources & energy

FLINDERS MINES LIMITED
PILBARA IRON ORE PROJECT
GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-9: Delta Pump Test Results

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m2/d)	Hydraulic Conductivity (m/d)	Storativity	S/S'	Summary of Analysis
	Dit-04s	Upper CID	Confined	Theis (1935)/Hantush (1961)	4358.8	109.0	1.00E-10		
				Theis (1935) Residual drawdown/recovery	4801.6	120.0		1.165	Av. T = 4779m2/d
			Leaky	Hantush (1960) w/aquitard storage	2562.8	64.1	3.33E-07		Av. S = 6.31 x 10-9
Delta Production	Dit-04d	Lower CID	Confined	Theis (1935)/Hantush (1961)	4123.4	103.1	1.00E-10		Av. K = 119.5m/d
Bore				Theis (1935) Residual drawdown/recovery	4984.9	124.6		1.019	b = 40m
			Leaky	Hantush (1960) w/aquitard storage	2628.6	65.7	8.91E-08		
	Dit-03	DID/CID	Confined	Theis (1935)/Hantush (1961)	4579.5	114.5	2.36E-08		

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m2/d)	Hydraulic Conductivity (m/d)	Storativity	S/S'	Summary of Analysis
				Theis (1935) Residual drawdown/recovery	5824.8	145.6		0.5857	
			Leaky	Hantush (1960) w/aquitard storage	2504.2	62.6	1.13E-05		
	All Bores		Confined	Theis (1935)/Hantush (1961)	4176.5	104.4	1.40E-09		
				Theis (1935) Residual drawdown/recovery	5167.6	129.2		0.9077	
			Leaky	Hantush (1960) w/aquitard storage	1927.5	48.2	2.58E-09		

EcoNomics

resources & energy

FLINDERS MINES LIMITED
PILBARA IRON ORE PROJECT
GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-10: Eagle Pump Test Results

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m ² /d)	Hydraulic Conductivity (m/d)	Storativity	S/S'	Summary of Analysis
				Theis (1935)/Hantush (1961)	1472.9	25.4	7.74E-02		
	Fog 04o	Upper CID	Confined	Theis (1935) Residual drawdown/recovery	1411.3	24.3		1.113	Av. T = 2299m ² /d
	Eag-04s	Opper CID		Cooper-Jacob (1946)	1495.8	25.8	7.22E-02		Av. S = 3.91 x 10 ⁻²
			Leaky	Hantush (1960) w/aquitard storage	948.3	16.4	1.04E-01		
	Eag-04m	Lower CID	Confined	Theis (1935)/Hantush (1961)	2424.3	41.8	2.43E-02		Av. K = 39.6m/d
Eagle				Theis (1935) Residual drawdown/recovery	2924.5	50.4		0.580	b = 58m
Production Bore			Leaky	Hantush (1960) w/aquitard storage	1120.4	19.3	2.57E-05		* fails to converge
		Lower		Theis (1935)/Hantush (1961)	2349.8	40.5	1.26E-01		
	Eag-04d		Confined	Theis (1935) Residual drawdown/recovery	3153.7	54.4		0.467	
	_	CID/BID		Cooper-Jacob (1946)	2803.0	48.3	5.54E-02		
			Leaky	Hantush (1960) w/aquitard storage	2369.2	40.8	1.22E-01		
				Theis (1935)/Hantush (1961)	1500.9	25.9	4.08E-03		
	Eag-01	CID/BID	Confined	Theis (1935) Residual drawdown/recovery	30160.0	520.0		1.0E- 05	* residual showed poor

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m ² /d)	Hydraulic Conductivity (m/d)	Storativity	S/S'	Summary of Analysis							
									curve fit							
			Leaky	Hantush (1960) w/aquitard storage	1500.7	25.9	4.08E-03									
				Theis (1935)/Hantush (1961)	2395.4	41.3	9.84E-03									
	Eag-02 CID	Eag-02 CID	Eag-02 CID	Eag-02 CID	02 CID	CID	CID	CID	CID	Confined	Theis (1935) Residual drawdown/recovery	2935.4	50.6		0.555	
			Leaky	Hantush (1960) w/aquitard storage	1117.0	19.3	1.89E-05									
				Theis (1935)/Hantush (1961)	1015.3	17.5	1.46E-02									
	Eag-03	CID	Confined	Theis (1935) Residual drawdown/recovery	53200.0	917.2		1.0E- 05	* residual showed poor curve fit							
			Leaky	Hantush (1960) w/aquitard storage	1015.7	17.5	1.46E-02									
				Theis (1935)/Hantush (1961)	2412.0	41.6	1.77E-02									
	All Bores		Confined	Theis (1935) Residual drawdown/recovery	3593.1	62.0		0.466								
			Leaky	Hantush (1960) w/aquitard storage	2508.9	43.3	1.41E-02		* fails to converge							

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-11: Champion Pump Test Results

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m ² /d)	Hydraulic Conductivity (m/d)	Storativity	S/S'	Summary of Analysis
				Theis (1935)/Hantush (1961)	2221.7	42.7	3.66E-08		
	Chp-04s	CID	Confined	Theis (1935) Residual drawdown/recovery	1818.9	35.0		1.29 5	Av. T = 1717m ² /d
			Leaky	Hantush (1960) w/aquitard storage	1000.4	19.2	3.66E-08		Av. S = 2.63×10^{-8}
				Theis (1935)/Hantush (1961)	2125.5	40.9	3.32E-09		Av. K = 33.0m/d
	Chp-04m	BID	Confined	Theis (1935) Residual drawdown/recovery	1858.0	35.7		1.32 3	b = 52m
			Leaky	Hantush (1960) w/aquitard storage	1449.9	27.9	3.66E-08		* fails to converge
Champion				Theis (1935)/Hantush (1961)	1267.6	24.4	3.66E-12		
Production Bore	Chp-04d	BIF	Confined	Theis (1935) Residual drawdown/recovery	1514.8	29.1		1.53 4	
			Leaky	Hantush (1960) w/aquitard storage	647.6	12.5	3.66E-08		* fails to converge
			Confined	Theis (1935)/Hantush (1961)	28990.0	557.5	3.66E-08		* Removed due to poor curve fit
	Chp-01	DID/CID/BI D	Commed	Theis (1935) Residual drawdown/recovery	11350.0	218.3		0.01 0	
			Leaky	Hantush (1960) w/aquitard storage	2477.3	47.6	0.02166		* Manual fit
	Chp-02	DID/CID/BI	Confined	Theis (1935)/Hantush (1961)	2271.1	43.7	3.42E-08		
	0110-02	D	Commed	Theis (1935) Residual	1967.5	37.8		1.14	

EcoNomics

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Pumping Bore	Monitoring Bore	Units Screened	Aquifer Model	Analytical Method	Transmissivity (m ² /d)	Hydraulic Conductivity	Storativity	S/S'	Summary of Analysis
				drawdown/recovery				7	
			Leaky	Hantush (1960) w/aquitard storage	2098.9	40.4	4.87E-08		
				Theis (1935)/Hantush (1961)	1605.5	30.9	3.66E-08		
	Chp-03	CID/BIF	Confined IF	Theis (1935) Residual drawdown/recovery	679.4	13.1		2.46 6	
			Leaky	Hantush (1960) w/aquitard storage	535.8	10.3	3.66E-08		
				Theis (1935)/Hantush (1961)	1707.8	32.8	3.66E-08		
	All Bores		Confined	Theis (1935) Residual drawdown/recovery	1568.1	30.2	1.51 7		
			Leaky	Hantush (1960) w/aquitard storage	674.3	13.0	6.26E-10		

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

5.3 **Groundwater Chemistry**

Groundwater samples were taken at the end of pump testing for laboratory analysis. Major lons and physical parameters were assessed. The results are summarised below in Table 5-12. All samples are below the aesthetic guidelines for drinking water in relation to total dissolved solids.

In Summary:

- Groundwater is fresh ranging from 187 to 269 mg/L of Total Dissolved Solids (TDS);
- Calcium, magnesium and sodium are the most dominant cations;
- Chloride and bicarbonate are the dominant anions;
- pH varied between 7.03 and 7.26; and
- Results indicate that the groundwater on site is of potable and fresh quality.

Broad hydrochemical relationships between the samples have been investigated by plotting the groundwater analysis on a Piper diagram in Figure 5-10.

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 5-12: Groundwater Chemistry Data

		Bore ID		NHMRC Drinking Water Guidelines ¹			
Analyte	Units	DLT-PROD- 01	EAGLE-PROD- 01	CHAMPION- PROD-01	Health	Aesthetic	
рН		7.26	7.03	7.18	-	6.5-8.5	
Electrical Conductivity @25°C	μS/cm	352	248	315	-	-	
Total Dissolved Solids @180°C	mg/L TDS	241	187	269	-	500	
Suspended Solids	mg/L SS	<5	<5	10	-	-	
Hydroxide Alkalinity	mg/L CaCO ₃	<1	<1	<1	-	-	
Carbonate Alkalinity	mg/L CaCO ₃	<1	<1	<1	-	-	
Bicarbonate Alkalinity	mg/L CaCO ₃	113	82	99	-	-	
Total Alkalinity	mg/L CaCO ₃	113	82	99	-	-	
Sulfate	mg/L SO ₄	12	8	5	500	250	
Chloride	mg/L Cl	38	32	43	-	250	
Calcium	mg/L Ca	18	12	13	-	-	
Magnesium	mg/L Mg	18	13	15	-	-	
Sodium	mg/L Na	27	24	27	-	180	
Potassium	mg/L K	9	6	6	-	-	

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx Page 54 201012-00322 : Rev 0 : 9-Mar-12

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

		Bore ID	-	NHMRC Drinking Water Guidelines ¹			
Analyte	Units	DLT-PROD- 01	EAGLE-PROD- 01	CHAMPION- PROD-01	Health	Aesthetic	
Total Anions	meq/L	3.58	2.71	3.3	-	-	
Total Cations	meq/L	3.78	2.87	3.21	-	-	
Ionic Balance	%	2.77 N/A 1.3		1.3	-	-	
1. Australian Drinking Water Guidelines 6, NHMRC 2011; Endorsed by NHMRC August 2010; Full document: [http://www.nhmrc.gov.au/_files_nhmrc/publications/attachments/eh52_aust_drinking_water_guidelines_111130.pdf]							

resources & energy

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

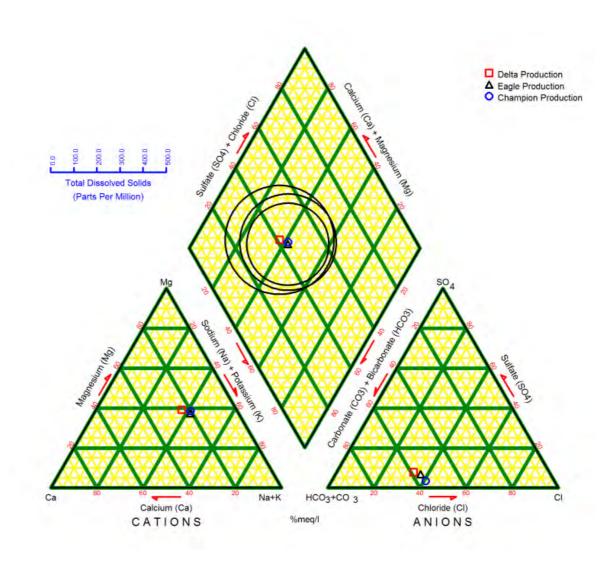


Figure 5-10: Piper Diagram for Production Bore Groundwater

6. HYDROGEOLOGICAL CONCEPTUALISATION

6.1 Sources of Information

Conceptual hydrogeological models for on and off tenement areas, have been developed using the following sources of information:

- Geological logs from exploration drilling on tenement and supplied by FMS;
- Groundwater levels recorded in open exploration holes and provided by FMS;
- Groundwater levels recorded by automatic loggers installed in monitoring bores at Champion, Eagle and Delta;
- Geological cross sections derived from the FMS resource model for all on tenement areas;
- Data and information collected during the field investigations undertaken by WorleyParsons, and described in Section 5;
- Existing published reports for the Millstream catchment area (Barnett and Commander; 1985, SKM, 1982; PWD WA,1982; Water Authority of WA, 1992; DoW, 2009;)
- DoW WinSite database data.

The hydrogeological conceptualisation presented in this section of the report has formed the basis for the groundwater modelling described in Section 7.

6.2 Geological Units

6.2.1 Classification of Units

Exploration drilling has been undertaken by FMS within the Blacksmith tenement area (E47/882), and was used to develop a detailed resource model. WorleyParsons reviewed the data from the resource model as well as exploration borehole data provided by FMS which includes information for 1,904 exploration holes (RC and or Diamond), and lithological logs for 1,926 exploration holes. The exploration data has focused on the main channel systems for CID mineralisation and the BID, both beneath and on the margins of the channels.

The geological units mapped by FMS using this resource model are shown in Table 6-1. A set of simplified geological units have been developed for the conceptual hydrogeological models by grouping units with similar hydrogeological properties derived from field investigations described in Section 5. The resulting set of simplified geological units is presented in Table 6-1, and discussed in more detail.

resources & energy

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

Table 6-1: Mapped Lithological Units and Simplified Geological Units Adopted for the **Conceptual Model**

Code	Unit Description	Simplified Unit Description				
All	Recent Alluvium	Recent (Colluvium/Alluvium)				
COL	Recent Colluvium					
DIDh	Detrital Iron Deposit - hematite dominant	DID				
DIDg	Detrital Iron Deposit - goethite dominant					
CIDh	Chanel Iron Deposit - hematite dominant	CID				
CIDg	Chanel Iron Deposit - goethite dominant					
CLY	Clay	Clay				
BIDg	Bedded Iron Deposit - goethite dominant					
BIDh	Bedded Iron Deposit - goethite with hematite	BID				
BIF	Banded Iron Formation					
SHL	Shale					
CHT	Chert	BIF				
CAV	Cavity					
DOL	Dolerite					
QTZ	Quartz Vein					

6.2.2 Stratigraphy and Depositional Environments

It is important to recognise the depositional environments of stratigraphical units within the Blacksmith tenement, before interpreting the various formations encountered while drilling. In general, the Brockman Iron Formation (BIF) has been relatively stable since its formation as part of the Pilbara Craton. The BIF consists mainly of thin laminae of ironiferous silts and shales. Oxidation of the iron rich zones in the BIF is also possible, as shown in Plate 6-1.

During Permian age, glacial environments covered the area, resulting in series of valleys carved into the weaker and more fractured zones of the BIF. Due to the resistant weathering of the BIF, channel geomorphology was a relatively slow process. Climatic environments were much more tropical and wetter from 100 million years (my) to 20my resulting in lagoonal environments, clays, mudflows, and shallower gradient channel related sedimentation. The secondary iron enrichment and formation of the, Detrital Iron Deposits (DID) and Channel Iron Deposits (CID) in the Blacksmith tenement, is related to the depositional environments which occurred during the end of the Cretaceous and into the early Tertiary (FMS, 2010; de la Hunty, 1965; Thorn et al; GSWA, 1997). The Bedded Iron Deposits (BID) were a tertiary concentration of iron deposits, and are a geochemical result of the leaching of fresh meteoric groundwater through any of the existing BIFs, CIDs, and DIDs. Plate 6-2 shows and example of the Bedded Iron Deposit juxtaposed against an adjacent large clast associated with the Detrital Iron Deposit. Plate 6-3 shows a close up of the same picture.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Plate 6-1: BIF Showing Thin Sedimentary Laminae.

Plate 6-2: Geochemically Altered BID Adjacent to Large Clastic Debris Associated with Fluvial DID

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Plate 6-3: Tertiary Geochemical Alteration of DID to BID

Due to the various geomorphological events which have existed over the last 20my, the resulting sub surface environments in the Delta, Eagle, and Champion drainages, consists of a series of inter fingered and lateral deposition of the DIDs, CIDs, tertiary mineralisation (BIDs from DID and CID), and secondarily mineralisation (BID from BIF), along with various stages of goethite and hematite mineralisation within the units. Weathering events capable of producing massive cross cutting through the deposition of the pre-existing DIDs and CIDs must have occurred to create the channel cutting, geomorphological channel configuration and deposition of the CID observed. The result has been continuous channels filled with CID, at the more distal locations of the catchments, as they enter larger drainage channels down gradient. Also sometime immediately after the major CID channel environment and resultant CID deposition, a separate thicker clayey layer more than likely in a lower energy lagoonal depositional environment associated with the Serenity drainage, has also developed.

DETRITAL IRON DEPOSITS (DID)

Detrital Iron Deposits (DIDs) are formed as a result of ancient weathering which eroded existing BIFs, BIDs and CIDs, re-depositing detrital sediments originating from ore fragments, into natural topographic lows, such as drainage channels and/or river valleys. The DIDs exhibit a characteristic of mudflow or debris flow type sedimentation, in that the detritus consists of mixed large pebble to boulder size angular and sub rounded clasts in a finer grained clay matrix. The textural variation could also be attributed to change in flow energy and differential deposition during a high velocity flood events.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

CHANNEL IRON DEPOSITS (CID)

The Channel Iron Deposits (CIDs) characterised by their pisolitic appearance, were formed during hematite-rich fragment accumulation in soils, that were derived from an iron-rich lateritic surface. The lateritic surface previously developed on underlying iron-rich rocks. The warm-to-tropical climate favoured the precipitation of further goethite resulting in pisolitic concentric layers around the hematite cores, as well as around fragments of woody material (later replaced by goethite).

Further geomorphological and weathering processes resulted in the deposition of the iron-rich pisolitic material into the beds of incised meandering low-energy and shallow gradient streams. As CID was further oxidised and altered to goethite, the cementation of the fragments resulted in a combination of CID and more clay rich pisolitic/goethitic texture. This resulted in a greater degree of secondary permeability in the highly weathered deposits. Plate 6-4 shows an outcrop from the upper reaches of the Eagle tenement, and the degree of goethitic alteration possible, adjacent to non-goethitic alteration (note the subtle disconformity between the two units). The exposed units are not likely to be CID units associated with drilling in the deeper channels, but show the stark contrast in weathering and rock types resulting in goethitic alteration.

BEDDED IRON DEPOSITS (BID)

Numerous examples of commercially important iron ore deposits in the Pilbara are thought to be formed by natural enrichment of BIF eventually into BID (e.g. the Brockman and Marra Mamba Iron Formations). Hypogene and supergene enrichment caused by the continuous iron enrichment within the ancient groundwater system, resulting in high concentrations of iron mineralisation occur. The non-iron minerals were largely replaced by hydrous iron oxides (goethite), partly dissolved out, while the magnetite in the BIF oxidised to hematite.

In the case of BID deposition associated with the Blacksmith tenement, it is probable that a fairly recent geochemical tertiary BID transition from iron rich rocks could be a result of continual flushing of fresh groundwater across iron mineralised rocks (BIFs, DIDs, or CIDs). The diagenesis of detrital mudflows and debris flows would need to be post deposition of the detrital sediments as is shown in Plates 6-2 and 6-3. If the process was only restricted to ancient BID diagenesis, then more recent depositional environments such as DID, could not host BID (as seen in Plate 6-3).

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Plate 6-4: Outcrop in upper reaches of Eagle tenement, showing goethitic alteration adjacent to minimal or non-goethitic alteration.

6.3 Aquifer Characteristics

Interpretation of drilling and pump test results in Section 5 suggests that the CID and BID units have very similar hydrogeological properties and contain the bulk of groundwater (Section 5). Therefore the BID and CID units have been combined, defined as the main aquifer, and assigned the same hydrogeological properties for the purpose of groundwater modelling for off tenement areas.

The extent of the aquifers was inferred using on tenement data and extrapolated to off tenement areas. Aeromagnetic conductivity data flown across the Delta, Champion and Eagle tenements, and also the adjacent off tenement areas was also used to extrapolate the channel geomorphological geometry. The local extent of inferred aquifers for on off tenement areas is presented in Figure 6-1.

The regional extent of the CID unit has also been mapped in Figure 6-2 using data presented by FMG 13th International River Symposium (2011) to assess the degree of interconnectivity between aquifer systems throughout the Caliwigina Creek and Weelumurra Creek catchments. The CID units mapped by FMG are associated with drainage patterns and appear to have been mapped using drainage, geology and topography as a guide. Additional CID units have also been mapped in Figure 6-2 using this methodology as well as available geological data from the Blacksmith tenement to provide more detail on the potential aquifer extents within the study area. The CID extents presented in this figure suggest there is potential for aquifer interconnectivity between and across catchment areas via the CID units.

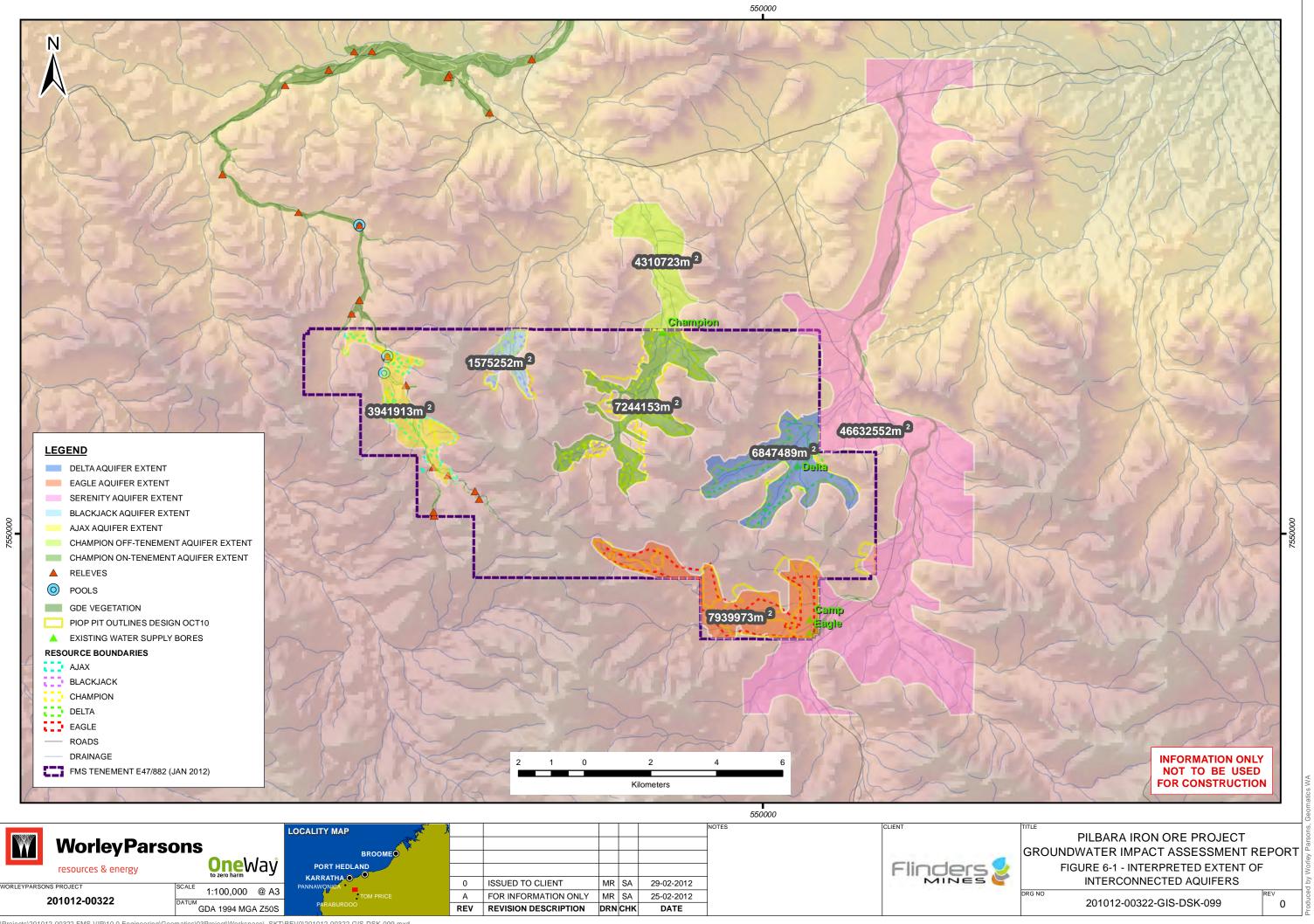
FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

During drilling, it became apparent that the presence of clay units above the CID was responsible for the semi confined conditions. Of primary interest, was the degree of confinement, as well as lateral and spatial variations associated with the clay units.

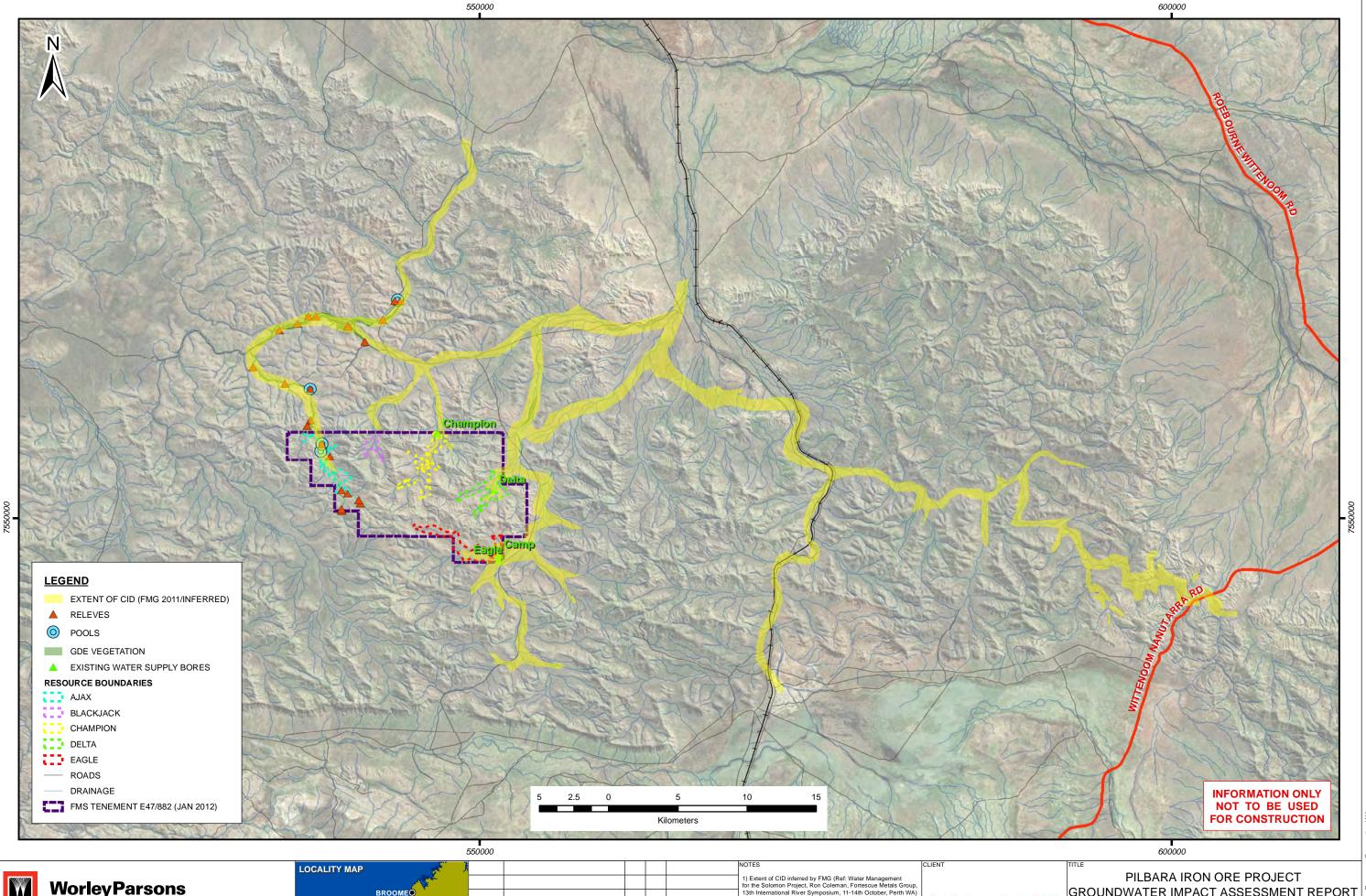
Drilling data collected at Delta, Eagle and Champion reveals the following:

- Delta: There is a CID unit draining north east towards Serenity that is locally confined by a • clay unit extending out into Serenity;
- Eagle: There is CID unit that consists of a non-continuous lower clay unit separating an upper and lower CID unit, as well as an upper clay unit, behaving as a semi-confining laterally continuous unit, above the CID; and
- **Champion:** There is a continuous CID unit that contains the majority of the groundwater, and drains to the north. The clay encountered is scattered and not continuous within and beneath the DID and hence the CID unit is considered as an unconfined aquifer.

Figure 6-3 shows the subsurface mapped units of CID and clay encountered at Eagle and Delta.


6.4 Groundwater Levels and Recharge

WorleyParsons installed a series of 52 monitoring bores at selected locations at discretely screened intervals within all tenements. A groundwater level contour map (Figure 6-4) has been developed using dipped water level readings from constructed bores. The contours show the direction of groundwater flow from the high to low elevations within the catchments, consistent with the topography. The Ajax characterising report provided in Appendix 1 provides some groundwater level data, derived from limited data, which was used to develop contours. These contours show the direction of groundwater flow to the north, consistent with topography. There was insufficient data for Blackjack to develop groundwater contours, however the direct of groundwater flow is expected to be to the north and following topography.


There is no recorded (publically available) groundwater level data available for Serenity or north of Champion, so it has been assumed that the direction of groundwater flow follows topography and that the hydraulic gradients can be extrapolated to off tenement areas using on tenement groundwater levels and topographic gradients.

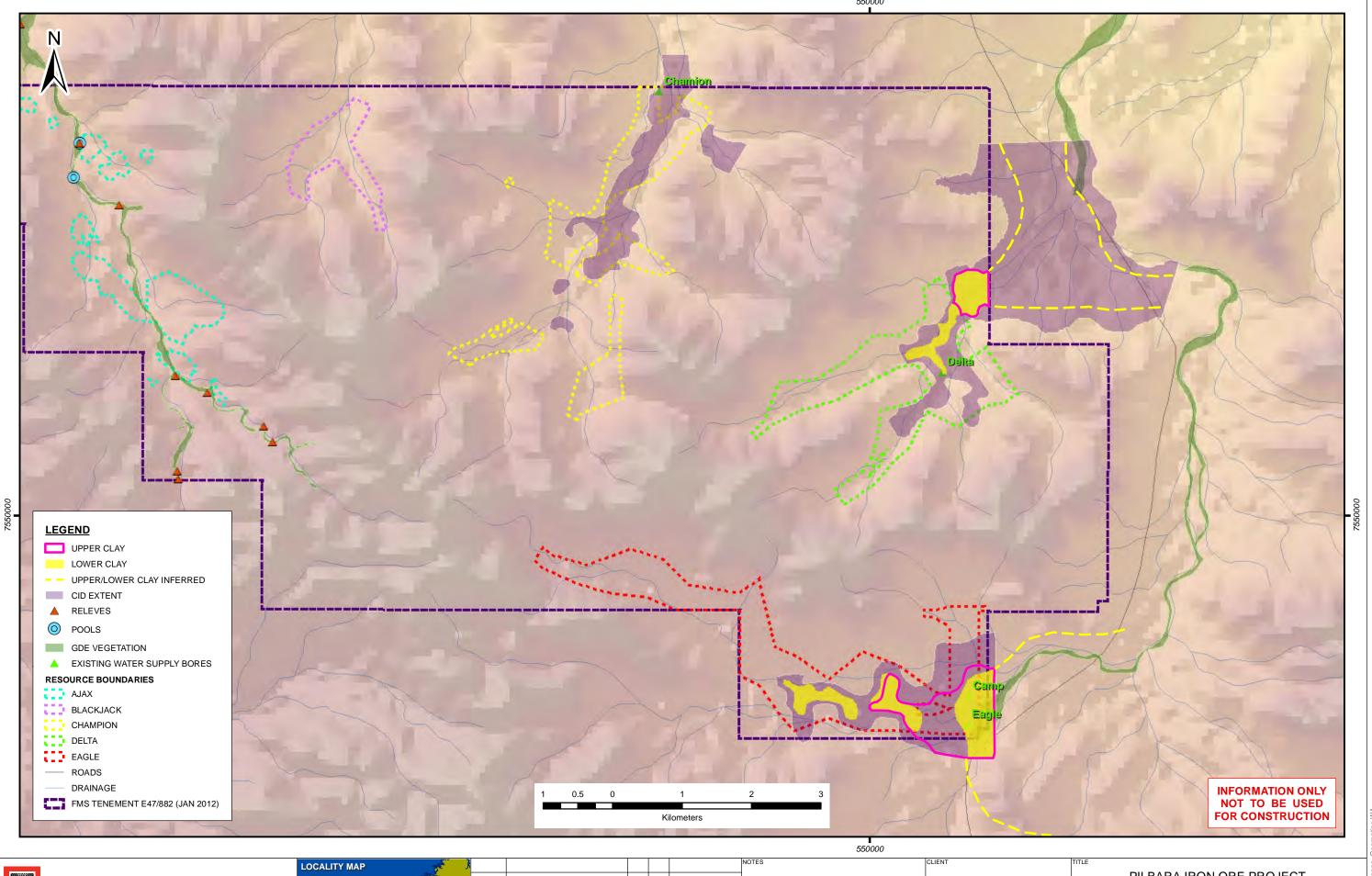
Water Level Data Assessment 6.4.1

Field observations and exploration borehole log assessments have identified the presence of sediment layering and inter bedding within the Champion, Delta, and Eagle tenements. For the most part, DID and CID are inter layered throughout. Exposed BID also occurs along the flanks as well as at depth. BID was also identified to be one of the main receptors of surface to groundwater recharge.



l:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-099.mxd

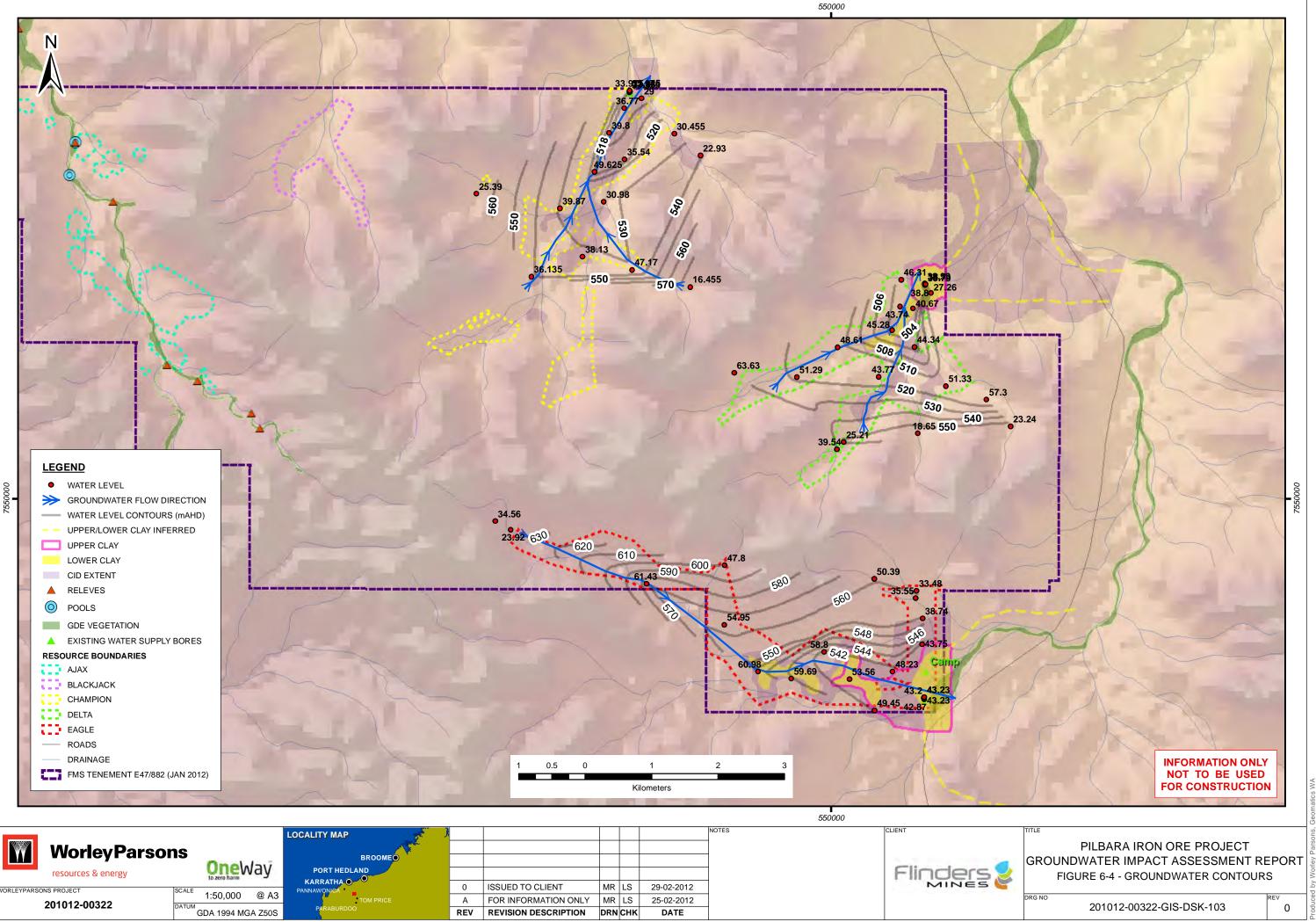
									NOTES	CLIENT
	WorleyParson	ıs	BROOMEO						1) Extent of CID inferred by FMG (Ref: Water Management for the Solomon Project, Ron Coleman, Fortescue Metals Group, 13th International River Symposium, 11-14th October, Perth WA)	
	resources & energy	One Way	PORT HEDLAND							Flinders
WORLEYPAR	SONS PROJECT	SCALE		0	ISSUED TO CLIENT	MR	LS	29-02-2012		MINES
	201012-00322	1:250,000 @ A3	TOM PRICE	А	FOR INFORMATION ONLY	MR	LS	28-02-2012		
	201012 00022	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN	СНК	DATE		


\perworfil1\infstruclib\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-108.mxd

0

GROUNDWATER IMPACT ASSESSMENT REPORT FIGURE 6-2 - INFERRED REGIONAL EXTENT OF CID

			LOCALITY MAP						NOTES	CLIENT
W	WorleyParso	ns							_	
			BROOME							
	resources & energy	One Way	PORT HEDLAND]	Flinders 👷
WORLEYPA	RSONS PROJECT	SCALE 1 50 000 0 40		0	ISSUED TO CLIENT	MR	LS	29-02-2012		MINES
	201012-00322	1:50,000 @ A3	TOM PRICE	A	FOR INFORMATION ONLY	MR	LS	27-02-2012]	
	201012 00022	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN	снк	DATE		


I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-101.mxd

201012-00322-GIS-DSK-10	1

0

PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT FIGURE 6-3 - EXTENT OF CID AND CLAY

										000000	
				LOCALITY MAP						NOTES	CLIENT
Worley	Parson	2									
			125.8	BROOME							
resources & er	nergy	Onew	lay							1	Flinders
WORLEYPARSONS PROJECT			0.40		0	ISSUED TO CLIENT	MR L	.S	29-02-2012	1	MINES
201012-00322	2	1:50,000	@ A3	TOMPRICE	Α	FOR INFORMATION ONLY	MR L	S	25-02-2012		
201012-0032	.2	GDA 1994 MG	A Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN C	нк	DATE	1	

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-103.mxd

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Discretely intervals were screened in the monitoring bores within all tenements, to help quantify the relationship between surface water runoff, groundwater recharge to shallow sediments and groundwater recharge to the main CID aquifer at depth. Thirty two (32) of these monitoring bores were equipped with automatic water level recorders (InSitu RuggedTROLL's) and water level data recorded since November 2011. The location of these water level recorders are shown in Figure 6-5 (Champion), Figure 6-6 (Delta), and Figure 6-7 (Eagle).

The CID unit contains the largest volume of groundwater storage throughout the majority of all three tenements. As previously discussed, parts of the CID unit can be altered to BID, depending upon continual movement of fresher meteroric groundwater through the system. This is consistent with the results of pump test analysis, which suggests that the BID and CID units have very similar hydraulic properties.

The mechanism for groundwater recharge can be recognised as a series of catchments directing rainfall runoff to watercourses that flow across (intersect) areas where there is exposed BID, which is highly permeable and allows for significant groundwater recharge. This groundwater recharge may flow through the BID and into the CID/BID units at depth where there is hydraulic connectivity.

The bulk of groundwater storage is held in CID/BID units that range from unconfined to confined, depending upon the location of the CID/BID zone with respect to above confining clay layers. After careful review and evaluation of the data, it is recognised that five distinct surface and/or groundwater flow regimes exist. These are,

- **Upper tenement recharge zones -** zones within the upper reaches of the fluvial channels, which may or may not be recharging the main storage within the CID aquifer. Recharge in these areas mostly occurs in areas where watercourses intersect areas of exposed BID. These zones transmit groundwater but the aquifers are understood to be potentially thin and have hydraulic gradients that prevent large volumes of groundwater from being stored;
- **Mid tenement groundwater zones -** zones in the mid fluvial channel, which transmit water to the lower gradients, and stores moderate volumes of groundwater;
- **Lower tenement groundwater zones -** zones in the lower fluvial channel which have the greatest storage capacity within the groundwater aquifer, and are in a partially confined state;
- Surface water zones zones which transmit surface water flow rapidly via watercourses through the system, and therefore potentially do not allow for significant recharge to the subsurface groundwater system; and
- **Groundwater above BIF -** zones which are structurally, stratigraphical, and hydraulically isolated from the main CID/BID groundwater flow within the system.

6.4.2 Surface-Groundwater Water Interaction

The water level data recorded by the 32 automatic loggers installed in monitoring bores across Champion, Eagle and Delta has been analysed to gain a better understanding of the surface-

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

groundwater interactions and confirm the dominant mechanisms and flow pathways for groundwater recharge following rainfall events.

Groundwater hydrographs recorded at monitoring bores at Champion, Delta, and Eagle are provided in Figures 6-5, 6-6, and 6-7. Monitoring bore construction details, water level data and interpreted trends observed in groundwater hydrographs are also summarised for each of the monitoring bores in Tables 6-2, 6-3, and 6-4. Consistent ID numbers are provided to allow for comparison between figures and tables.

Analysis of the groundwater data suggests that recharge to the groundwater system primarily occurs along the flanks of the valleys, at the contact zone between the steeply dipping exposed BIF, and areas with exposed and highly permeable BID. Coincidentally, the BID is formed from the meteoric surface waters interacting with the exposed BIF, or DID, and geochemically altering to BID, which increases the permeability and promotes groundwater recharge.

Monitoring bore HPRC4122, is located in the upper reaches of the Eagle catchment and in an area where exposed BID is intersected by a watercourse draining a significant catchment area. The monitoring bore is screened within the BID unit. The groundwater hydrograph for this monitoring location shows an instantaneous one day response to rainfall, as a result of direct recharge to the BID. Comparison with rainfall records also indicates that two smaller rainfall events were needed to saturate the catchment enough to allow for significant volumes of runoff to be generated and for recharge to occur in the areas where the watercourses intersect highly permeable outcrops of BID.

The data recorded by the surface stream gaging station installed at Delta HPRC0269, shows an instantaneous response to rainfall. The water level data recorded in monitoring bores HPRC0269 and Delta-04-Nested, screened within the DID and CID units respectively and located adjacent to the stream gauge, shows that there was no response in the DID and a delayed/dampened response to rainfall and recharge. This suggests that surface water recharge is not transmitted to the groundwater aquifer uniformly throughout the tenement, and that the most of the surface water runs off the exposed colluvium or DID as sheet flow and surface water runoff with little or no vertical infiltration. Analysis of the geology on tenement suggests that surface infiltration is limited by:

- The inherent clay matrix which is part of the original depositional environment of the DID mud flow/debris flow unit; and
- Recent fluvial colluvium processes that are responsible for clay layers formed by the settling of fine sediments following runoff events.

Nearly all of the exploration holes drilled throughout all tenements were dry from the surface to about 40 meters depth, at which point damp conditions were encountered. Larger volumes of water were typically not encountered until the CID unit was intersected.

There is potential for shallow groundwater to be present in stream beds, perched in places by the presence of intermittent clay horizons below the more permeable outwash cutbanks of the surface

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

fluvial systems. These perched zones may not be extensive, and probably random throughout the valleys. This perched groundwater can be as much as 40 meters above the actual groundwater aquifer in the CID unit.

Monitoring data recorded at Delta HPRC2144, shows a constant reduction in groundwater levels which suggests that the groundwater aquifer at this location is part of a constantly discharging system. The majority of monitoring bores located in the upper reaches of the catchments at Champion, Delta and Eagle show the same trend, which suggests that the aquifer systems are constantly discharging to the off tenement areas where the aquifers and storage capacities are much larger.

The monitoring bores located in the lowest areas of the catchment and screened within the CID showed delayed response to rainfall (approximately 9 to 10 days). The delay is most likely a result of the time groundwater recharge takes to flow from the outer flanks of the catchment where there are areas of exposed BID, then down through the CID/BID aquifer, and into the deepest section of the CID aquifer. The response is potentially dampened by the significant storage capacity of the aquifer at this location, associated with a larger and more extensive aguifer. The dampened response is more evident at Delta and Eagle, where semi confining conditions have been observed.

Monitoring location Delta HPRC3029 is located and screened just outside of the CID aguifer. The monitoring data collected shows minimal change in levels, which could be due to the presence of a structural high (elevated BIF bedrock) located down gradient of the monitoring bore, which may be inhibiting subsurface flow.

6.4.3 Potential Subsurface Inflows

The production bores at Delta and Eagle, were screened in semi-confined aquifers and Figure 6-6 (Delta Nested (11), and Eagle Nested (8)) shows a delayed response to rainfall and recharge. The monitoring data shows groundwater levels remaining fairly stable prior to the rainfall event, and remains that way until 9 to 10 days after the event occurs. The CID/BID units which comprise the bulk of storage within all groundwater aguifer systems are in a semi-confined state in Delta and Eagle, while unconfined at Champion. Delta and Eagle which are both fairly identical in their hydrogeological characterisation and properties, are semi-confined by the laterally continuous clay unit and eventually discharge into Serenity (Figure 6-3). As the CID aguifer at Serenity is also saturated with groundwater, discharge from the Delta and Eagle tenements into Serenity is relatively slow, as is evident by the groundwater monitoring bore behaviour.

The production bore at Champion drains into an unconfined groundwater system, which does not have a continuous clay cap over the CID unit (Figure 6-5). According to the drilling log, at the Champion production bore, Champion has a greater degree of weathering on top of the lower BIF unit, which provides some storage and saturation not recognised in the BIF at Delta or Eagle. Groundwater levels recorded in monitoring bores installed across the catchment at Champion show a

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

more noticeable decline in water levels in time, which suggests that the system is draining, albeit at a slow rate.

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 6-2: Summary of monitoring bore details, water level data and interpreted trends observed in groundwater hydrographs at Champion

Monitoring ID	Screened Interval (mbgl)	Water Level 28/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
			Very low hydraulic gradient		
				Hydraulic gradient = 1:2300	Continuous saturated discharge (minor)
HPRC0395	39.2 – 51.20	515	BID & BIF	Aquifer screened = Edge of Confined	No response to event
				Saturated thickness of aquifer = 11.8m	Larger groundwater system
					Steep hydraulic gradient
				Hydraulic gradient = 1:45	Continuous saturated discharge (major)
HPRC0689	2.0 - 29.0	566.4	BID & BIF	Aquifer screened = Unconfined	Minimal response to event ~ 2 days
				Saturated thickness of aquifer = 3.0m	Directly influenced by recharge, edge of aquifer response after saturation
					Low hydraulic gradient
				Hydraulic gradient = 1:120	Continuous saturated discharge (minor)
HPRC0919	42.0 - 59.0	530.4	CID & BIF	Aquifer screened = Unconfined	Minimal response to event
				Saturated thickness of aquifer = 20.7m	Edge of aquifer, response after saturation
					Moderate hydraulic gradient
HPRC0531	18.0 – 42.0	18.0 – 42.0 541		Hydraulic gradient = 1:65	Negligible discharge
				Aquifer screened = Unconfined	No response to event

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 28/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
				Saturated thickness of aquifer = 12.5m	Water on BIF, not major part of aquifer
HPRC0352	15.0 – 30.0	DRY	DID	Hydraulic gradient = N/A Aquifer screened = DRY Saturated thickness = N/A	Dry Bore No response to event Not part of groundwater aquifer
HPRC0792	11.0 – 38.0	DRY	DID	Hydraulic gradient = N/A Aquifer screened= DRY Saturated thickness of aquifer = N/A	Dry Bore No response to event Not part of aquifer
HPRC1026	2.0 - 22.0	579.1	BID & BIF	Hydraulic gradient = 1:25 Aquifer screened = Unconfined Saturated thickness of aquifer = 5.9m	Steep hydraulic gradient Continuous saturated discharge (minor) Minor response to event ~ 2 days Delayed resposne after saturation
HPRC0631	30.2 – 48.20	517.1	CID & BIF	Confined behaviour through CID Hydraulic gradient = 1:190 Aquifer screened = Confined Saturated thickness of aquifer = 12.5m	Low hydraulic gradient Continuous saturated discharge (minor) No response to event Delayed response, edge of larger groundwater aquifer
HPRC0973	16.0 – 52.0	535.8	DID, BID & BIF		Moderate hydraulic gradient

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 28/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
				Hydraulic gradient = 1:60	Continuous saturated discharge (minor)
				Aquifer screened = Edge of Confined	Major response to event ~ 2-3 days
				Saturated thickness of aquifer = 25.0m	Directly influenced by recharge
	59.0 - 69.0 (s)	514.7 (s)	CID (s)		
Champion- 04-				Hydraulic gradient = N/A	Continuous saturated discharge (minor)
Nested	91.0 – 100.0 (d)	514.7 (d)	BIF (d)	Aquifer screened = Confined	No response to event
				Saturated thickness of aquifer = 66.4m	Larger groundwater aquifer

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 26/1/2012 (mAHD)*			Summary of Discharge and 14/1/2012 Recharge Event Behaviour
HPRC0216	19.0 – 31.0	DRY	DID	Hydraulic gradient = N/A Aquifer screened = Dry	Dry bore; saturated recharge from mounding in BID. No response to event
				Saturated thickness of aquifer = N/A	
					Low hydraulic gradient
				Hydraulic gradient = 1:155	Continuous saturated discharge (major)
HPRC2144	52.0 – 69.0	510.8	BIF	Aquifer screened = Edge of Confined	Minor response to event ~3 days
				Saturated thickness of aquifer = 20.9m	Edge of groundwater aquifer
					Moderate hydraulic gradient
				Hydraulic gradient = 1:75	Continuous saturated discharge (minor)
HPRC2084	2.0 – 76.0	528.1	DID, BID & BIF	Aquifer screened = Unconfined	Negligible response to event
				Saturated thickness = 12.9m	
					Low hydraulic gradient
				Hydraulic gradient = 1:130	Continuous saturated discharge (minor)
HPRC2249	35.5 – 53.5	514.3	BIF	Aquifer screened= Unconfined	No response to event
				Saturated thickness of aquifer = 10.2m	

Table 6-3: Summary of monitoring bore details, water level data and interpreted trends observed in groundwater hydrographs at Delta

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 26/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
HPRC2302	9.0 – 33.0	552.2	DID	Hydraulic gradient = 1:30 Aquifer screened = Unconfined Saturated thickness of aquifer = 10.3m	Steep hydraulic gradient Continuous saturated discharge (minor) Minor delayed response to event ~5 days
HPRC0285	27.0 – 51.0	540.3	BID & BIF	Hydraulic gradient = 1:13 Aquifer screened = Unconfined Saturated thickness of aquifer = 11.9m	Steep hydraulic gradient Continuous saturated discharge (minor) Major response to event ~instantaneous-1 day
HPRC5359	2.3 – 28.3	557.5	BID & BIF	Hydraulic gradient = 1:25 Aquifer screened = Unconfined Saturated thickness of aquifer = 5.6m	Steep hydraulic gradient Continuous saturated discharge (minor) Minor recharge response to event ~2 days Not in recharge catchment zone
HPRC3029	46.0 – 76.0	510.2	BIF	Hydraulic gradient = 1:190 Aquifer screened = Edge of Confined	Low hydraulic gradient Negligible discharge Minor recharge response to event 1-2 days

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT

GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 26/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
				Saturated thickness of aquifer = 0.8m	Minor water BIF
Stream Gauge	Screened in shallow alluvium to base of channel	-	Surface stream	Hydraulic gradient = N/A Aquifer screened = N/A	Very minor response to event ~instantaneous, dissipates rapidly. Overland Flow.
Gauge			gauge.	Saturated thickness of aquifer = N/A	uissipales rapidly. Overland ridw.
HPRC0269	24.0 – 27.5	512.26	DID	Hydraulic gradient = N/A Aquifer screened = Unconfined Saturated thickness of aquifer = 12.4m	Dry bore No response to event
Delta- 04-	68.3 – 77.4 (s)	501.86 (s)	uCID (s)	Hydraulic gradient = N/A Aquifer screened =	No deep discharge; semi-confined system Minor recharge response to event ~9 days
Nested	84.4 – 98.6 (d)	501.85 (d)	ICID (d)	Confined Saturated thickness of aquifer = 59.8m	through entire CID layer Part of Major groundwater aquifer

resources & energy

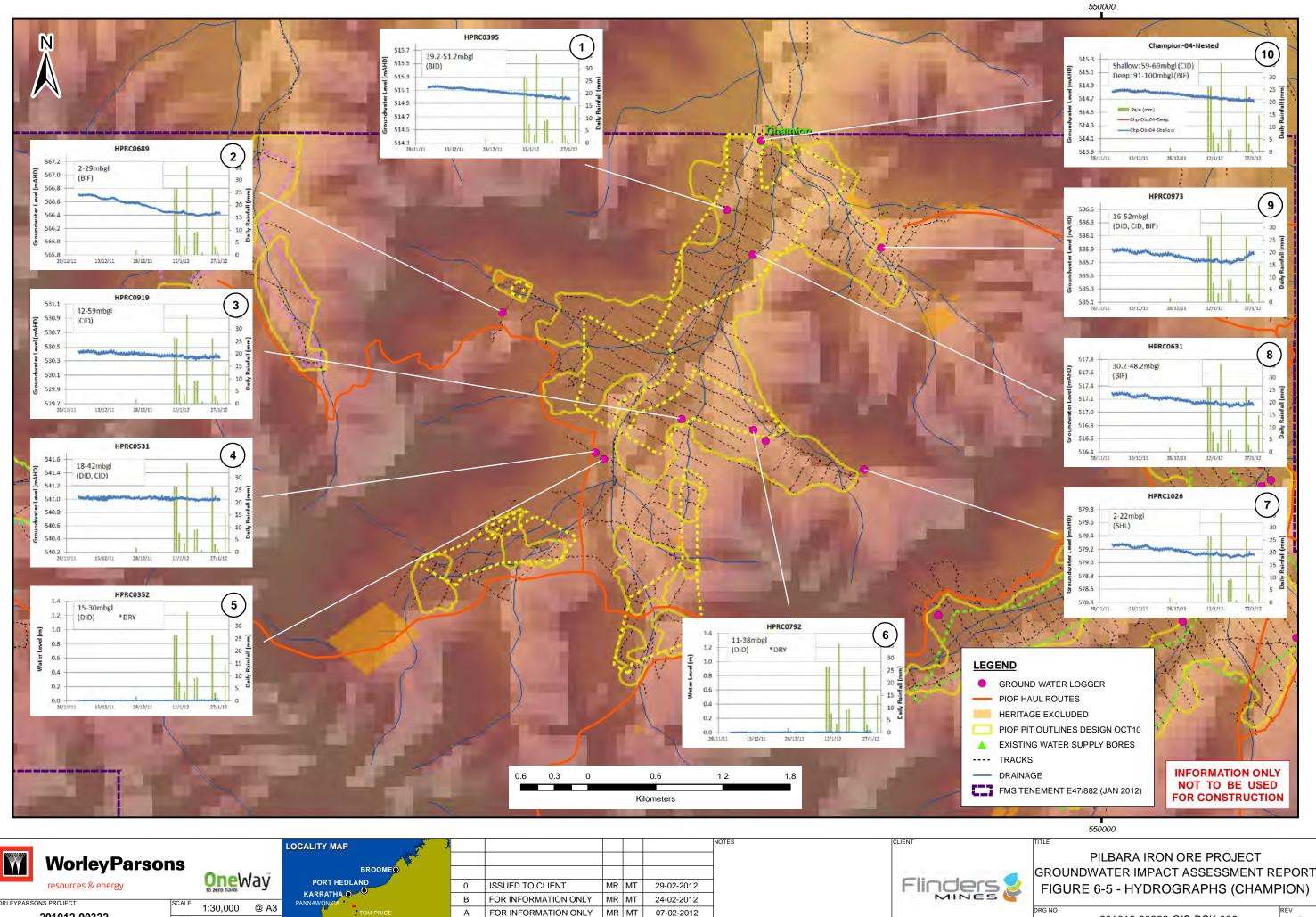
FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 27/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
HPRC0035	2.0 – 51.5	599.1	DID & BIF	Hydraulic gradient = 1:25 Aquifer screened = Unconfined Saturated thickness of aquifer = 3.7m	Steep hydraulic gradient Continuous saturated discharge (major) No response to event
HPRC0098	53.0 – 71.4	569.4	BID & BIF	Hydraulic gradient = 1:340 Aquifer screened = Unconfined Saturated thickness of aquifer = 10.0m	Low hydraulic gradient Negligible discharge No response to event
HPRC4122	1.0 – 37.0	639.1	BID & BIF	Hydraulic gradient = 1:95 Aquifer screened = Unconfined Saturated thickness = 2.4m	Moderate hydraulic gradient Continuous saturated discharge (minor) Major pulse response to event ~1day Catchment recharge to directly discharging aquifer
HPRC4118	3.0 – 25.5	637 DID & CID 4		Hydraulic gradient = 1:32 Aquifer screened = Unconfined Saturated thickness of aquifer = 1.6m	Steep hydraulic gradient Negligible discharge No response to event Early response questionable, possibly slipping

Table 6-4: Summary of monitoring bore details, water level data and interpreted trends observed in groundwater hydrographs at Eagle

resources & energy

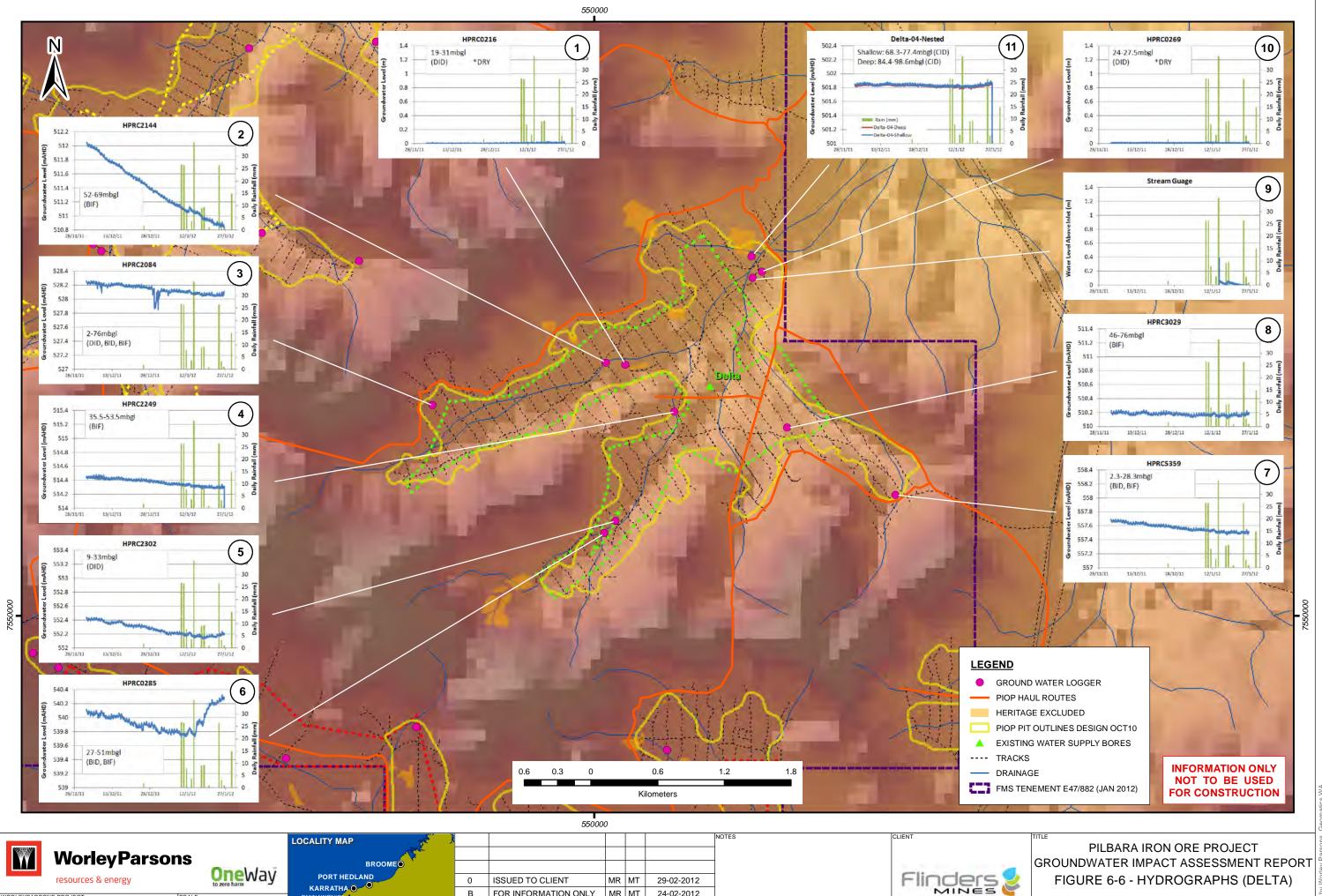
FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT


Monitoring ID	Screened Interval (mbgl)	Water Level 27/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
					Moderate hydraulic gradient
				Hydraulic gradient = 1:60	Continuous saturated discharge (minor)
HPRC0108	48.5 – 60.5	48.5 - 60.5 565 DID		Aquifer screened = Unconfined Saturated thickness of aquifer = 5.6m	Minor recharge response to event ~ 2 days
					Low hydraulic gradient
				Hydraulic gradient = 1:430	Negligible discharge
HPRC4180	55.7 – 73.8	543.3	DID & BIF	Aquifer screened = Edge of Confined	Minor recharge response to event ~ 2 days
				Saturated thickness of aquifer = 14.7m	Saturation resting on BIF
					Very low hydraulic gradient
Eagle-Obs-				Hydraulic gradient = 1:6000	Negligible discharge
01	41.5 – 113.2	541.2	CID & BIF	Aquifer screened = Confined	Minor response to event ~3 days
				Saturated thickness of aquifer = 59.6m	Confined aquifer
	56.0-65.0 (s)	540.9 (s)	DID (s)		
Eagle-04	88.5 – 114.0 (d)	540.9 (d)	CID & BIF (d)	Hydraulic gradient = N/A	Negligible discharge
-Nested				Aquifer screened = Confined	Minor response to event ~ 5 days
				Saturated thickness of aquifer = 70.8m	Confined aquifer
Eagle-Obs-	40.0 80.0	E 4 1			Very low hydraulic gradient
ັ 03	40.0 - 82.0	541	CID & BIF	Hydraulic gradient = 1:8000	Negligible discharge

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Monitoring ID	Screened Interval (mbgl)	Water Level 27/1/2012 (mAHD)*	Geology of screened interval	Hydrogeological Characteristics	Summary of Discharge and 14/1/2012 Recharge Event Behaviour
				Aquifer screened = Confined	Minor response to event ~ 2-3 days
				Saturated thickness of aquifer = 38.3m	Confined aquifer
					Steep hydraulic gradient
				Hydraulic gradient = 1:40	Continuous saturated discharge (major)
HPRC4053	25.6 – 43.7	560.9	DID	Aquifer screened = Unconfined Saturated thickness of aquifer = 11.3m	Minor recharge response to event ~ 1 day
					Moderate hydraulic gradient
				Hydraulic gradient = 1:65	Continuous saturated discharge (moderate)
HPRC4029	2.0 – 62.5	560.6	DID & BIF	Aquifer screened = Unconfined Saturated thickness of aquifer = 12.1m	No response to event



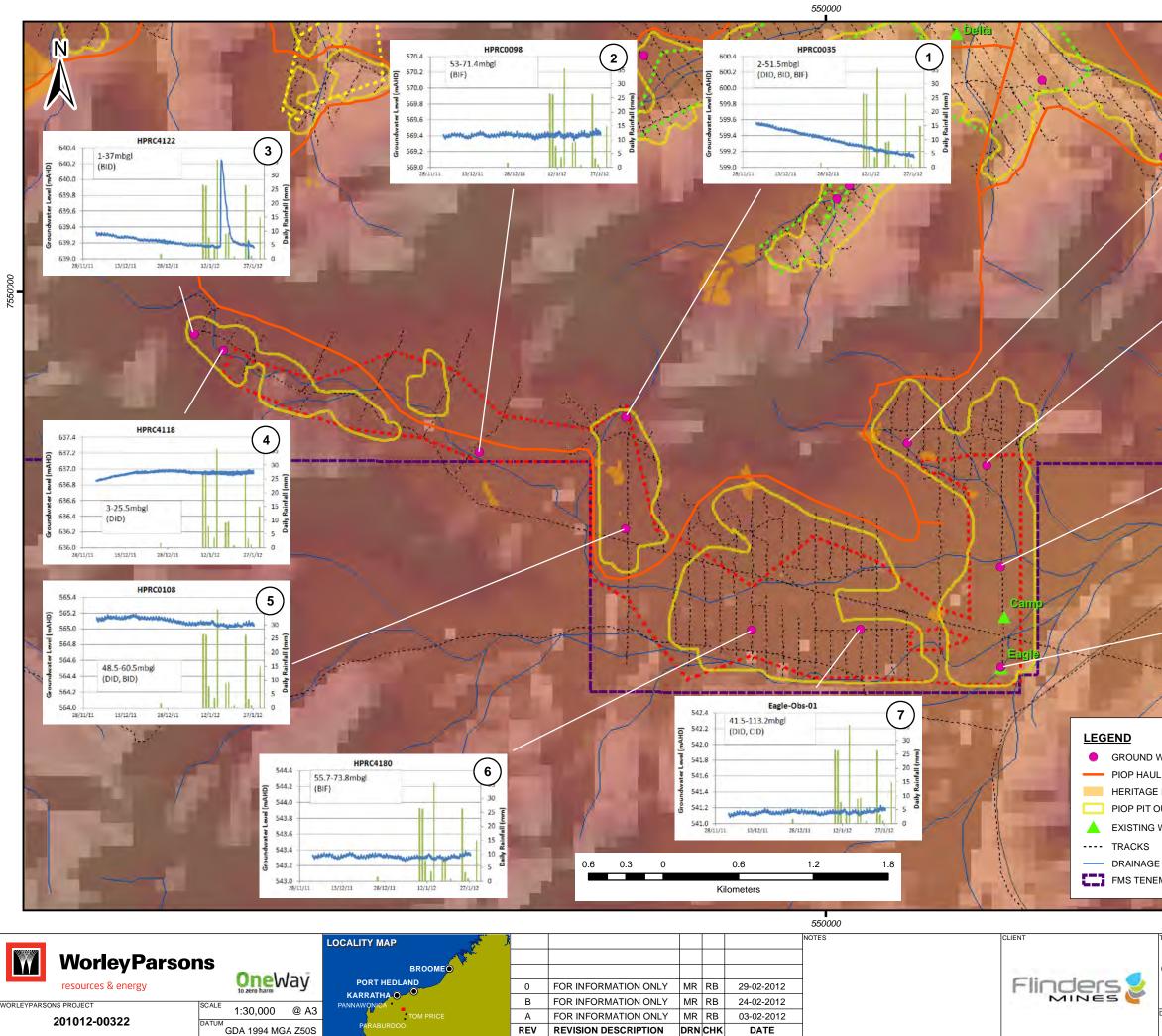
		LOCALITY MAP						NOTES	CLIENT
Worley Parso	ne								
		BROOME							
resources & energy	One Way		0	ISSUED TO CLIENT	MR	MT	29-02-2012]	Flinders 👷
WORLEYPARSONS PROJECT	SCALE LODGED ON LO		В	FOR INFORMATION ONLY	MR	MT	24-02-2012		MINES
201012-00322	SCALE 1:30,000 @ A3	TOM PRICE	Α	FOR INFORMATION ONLY	MR	MT	07-02-2012]	
201012-00322	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN	снк	DATE]	

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-086.mxd

201012-00322-GIS-DSK-086

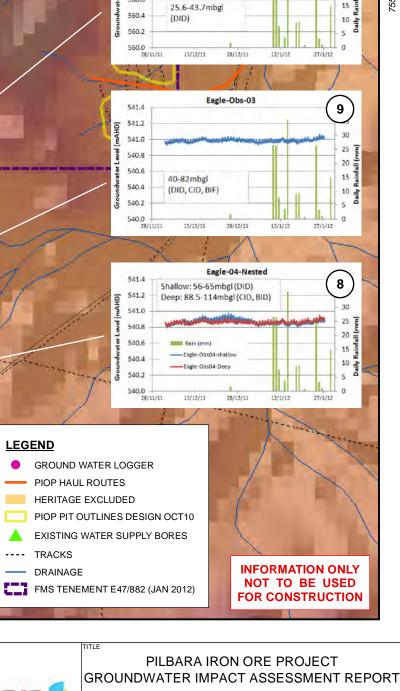
0

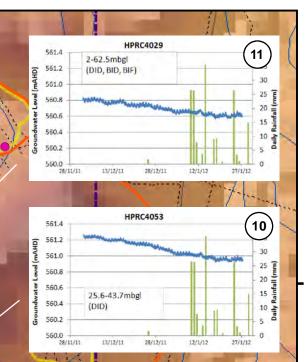
	NXX///2								NOTES	CLIENT
		ns OneWav	BROOMEO							
	resources & energy	to zero harm	PORT HEDLAND KARRATHA O	0	ISSUED TO CLIENT	MR		29-02-2012		
WORLE	YPARSONS PROJECT	SCALE 1:30,000 @ A3	PANNAWONICA	в	FOR INFORMATION ONLY	MR	IVI I	24-02-2012		
	201012-00322	1:30,000 @ A3	TOM PRICE	Α	FOR INFORMATION ONLY	MR	RB	03-02-2012		
	201012 00022	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN	снк	DATE		


I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-084.mxd

201012-00322-GIS-DSK-084

0


FIGURE 6-6 - HYDROGRAPHS (DELTA)



l:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-085.mxd

201012-00322-GIS-DSK-085

FIGURE 6-7 - HYDROGRAPHS (EAGLE)

0

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

6.5 Conceptual Hydrogeology – Summary

6.5.1 **Conceptual Models**

Groundwater recharge to the aquifers is a direct result of the stratigraphy and geology associated with the surface water drainage within each catchment. Groundwater recharge is a result of surface water infiltration into surface sediments. If the surface sediments are relatively impermeable, then the majority of surface water will run off. More permeable surface rocks such as BID that are exposed and intersected by watercourses tend to offer a higher degree of infiltration when compared with clay rich surface colluvium and clay rich surface DID.

Upon infiltration, groundwater moves down gradient, ultimately intercepted by deeper channels which are often filled with more permeable CID and BID deposits. These CID and BID filled channels offer a greater degree of permeability as well as storage, compared to other sedimentary units in the drainages. They are typically located at deeper elevations within the valleys themselves. These deeper units can often be hydrogeologically separated from upper recent fluvial/alluvial deposits associated with ephemeral creeks, by low permeability units/layers. These recent deposits often contain shallow groundwater perched above clay layers formed/deposited by the inherent fluvial channel geomorphology. The groundwater is generally localised and is not found everywhere within the catchment. There is currently insufficient data to confirm the presence, depth and extent of this perched groundwater however it is likely to be present in the areas where GDEs have been identified.

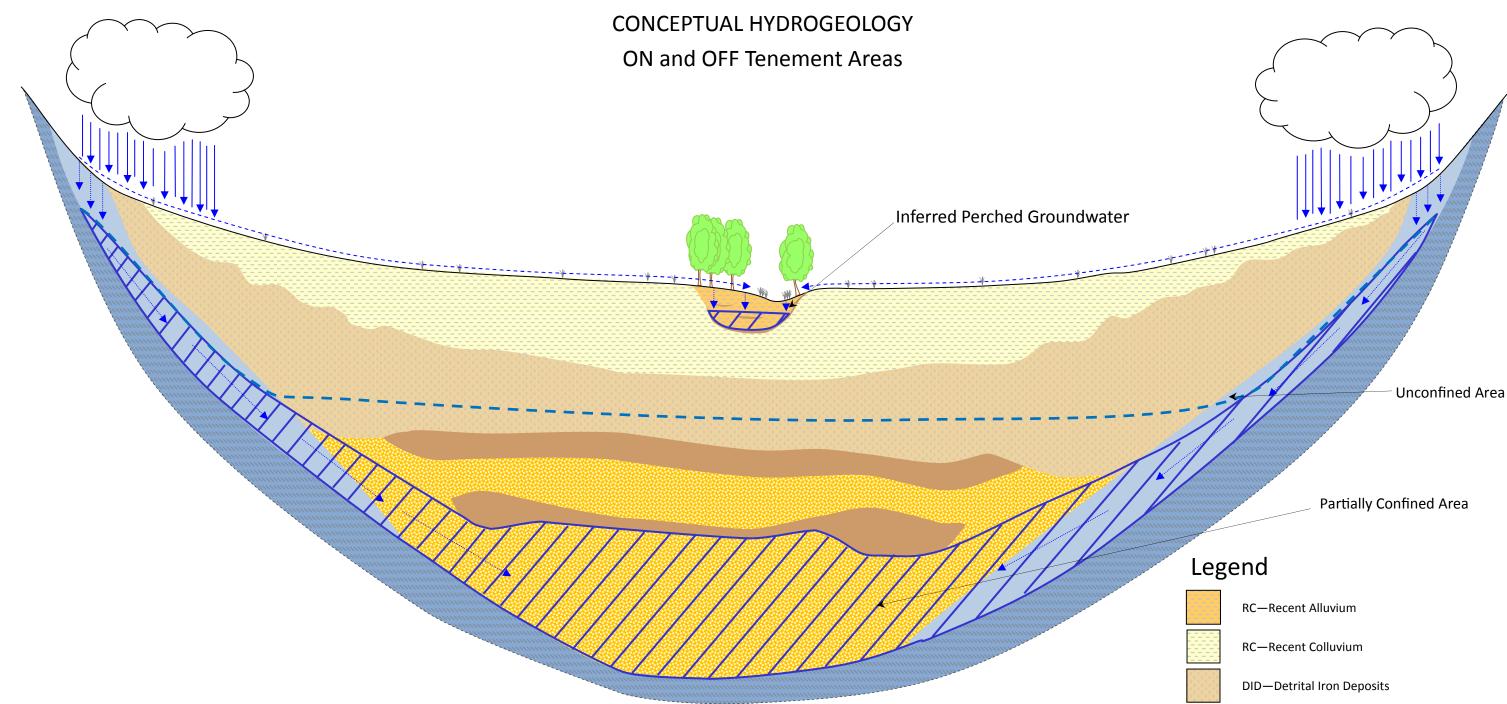
Based on review of FMS's exploration database, lithologs and the hydrogeological field investigations undertaken by WorleyParsons, the on-site hydrogeology is summarised as follows:

- The aquifer in the Delta, Eagle and Champion deposits is predominantly CID;
- The CID and BID units have very similar hydrogeological properties and contain the bulk of the groundwater in the Delta, Eagle and Champion deposits. Therefore the aquifer is defined as the combined CID/BID units for the purpose of groundwater modelling (Section 7);
- The aquifer is interconnected and extends into off tenement areas as far as Millstream (based on the inferred CID extents shown in Figure 6-2);
- Groundwater recharge is mainly through rainfall runoff during significant rainfall events and often associated with cyclonic activity;
- The mechanism for groundwater recharge can be recognised as a series of catchments directing rainfall runoff to watercourses that flow across (intersect) areas where there is exposed BID, which is highly permeable and allows for significant groundwater recharge. This groundwater recharge may flow through the BID and into the CID/BID units at depth where there is hydraulic connectivity;
- Depth to groundwater follows surface topography in the unconfined portions of each aquifer/drainage;
- The CID is semi-confined in the Delta and Eagle tenements, and unconfined in the Champion tenement:

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

- Semi-confined CID conditions in the Eagle and Delta aquifers resulted in rising heads/ groundwater levels after drilling, through the upper clay units; and
- The groundwater system is semi confined to partially confined where a significant thickness and fairly continuous clay layer is present in the Delta and Eagle tenements.

Cross sections showing the conceptual hydrogeology, simplified geological units and inferred groundwater levels (total heads³) estimated using groundwater levels provided by FMS and recorded by automatic water level recorders are presented for Delta, Champion and Eagle in Appendix 6. As there is no available geological or hydrogeological data for the off tenement areas, the generalised cross section presented in Figure 6-8 has been adopted as the conceptual model for the off tenement areas at Serenity. This cross section is also presented in Appendix 4. The conceptual model for the off tenement area immediately north of Champion is represented by the cross sections for Champion provided in Appendix 6. These conceptual models have been used as the basis for groundwater modelling presented in Section 7.


Environmental and Social Considerations 6.5.2

Groundwater and streamflow monitoring at Delta suggests that there is negligible river recharge from the creeks to the deeper CID/BID aquifer at the northern end of the catchment adjacent to the Serenity catchment (see Section 6.4.2). The majority of recharge to the CID/BID aquifers is via recharge from the valley flanks. Although there is likely to be shallow groundwater perched in alluvial sediments associated with creeks and major watercourses, it is expected to contribute minimal recharge the aquifer on tenement and the majority of this water is expected to flow through the surface water systems, evaporate or be removed via evapotranspiration. This perched water may be available to support any GDEs or pools with social or cultural significance.

This conceptual understanding has been extrapolated to the off tenement areas, and is considered representative for the purposes of this investigation. The groundwater models presented in this report have been developed only to predict drawdown within the deeper CID/BID aquifer as a result of mine dewatering because:

- The shallow perched aguifer was not encountered while drilling on tenement; •
- The shallow perched aquifer was does not appear to be in hydraulic connection with the deeper CID/BID aquifer, based on Groundwater and streamflow monitoring at Delta (see Section 6.4.2); and
- There is insufficient data to confirm the presence and extent of shallow perched ٠ groundwater.

³ Total head = sum of the elevation head and the pressure head (Freeze and Cherry, 1979)

Not to Scale. Vertical Exaggeration approx. 1:10

Disclaimer: This Figure is a <u>conceptual</u> diagram only and is a result of an <u>interpretation</u> of data collected.

Figure 6-8: Conceptual Hydrogeological Cross Section

Clay

CID—Channel Iron Deposits

BID—Bedded Iron Deposits

BIF—Banded Iron Formation

Inferred Saturated Zone

Inferred Total Head

Inferred Groundwater Recharge

Surface Runoff

7. GROUNDWATER MODELLING OF OFF-TENEMENT IMPACTS

7.1 Serenity System

7.1.1 Model Set Up and Geometry

The off-tenement numerical groundwater model for the Serenity system was developed using Schlumberger Water Services' Visual Modflow Pro software (Schlumberger Water Services 2011). The software is essentially a user interface based around the original MODFLOW finite difference code (Harbaugh et al. 2000).

MODEL MESH

The finite difference grid covers a model domain of 20km by 7km shown in Figure 7-1. This domain incorporates the areas adjacent to FMS's Eagle and Delta deposits in its southern half as well as the area north of Delta. The origin of the model domain is located in the south-western corner, at 549,380mE and 7,544,500mN. Grid cell size is 100m x 100m, with a total of 70 rows and 200 columns.

MODEL LAYERS

The Serenity model grid was divided into the following three layers, representing a simplified version of the conceptual geological models developed for the on-tenement areas and described in Section 6:

- Layer 1 incorporating the Recent Colluvium and DID geological units;
- Layer 2 the Clay layer; and
- Layer 3 incorporating the CID and BID units (the aquifer);

The bottom of Layer 3 defines the no-flow boundary which provides an acceptable (and conservative) representation of the basement formation (BIF).

Aerial LIDAR survey data, where available, was interpolated to the model grid to approximate the existing ground level and used to define the top elevations for Layer 1. A small portion of the model domain used NASA SRTM data for ground levels, as LIDAR was not available in this area.

Layer elevations were input into the model using grid surfaces created in Golden Software's Surfer v9. These surfaces utilised some drill data from on-tenement bores at Eagle and Delta, however this data covered only a very small percentage of the model area. Due to the absence of off-tenement drilling data, layer elevations in the off-tenement area were extrapolated from the Eagle and Delta data using the conceptual models presented in Section 6 as a guide. Dummy points were created

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

throughout the Serenity channel area, each with notional elevation data for each of the three model layers. Surfer was then used to interpolate surfaces for each layer elevation based on these data points. Table 7-1 presents the model layers and their approximate depths below ground level. The layers and geological unit delineations used in the model are also graphically represented in Figure 7-2.

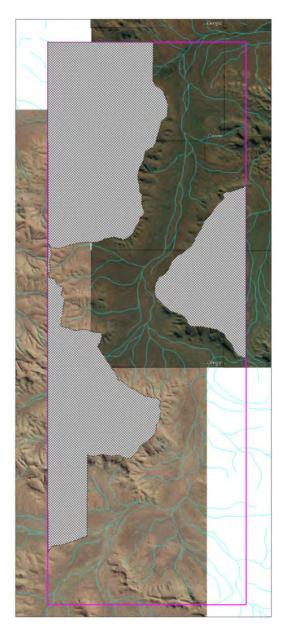
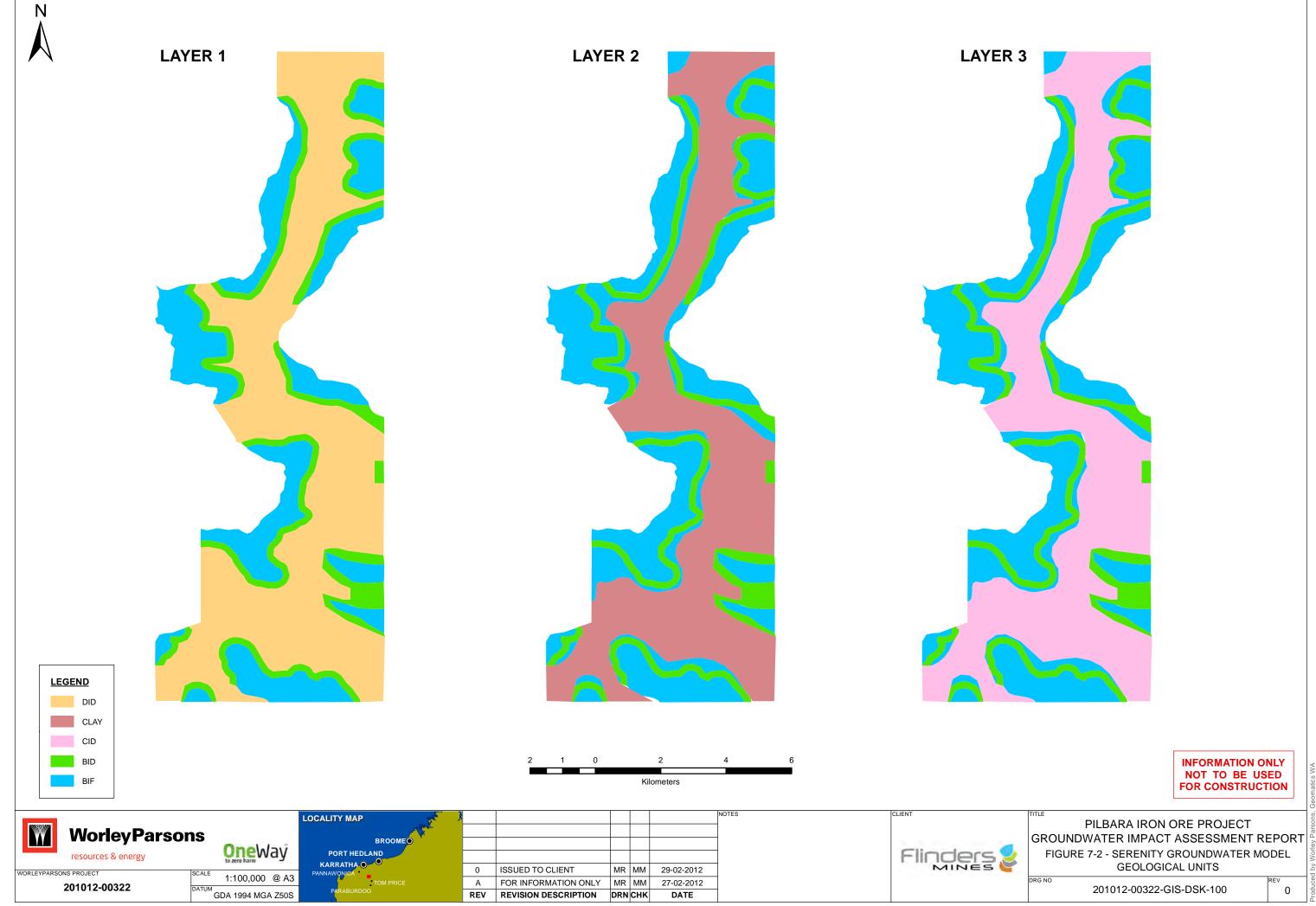


Figure 7-1: Groundwater model domain for the Serenity System


FLINDERS MINES LIMITED

PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 7-1: Serenity Model Layer Setup

Layer	Geological Units	Aquifer Type	Top of layer (approx. metres below ground)	Bottom of layer (approx. metres below ground)	Thickness (m)
1	Recent Colluvium (RC) / Detrital Iron Deposits (DID)	Confined / Unconfined	Ground surface	~50	~50
2	Clay	Confined / Unconfined	~50	~58	8
3	Channel Iron Deposits (CID) / Bedded Iron Deposits (BID)	Confined / Unconfined	~58	~120	~62

The Serenity area was modelled as a semi-confined system. A confining layer of clay (Layer 2) was modelled above the CID layer throughout the main channel area. However, along the flanks of the channel, this clay layer, along with the DID layer above it, were interrupted with higher conductivity zones to represent areas where BID surface outcroppings were inferred to yield relatively high rates of recharge to the aquifer below.

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-100.mxd

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

7.1.2 Model Stresses

BOUNDARY CONDITIONS

The model required boundary conditions to represent the groundwater through flow processes assumed to be occurring in off tenement areas. The upstream boundary conditions, located at the southern end of the model, consisted of three recharge boundaries, which were applied to the three main aquifer channels entering the model domain from the south near the Eagle deposit. A conservative estimate for the average annual recharge entering the system through the southern boundaries was calculated by multiplying the contributing catchment area by 5% of the average annual rainfall. The catchment area considered did not include the catchment area north of Delta which is outside of FMGs Serenity tenement area. The total annual groundwater through flow calculated for the Serenity main channel was 4.6GL/yr (Appendix 7). This calculated recharge total was apportioned between the three main aquifer channels.

In addition to the northern boundary conditions, groundwater recharge was also added to the central section of the model at the Eagle and Delta deposits. The recharge at Eagle and Delta were initially set to 0.6GL/a and 0.4GL/a respectively based on catchment area (Appendix 7). These recharge estimates were then increased to 1.0GL/a each to account for recharge from other contributing catchment areas north of the deposits.

The outflow of groundwater at the downstream (northern) boundary of the model was simulated using a constant head boundary. This boundary was set at a level of 430.0mAHD (35m bgl). This corresponded to the extrapolated initial head estimated at the northern end of the domain.

INITIAL GROUNDWATER LEVELS

Initial groundwater levels in the model were set up using a similar technique to the layer elevation setup. A single surface representing the initial water level was created using Surfer v9. Where available, groundwater level measurements recorded on-tenement at Eagle and Delta were used. In the off-tenement area, the same dummy points used to create the layer elevation surfaces were assigned estimated water levels based on measurements taken in the on-tenement bores at Eagle and Delta, and the levels were then interpolated into an initial head surface using topography.

RAINFALL RECHARGE

Two types of rainfall recharge were applied in the Serenity model. The first simulated standard rainfall recharge was applied across the model domain and calculated by multiplying the monthly long-term average rainfall data from the Wittenoom BoM station (5026) by a factor of 3%.

The second form of rainfall recharge was applied only to certain zones in the model, located on the higher-relief zones flanking the main Serenity channel. This was intended to simulate BID outcrops

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

similar to those observed on-tenement, where recharge rates were inferred to be extremely high relative to the rest of the model area. The recharge in these areas was estimated by multiplying the monthly long-term average rainfall data from the Wittenoom BoM station (5026) by a factor of 3%. The recharge data adopted for preliminary model runs are presented in Table 7-2.

The Serenity model start time was set as the beginning of July, so that the model would start and end during the dry season.

Month	Average rainfall (mm)	Standard recharge rate in mm/yr (3%)	High recharge rate in flank zones in mm/yr (40%)
January	102.7	36.3	483.7
February	112.2	43.9	585.0
March	70.4	24.9	331.6
April	28.7	10.5	139.7
May	27.4	9.7	129.0
June	28.3	10.3	137.7
July	14.3	5.1	67.3
August	8.8	3.1	41.4
September	3.3	1.2	16.1
October	3.7	1.3	17.4
November	8.9	3.2	43.3
December	50.2	17.7	236.4

Table 7-2: Serenity Model Rainfall Recharge Rates

EVAPOTRANSPIRATION

Evapotranspiration was not included in the Serenity MODFLOW model. This was because the depth to groundwater in the main CID/BID aquifer is more than 35m so evapotranspiration effects are expected to be negligible.

DEWATERING BORES

Dewatering bores were inserted into the model at the Eagle and Delta tenement boundaries to simulate the potential impacts associated with mine dewatering. It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine. This groundwater is to be sourced from mine dewatering systems, with any excess mine dewater returned to the aquifer off tenement to minimise drawdown impacts. Therefore single bores were inserted at the Delta and Eagle boundaries and each assigned pumping rates of 3,644m³/d, or 1.33GL/a.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

Detailed mine dewatering and aquifer reinjection systems have not been included in model simulations. Modelling only assesses the net impact of abstracting 2.66GL/a for the purpose of meeting the project water demand.

7.1.3 General Modelling Assumptions

- An aquifer reinjection system would be in place if the mine dewatering requirements exceed the 2.66GL/a needed to meet the projects water demand. Therefore only the net impact of abstracting 2.66GL/a has been modelled;
- The Delta and Eagle mines will be completely dewatered from the beginning of the mine life; this is conservative as this will be a stepped process as the mine is excavated and will take a significant time period;
- The CID and BID have been modelled as one unit. This is considered to be pragmatic as there is very limited data on the ground conditions in this area and results for the Delta and Eagle deposits indicate that the CID and BID in this area have similar properties;
- Recharge occurs across the whole model. This is considered to be a realistic assumption; and
- It has been assumed that the CID/BID deposits are continuous down the valley.

7.1.4 **Initial Parameters**

Hydrological parameters derived for the Eagle and Delta deposits using the results of pump test analysis were adopted for the off-tenement Serenity area. Table 7-3 describes the initial parameters used before model calibration took place.

Geological Unit	Pre-Calibration Parameters					
	K _{xy} (m/d)	Ss (m⁻¹)	Sy (1)	Eff. Porosity	Tot. Porosity	
BIF	0.01	0.0001	0.0015	0.001	0.0015	
DID	0.1	0.01	0.15	0.15	0.2	
Clay	0.01	0.005	0.05	0.2	0.25	
CID/BID	60	0.00001	0.2	0.1	0.15	

Table 7-3: Initial Model Parameters (Pre-Calibration)

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

7.1.5 Model Calibration

CALIBRATION PROCEDURE AND RESULTS

Due to a lack of available water level data in the Serenity off-tenement area, a true model calibration to real data located throughout the modelled area was not possible at the time of this study. However, a steady-state calibration to the observed water levels at the Eagle and Delta on-tenement bores was conducted, and inferred water levels at the dummy bores located within Serenity were also checked for consistency with the simulated water levels.

Conductivity and storage values were adjusted to assist with the calibration, and the final parameter values used were generally within the minimum and maximum bounds obtained from the on-tenement pump test data.

Recharge boundary condition values were also varied as part of the model calibration. The recharge boundary conditions at the southern end of the model remained at their initial values however the values at Eagle and Delta were increased approximately 30% in order to maintain a good fit to observed and inferred groundwater levels. The constant head boundary at the northern end of the model was also varied as part of the calibration process.

The final steady-state calibration results are presented in Table 7-4. Note that the Serenity South and North "observed" water levels are based on inferred water levels, and not on field measurements. The calibration errors were deemed to be within tolerances in the context of the current study, and given the lack of site data in the Serenity area. The mass balance calculated by MODFLOW for the steady state calibration run is also presented in Table 7-5.

Location	Observed Water Level (mAHD)	Simulated Water Level (mAHD)	Difference (m)
Eagle Production Bore	540.8	539.8	1.0
Delta Production Bore	501.3	499.9	1.4
Serenity South	Varies*	Varies	Approx. 2.0 – 11.0
Serenity North	Varies*	Varies	Approx 0.2 – 7.0

Table 7-4: Steady-State Calibration Results

* Inferred levels based on extrapolation of on tenement data

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

Table 7-5: Steady-State Calibration Mass Balance

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	-	-	-
Eagle Recharge	0.99	0	0.99
Delta Recharge	1.00	0	1.00
Southern Recharge	4.11	0	4.11
Northern Head Boundary	0	7.56	-7.56
Rainfall Recharge	1.45	0	1.45
TOTAL I	-0.01		

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

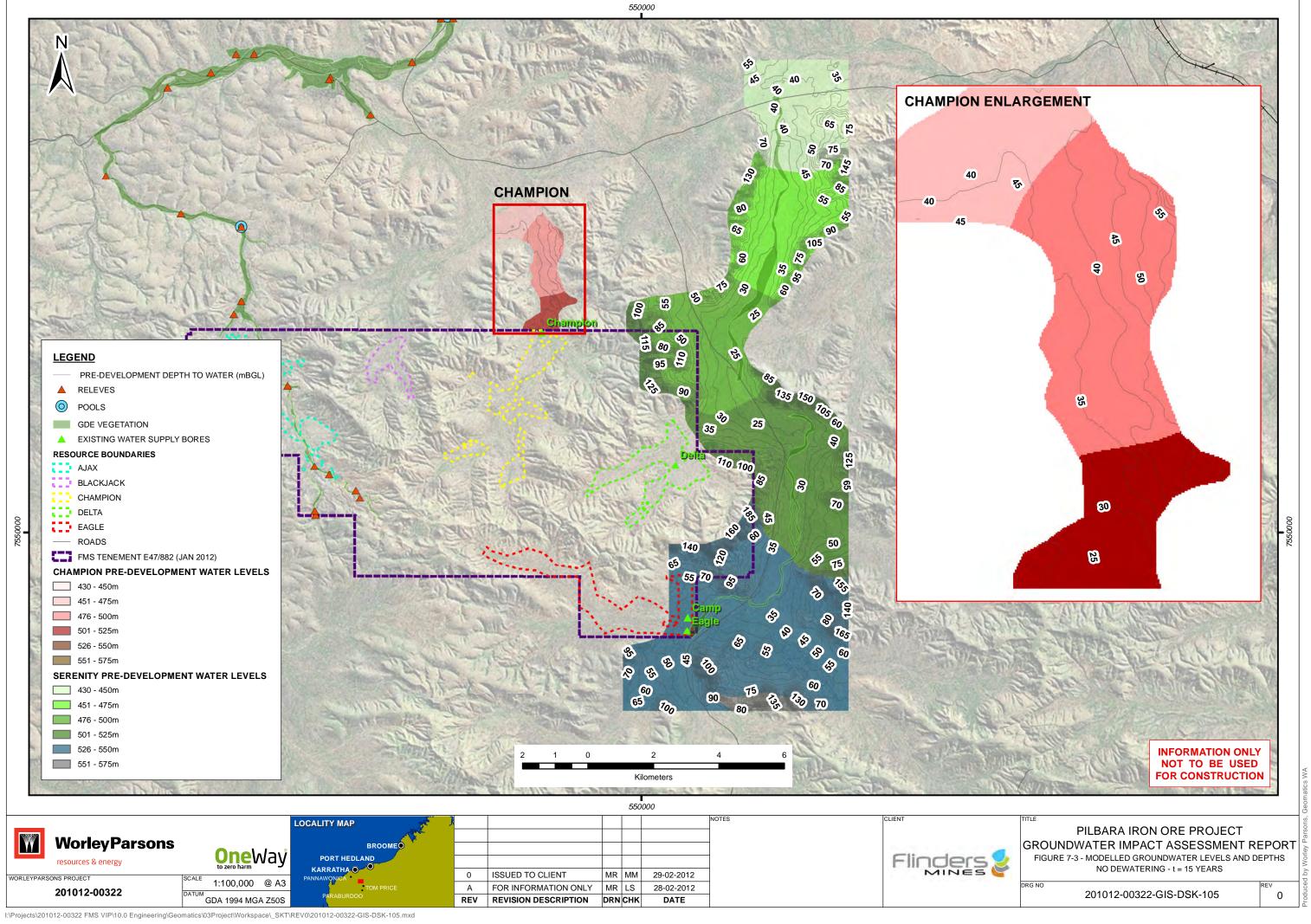
FINAL CALIBRATION PARAMETERS

Table 7-6 presents the final aquifer parameters adopted for the transient model runs, after steadystate calibration was completed.

Geological	Post-calibration parameters						
Unit	K _{xy} (m/d)	Ss (m⁻¹)	Sy (1)	Sy (1) Eff. Porosity			
BIF	0.01	0.0001	0.0015	0.001	0.0015		
DID	0.5	0.01	0.15	0.2	0.25		
Clay	0.1	0.005	0.05	0.15	0.2		
CID/BID	30	0.0001	0.2	0.1	0.15		

Table 7-6: Final Model Parameters Adopted for Transient Simulations

Model Results 7.1.6


Once the steady-state calibration was completed, transient model scenarios were run. The results of these are described in the sections below.

PRE-DEVELOPMENT SCENARIO

The first transient run was a 'Pre-Development' scenario, which was run for the 15-year mine life, with all model stresses set to the same values as the steady state model. No mine dewatering was simulated in this scenario, to simulate the natural groundwater fluctuations over a 15-year period.

Water levels in simulated boreholes maintained near steady-state levels throughout the predevelopment simulation, with water levels generally showing a slight rise of less than 2.0m over the 15-year period. This rise could be attributed to the constant recharge entering the model, without extended dry periods. This model yielded a set of water levels at the end of the 15-year period, from which drawdowns in the dewatering scenarios could be calculated.

Figure 7-3 shows the final groundwater levels of the Pre-Development scenario in metres AHD as well as the depth to water below ground level.

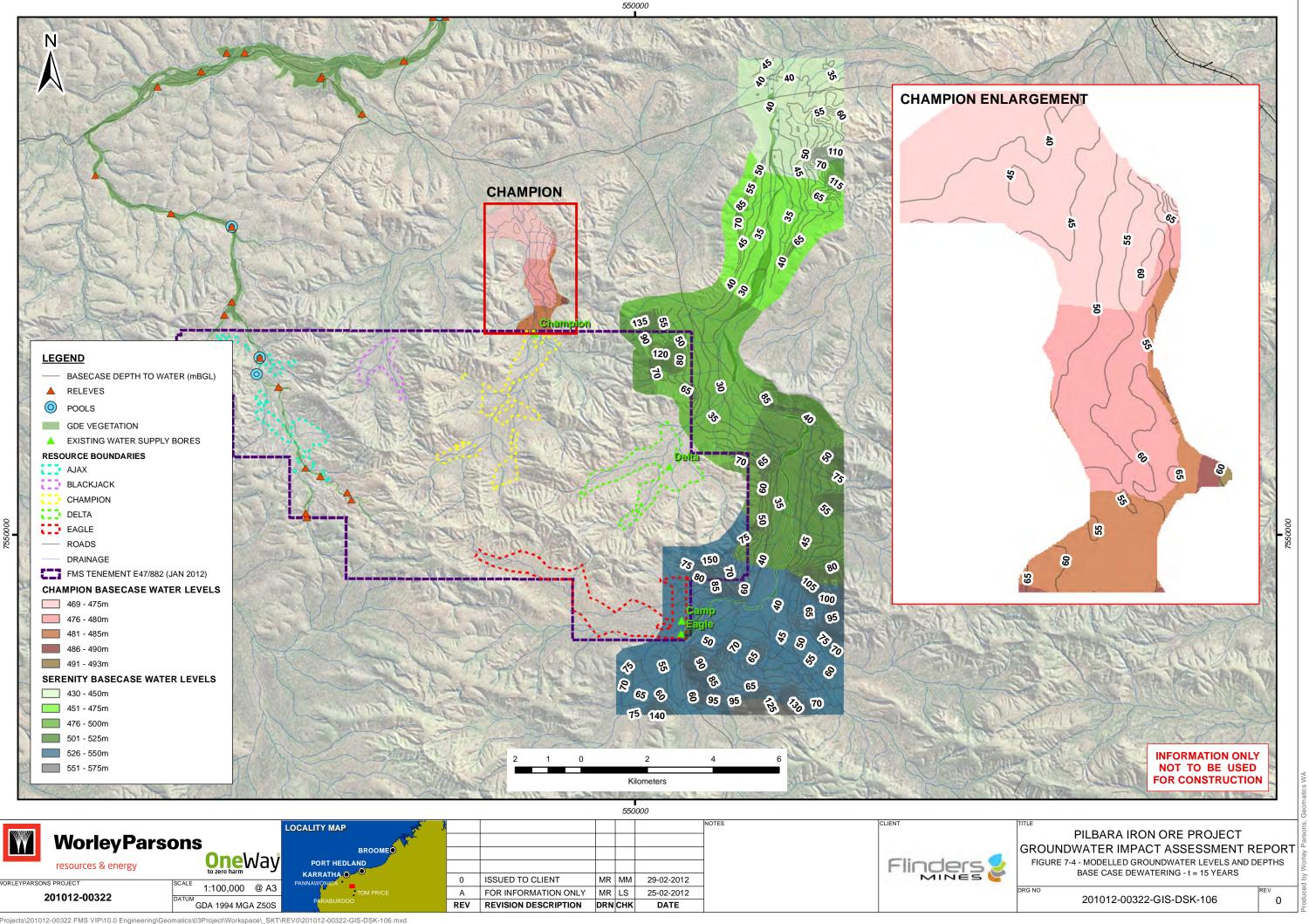
			LOCALITY MAP					NOTES	CLIENT
	Worley Parsons		BROOMEO					_	
	Woncyr arsons								
	resources & energy	One Way							Flinders
WORLEYPA	RSONS PROJECT	ISCALE	KARRATHA O	0	ISSUED TO CLIENT	MR M	M 29-02-2012		MINES
	204.042 00222	1:100,000 @ A3	TOM PRICE	Α	FOR INFORMATION ONLY	MR LS	28-02-2012		
	201012-00322	GDA 1994 MGA Z50S	PARABURDOO	REV	REVISION DESCRIPTION	DRN CH	K DATE		

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 7-7 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The overall mass balance remained stable throughout the model run.

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	0.55	1.79	-1.24
Constant Head	0.00	7.94	-7.94
Total Recharge	9.18	0.00	9.18
TOTAL	0.00		

Table 7-7: Pre-Development Scenario Mass Balance


DEWATERING - BASE CASE RAINFALL SCENARIO

The first dewatering scenario assumed that rainfall during the 15-year mine life would remain at long-term average levels.

Modelling showed groundwater levels throughout the Serenity area slowly declining over the 15 year model period. The resulting final groundwater and drawdown contours at the end of the simulation are shown in Figure 7-4 and Figure 7-5 respectively.

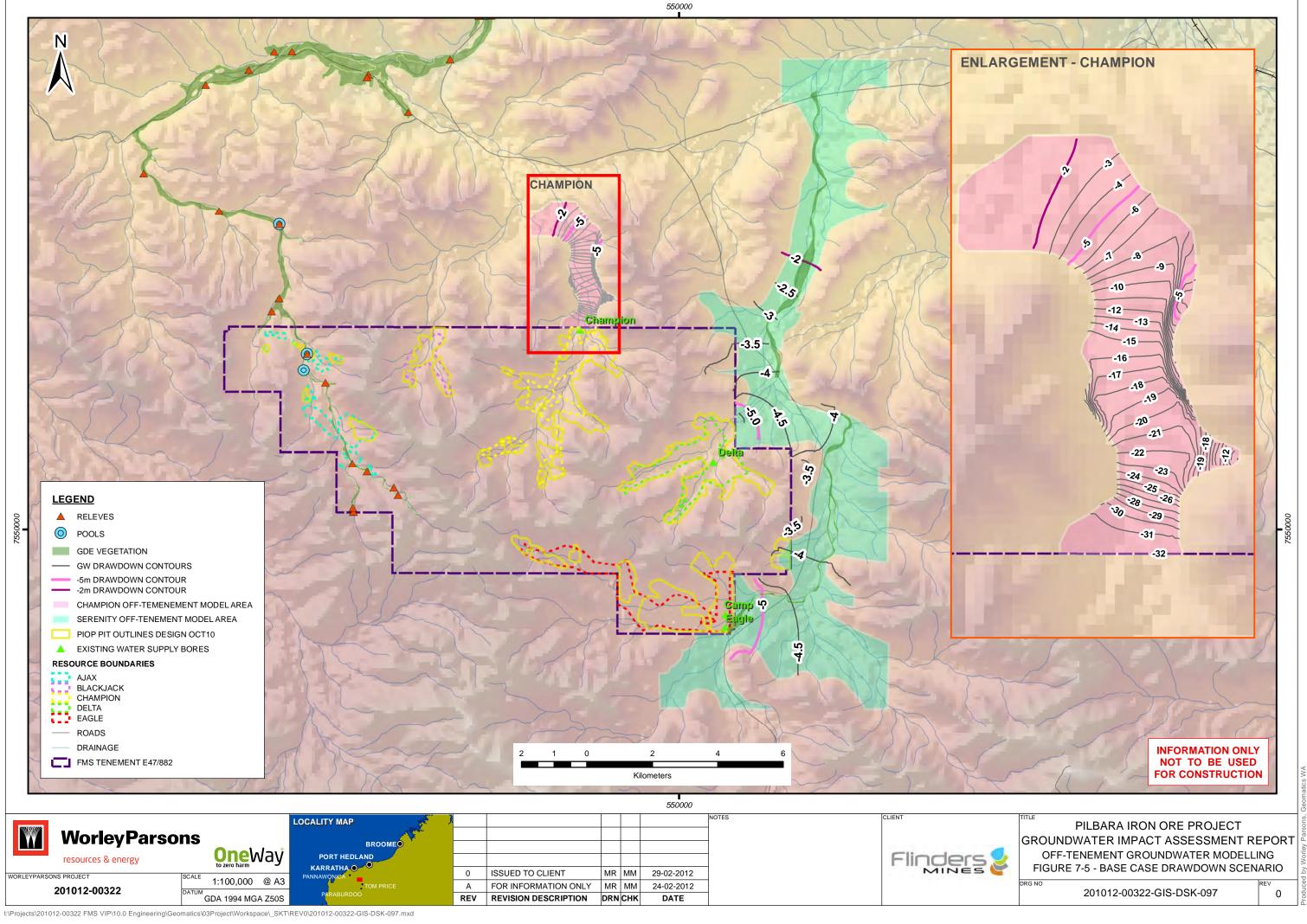

The predicted drawdown along the southern boundary of the model is considered conservative, due to boundary effects. There is a significant volume of groundwater storage south of the model boundary which is not accounted for in the model and is likely to reduce the actual drawdown from mine dewatering.

Table 7-8 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The overall mass balance remained stable throughout the model run.

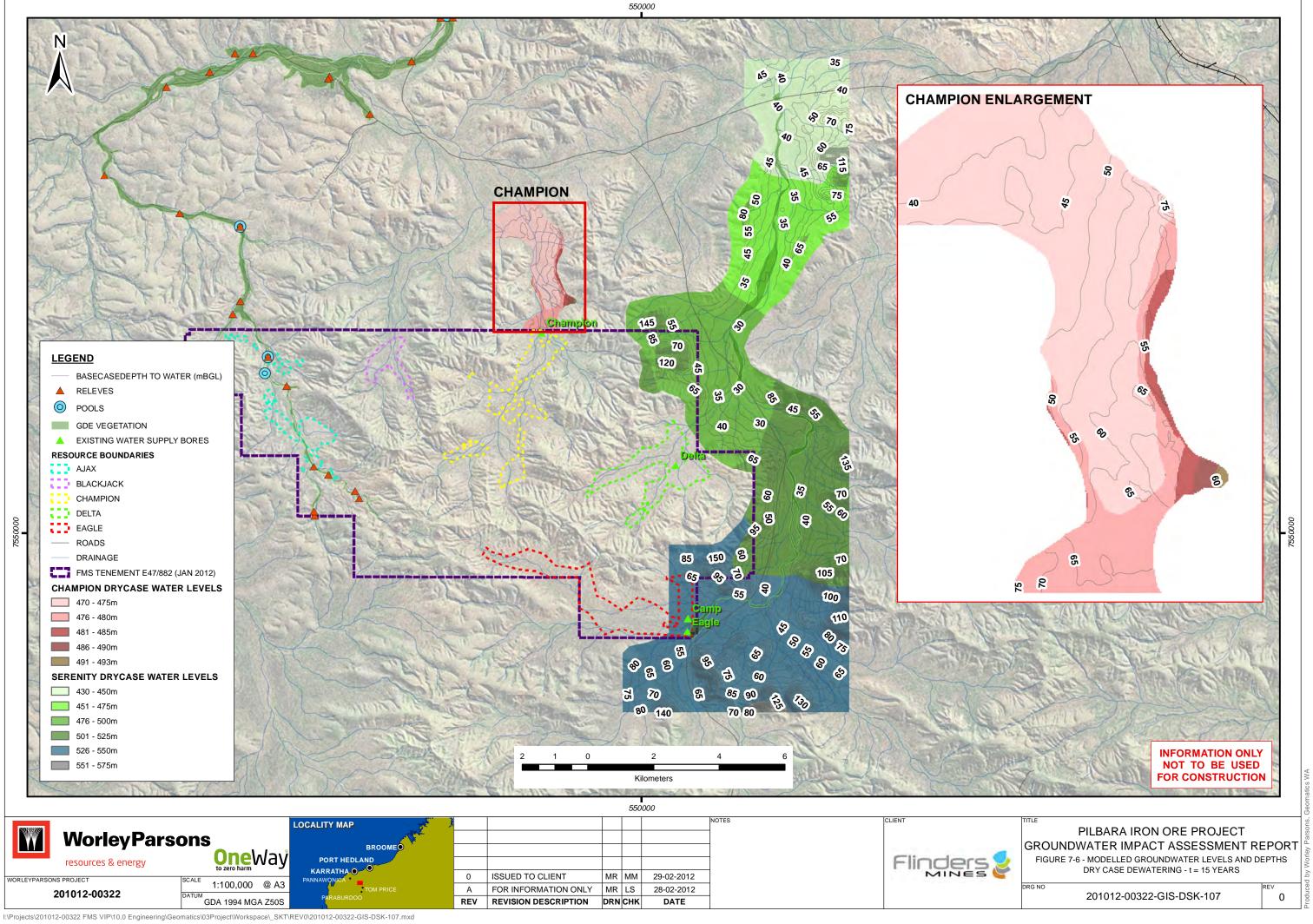
NORLEYPARSONS PROJECT

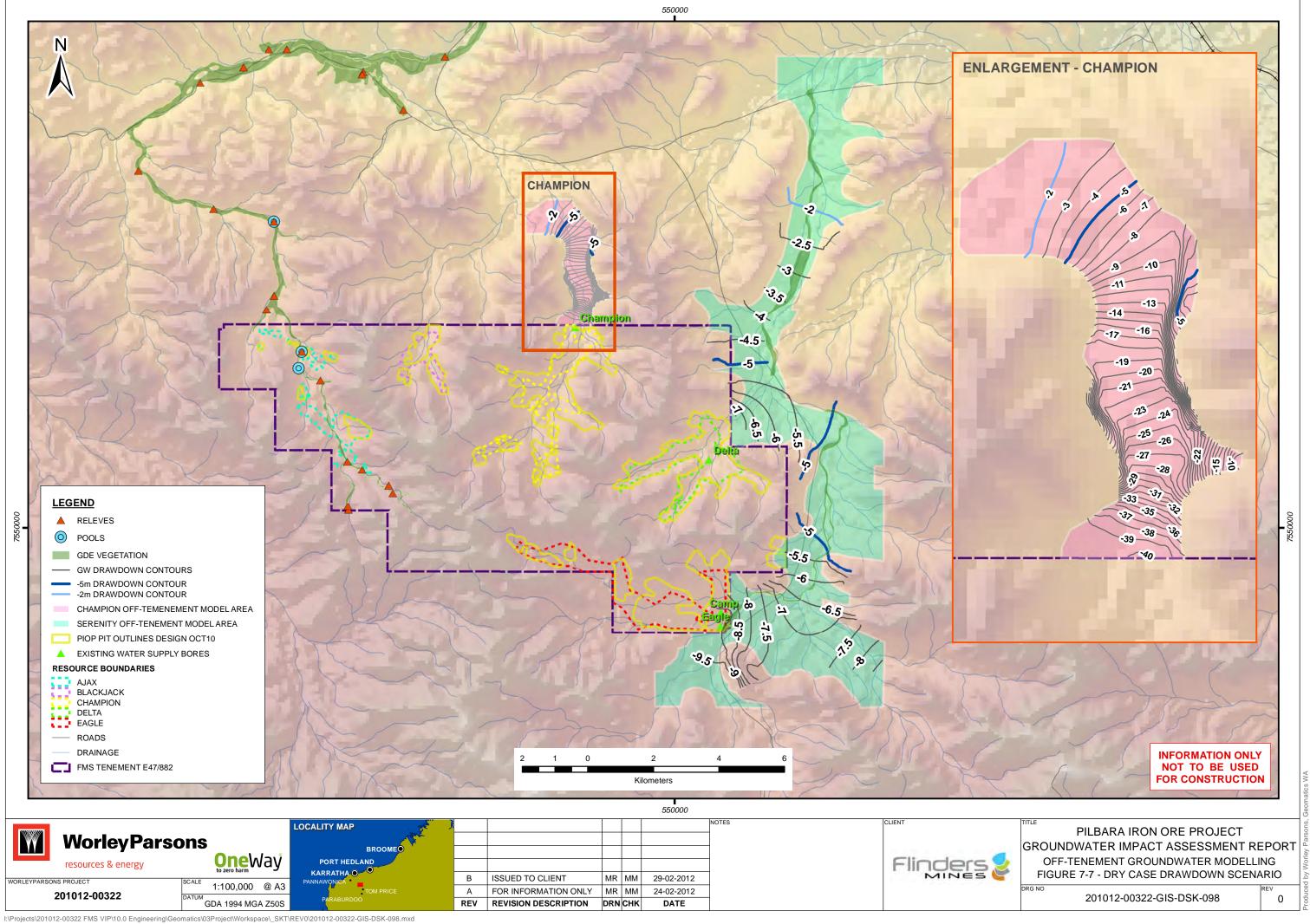
l:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-106.mxd

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	2.05	0.86	1.19
Constant Head	0.00	7.79	-7.79
Pumping Wells	0.00	2.59	-2.59
Total Recharge	9.18	0.00	9.18
TOTAL	0.00		

Table 7-8: Dewatering – Base Case Rainfall Scenario Mass Balance – Annual Averages


DEWATERING - DRY CASE RAINFALL SCENARIO


The second dewatering scenario was set up as a theoretical 'worst-case' scenario, in which an extended dry period acted to compound the effects of mine dewatering on the final drawdown levels. In order to simulate this scenario, the Wittenoom rainfall data was analysed and the monthly rainfall data for the driest year on record (1969) was extracted. This monthly data was then applied to each of the final three years of the mine life as a rainfall recharge. In addition, all other recharge boundaries including Delta, Eagle and the southern Serenity boundaries had their annual inflow volumes reduced by a factor corresponding to the reduction in annual rainfall recharge.

As expected, the water levels throughout Serenity were identical to those of the base case rainfall scenario, until the end of Year 12, when the dry rainfall records were applied. After this point, due to the diminished rainfall recharge and corresponding drop in boundary recharges, water levels were drawn down at an increased rate. The resulting final groundwater levels and drawdowns are shown in Figure 7-6 and Figure 7-7.

Similarly to the results for the base case dewatering simulation, the predicted drawdown along the southern boundary of the model is considered conservative, due to boundary effects. There is a significant volume of groundwater storage south of the model boundary which is not accounted for in the model and is likely to reduce the actual drawdown from mine dewatering.

Table 7-9 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The annual average quantity of recharge has been reduced compared to the base case, due to the final three years of 'dry' conditions.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Table 7-9: Dewatering – Dry Case Rainfall Scenario Mass Balance – Annual Averages

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	3.13	0.72	2.42
Constant Head	0.00	7.75	-7.75
Pumping Wells	0.00	2.59	-2.59
Recharges	7.92	0.00	7.92
TOTAL	0.00		

7.1.7 Sensitivity Analysis

During the model steady-state calibration phase, all parameters were varied between high and low values to arrive at the final calibrated results. This allowed the sensitivity of the model to parameters to be qualitatively described as follows:

- The dominant parameters influencing the modelled steady-state water levels were the boundary conditions namely, the quantity of recharge assigned at the Eagle, Delta and Serenity Southern boundaries, and the water level assigned to the northern constant head outflow;
- Variations in the parameters applied to the different geological units specifically, conductivity, storage and porosity values, had comparatively small effects on modelled water levels; and
- Rainfall recharge, including the inclusion or exclusion of the high-recharge flanking zones, had small effects on the modelled water levels.

The current model only simulates the net drawdown impacts resulting from extracting a combined 2.66GL/a from the Eagle and Delta deposits, by assuming that any excess mine dewater is returned to the aquifer.

Sensitivity analysis was performed to assess what the likely impacts may be when dewatering lowers water levels to the base of the mine pits (defined by the top of the BIF unit), without a reinjection system in place. The results suggests that the mine dewatering systems would need to remove more than 4GL/a to lower groundwater levels to the base of the pits (ie. more than the current mine water demand), and that the drawdown impacts would be significant and extend well into the off tenement area.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT**

7.2 Champion System

7.2.1 Model Set Up and Geometry

The Champion model was developed using the Modflow groundwater flow modelling code (Harbaugh & McDonald, 1996) operating under the Visual Modflow Pro graphical user interface (Version 4.3 Pro, Schlumberger Water Services, 2010).

MODEL MESH

The Champion model was set up to extend between Eastings 545,500 and 548,500, and Northings 7,555,850 and 7,560,000N, comprising 84 rows and 100 columns with a grid size of 30 x 50m.

The head of the Champion Deposit forms the southern boundary and the larger river valley constrains the northern extent. The model domain constrains the valley but includes the adjacent slopes to provide recharge. Figure 7-8 shows the model domain in plan view.

Figure 7-8: Champion off-tenement MODFLOW model domain

WorleyParsons

resources & energy

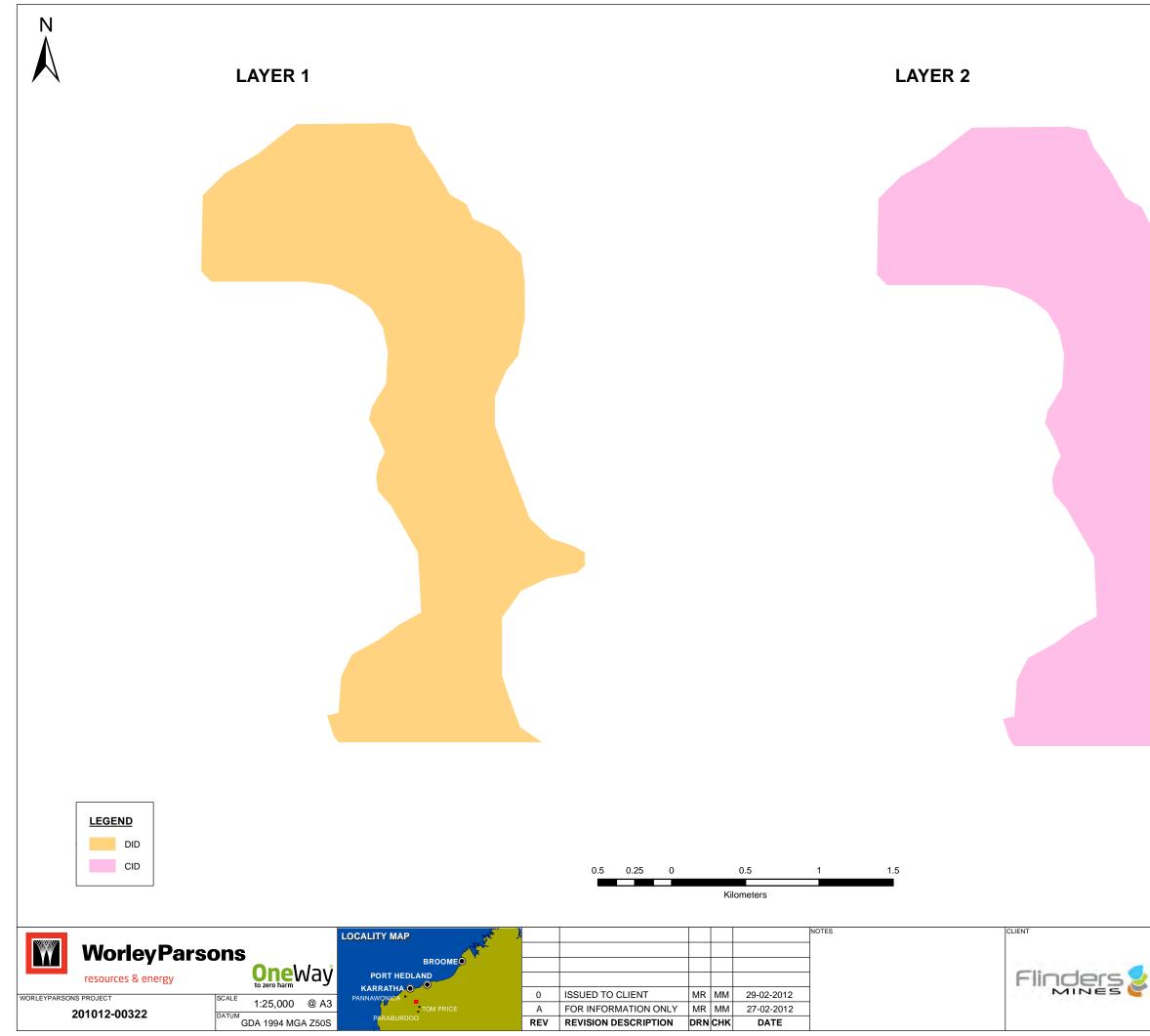
FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

MODEL LAYERS

The setup of the Champion off-tenement model layers was as follows:

- The model grid was divided into two layers, representing a simplified version of the conceptual geological models used in the FMS on-tenement area at Champion. Layer 1 incorporated the Recent Colluvium and DID geological units, and Layer 2 incorporated the CID and BID units. Both units were modelled as unconfined;
- The base of the model was taken from the basement elevations from the FMS resource database, and an extrapolation of the airborne EM geophysical data collected by GPX (Appendix 2);
- The base of Layer 1 was adopted from the observation and production boreholes at the southern end of Champion deposit. Additionally, the top of the CID was partially modelled into this area in the on-tenement modelling study. This data was used to calculate and extrapolate the base of the unit across the remainder based on the thickness seen in the Champion bores; and
- The elevations of the top layer were extracted from LIDAR terrain data, into a 20m grid.

The layers and geological unit delineations used in the model are also graphically represented in Figure 7-9.


7.2.2 Model Stresses

BOUNDARY CONDITIONS

The model required boundary conditions to represent the groundwater through flow processes assumed to be occurring in the Champion off-tenement area.

The upstream boundary condition, located at the southern end of the model, was a single recharge boundary, which was applied to the main aquifer channel. A conservative estimate for the average annual recharge entering the system through the recharge boundary was calculated by multiplying the contributing catchment area by 5% of the average annual rainfall. The resulting recharge applied at Champion was 0.7 GL/yr (Appendix 7). This was later increased to 1.6GL/a to account for recharge contributions from catchments north of Champion.

The outflow of groundwater at the downstream (northern) boundary of the model was simulated using a constant head boundary. This boundary was set at a level of 470.0mAHD, or approximately 37m mgl. This corresponded to the extrapolated initial head estimated at the northern end of the domain.

I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Geomatics\03Project\Workspace_SKT\REV0\201012-00322-GIS-DSK-104.mxd

INFORMATION ONLY

DRG NO

201012-00322-GIS-DSK-104

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

INITIAL GROUNDWATER LEVELS

Initial groundwater levels in the model were set up using a similar technique to the layer elevation setup. A single surface representing the initial water level was created using Surfer v9. Water levels available from the Champion on-tenement pump test bores were included. Dummy points were inserted at the northern boundary of the model, and the initial water level at these locations was set at the same depth below ground as measured water levels in the Champion pump test bores. Surfer then interpolated an initial groundwater heads surface from these values.

RAINFALL RECHARGE

Rainfall recharge was calculated from the monthly rainfall data from the Wittenoom BoM station (5026) (based on 3% recharge) and was entered for monthly periods to reflect the seasonal variations. This rainfall recharge was applied to the top layer of the model. The values for rainfall recharge are listed in Table 7-10.

The Champion model start time was set as the beginning of July, so that the model would start and end during the dry season.

Month	Average rainfall (mm)	Recharge rate in mm/yr (3%)
January	102.7	36.3
February	112.2	43.9
March	70.4	24.9
April	28.7	10.5
May	27.4	9.7
June	28.3	10.3
July	14.3	5.1
August	8.8	3.1
September	3.3	1.2
October	3.7	1.3
November	8.9	3.2
December	50.2	17.7

Table 7-10: Champion Off-Tenement Model Rainfall Recharge Rates

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report rev0.docx

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

EVAPOTRANSPIRATION

As the measured groundwater depth was below 30 m, evapotranspiration was considered to be negligible and was not included in the model.

DEWATERING BORES

It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine. This groundwater is to be sourced from mine dewatering systems, with any excess mine dewater returned to the aquifer off tenement to minimise drawdown impacts. Therefore a single bore was inserted at the Champion deposit boundary and assigned a pumping rate of 3,644m³/d, or 1.33GL/a.

Detailed mine dewatering and aquifer reinjection systems have not been included in model simulations. Modelling only assesses the net impact of abstracting 1.33GL/a for the purpose of meeting the project water demand.

INITIAL HEADS

The initial head conditions were estimated using the assumed constant head of 486m elevation at the north-western corner and the values from the observation and production bores in the south. It was extrapolated to reflect the curve of the channel to the northwest approximately 3km.

Reference was made to the bores and the topography to ensure that it was as realistic as possible given the lack of data.

7.2.3 General Modelling Assumptions

- An aquifer reinjection system would be in place if the mine dewatering requirements exceed the 1.33GL/a needed to meet the projects water demand. Therefore we are only modelling the net impact of abstracting 1.33GL/a;
- The Champion mine will be completely dewatered from the beginning of the mine life; this is conservative as this is likely to be stepped process as the mine is excavated and will take a significant time period;
- The CID and BID have been modelled as one unit. This is considered to be pragmatic as there is very limited data on the ground conditions in this area and results for the Champion deposits indicate that the CID and BID in this area have similar properties;
- Recharge occurs across the whole model. This is considered to be a realistic assumption; and
- It has been assumed that the CID/BID deposits are continuous down the valley.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

7.2.4 Initial Parameters

Table 7-11 presents the hydraulic parameters adopted for the Champion off-tenement model.

The following parameter assumptions were made for the Champion off-tenement model:

- High conductivity values were assigned to the BID/CID units and low values for the DID to reflect the geology but also to provide a highly conservative view of the system. The difference between the highly conductive BID/CID and the low conductivity DID will mean that changes in the head will be rapidly transferred through the aquifer; and
- Storage and porosity values were based on typical/literature values based on the geological descriptions.

Geological Unit	K _{xy} (m/d)	Ss (m ⁻¹)	Sy (1)	Eff. Porosity	Tot. Porosity
DID	0.02	1e-2	0.1	0.3	0.3
BID/CID	40	1e-8	0.15	0.15	0.15

Table 7-11: Hydraulic Parameters Used in the Champion Off-Tenement Model

7.2.5 Model Calibration

CALIBRATION PROCEDURE AND RESULTS

Due to a lack of available water level data in the Champion off-tenement area, a true model calibration to real data located throughout the modelled area was not possible at the time of this study. However, an attempt was made to perform a steady-state calibration to the observed water levels at the Champion on-tenement monitoring bores.

Conductivity and storage values were adjusted during the calibration to assess sensitivity, however the final model runs used the same parameters as presented in Table 7-11, and the final parameter values used were generally within the minimum and maximum bounds obtained from the on-tenement pump test data.

The constant head outflow boundary at the northern end of the model was varied to achieve a reasonable groundwater level calibration. The recharge boundary condition was not varied as part of the steady-state calibration.

The final steady-state calibration results are presented in Table 7-12. Note that the "Champion Off-Tenement North" water levels are based on inferred water levels, and not on field measurements. The

calibration errors were deemed to be acceptable in the context of the current study, and given the lack of site data in the Champion off-tenement area.

The mass balance calculated by MODFLOW for the steady state calibration run is also presented in Table 7-13.

Location	Observed Water Level (mAHD)	Simulated Water Level (mAHD)	Difference (m)
Champion-Obs-01	Champion-Obs-01 514.9		2.9
Champion-Obs-02	514.7	516.6	1.9
Champion-Obs-03	514.9	517.1	2.2
Champion Off- Tenement North	Varies*	Varies	7 - 17

Table 7-12: Steady-State Calibration Results

* Inferred levels based on extrapolation of on tenement data

Table 7-13: Steady-State Calibration Mass Balance

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	0.00	0.00	0.00
Champion Recharge	1.59	0.00	1.59
Northern Head Boundary	0.00 1.62		-1.62
Rainfall Recharge	-0.02		
TOTAL I	0.00		

7.2.6 Model Results

Once the steady-state calibration was completed, three transient model scenarios were run. The results of these are described in the sections below.

FLINDERS MINES LIMITED **PILBARA IRON ORE PROJECT** GROUNDWATER IMPACT ASSESSMENT REPORT

PRE-DEVELOPMENT SCENARIO

The first transient run was a 'pre-development' scenario, which was run for the 15-year mine life, with all model stresses set to the same values as the steady state model. No dewatering was simulated in this scenario, to simulate the natural groundwater fluctuations over a 15-year period.

Modelled water levels were maintained at near steady-state levels throughout the pre-development simulation, with water levels generally showing a slight rise of less than 0.5m over the 15-year period. This rise could be attributed to the constant recharge entering the model, without extended dry periods. This model yielded a set of water levels at the end of the 15-year period, from which drawdowns in the subsequent dewatering scenarios could be calculated.

Table 7-14 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The overall mass balance remained stable throughout the model run.

Figure 7-3 shows the final groundwater level contours for the Pre-Development scenario in metres AHD as well as contours showing the depth to water below ground level.

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	0.02	0.03	-0.02
Constant Head	0.00	1.64	-1.64
Recharges	0.00	1.66	
TOTAL I	0.00		

Table 7-14: Pre-Development Scenario Mass Balance

DEWATERING – BASE CASE RAINFALL SCENARIO

The first dewatering scenario assumed that rainfall during the 15-year mine life would remain at longterm average levels.

Modelled groundwater levels throughout the Champion off-tenement area were observed to show a steady decline in levels over the 15 year model period. The resulting final groundwater and drawdown contours are shown in Figure 7-4 and Figure 7-5.

Table 7-15 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The overall mass balance remained stable throughout the model run.

Mass Balance Item	IN (GL/yr) OUT (GL/yr)		TOTAL (GL/yr)	
Storage	0.44	0.01	0.43	
Constant Head	0.00	0.79	-0.79	
Pumping Wells	0.00	1.30	-1.30	
Recharges	1.66	0.00	1.66	
TOTAL	0.00			

Table 7-15: Dewatering – Base Case Rainfall Scenario Mass Balance – Annual Averages

DEWATERING - DRY CASE RAINFALL SCENARIO

The second dewatering scenario was set up as a theoretical 'worst-case' scenario, in which an extended dry period acted to compound the effects of mine dewatering on the final drawdown levels. In order to simulate this scenario, the Wittenoom rainfall data was analysed and the monthly rainfall data for the driest year on record (1969) was extracted. This monthly data was then applied to each of the final three years of the mine life as a rainfall recharge. In addition, all other recharge boundaries including Delta, Eagle and the southern Serenity boundaries had their annual inflow volumes reduced proportionally to the reduction in annual rainfall recharge.

As expected, the water levels throughout Champion were identical to those of the base case rainfall scenario, until the end of Year 12, when the dry rainfall records were applied. After this point, due to the diminished rainfall recharge and corresponding drop in boundary recharges, water levels were drawn down at an increased rate. The resulting final groundwater levels and drawdowns are shown in Figure 7-6 and Figure 7-7.

Table 7-16 presents the cumulative mass balance at the end of the 15-year modelled time period, averaged into gigalitres per year for each parameter. The annual average quantity of recharge has been reduced compared to the base case, due to the final three years of 'dry' conditions.

Table 7-16: Dewatering – Dry Case Rainfall Scenario Mass Balance – Annual Averages

Mass Balance Item	IN (GL/yr)	OUT (GL/yr)	TOTAL (GL/yr)
Storage	0.54	0.02	0.52
Constant Head	0.00	0.77	-0.77
Pumping Wells	0.00	1.18	-1.18
Recharges	1.43		
TOTAL	0.00		

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

7.2.7 Sensitivity Analysis

During the model steady-state calibration phase, all parameters were varied between high and low values to arrive at the final calibrated results. This allowed the sensitivity of the model to parameters to be qualitatively described as follows:

- The dominant parameters influencing the modelled steady-state water levels were the boundary conditions - namely, the quantity of recharge assigned at the southern boundary of the model near the Champion pump test bores, and the water level assigned to the northern constant head outflow:
- Subsurface channel geometry had a significant effect on water levels, as it governed the volume of groundwater capable of flowing through the main aguifer layer (Layer 2 - CID). However, the current model represents a best approximation given the limited data available;
- Hydraulic parameters, including conductivity and storage, had little impact, as the system rapidly approaches a steady state scenario; and was strongly controlled by the through flow resulting from the southern recharge boundary and the northern constant head outflow; and
- Rainfall recharge applied to the top layer did not have a significant impact, as the modelled water levels were strongly influenced by the through flow resulting from the southern recharge boundary and the northern constant head outflow.

The current model only simulates the net drawdown impacts resulting from extracting 1.33GL/a from the Champion deposit, by assuming that any excess mine dewater is returned to the aquifer.

Sensitivity analysis was performed to assess what the likely impacts may be when dewatering lowers water levels to the base of the mine pits (defined by the top of the BIF unit), without a reinjection system in place. The results suggests that the mine dewatering systems would need to remove more than 4GL/a to lower groundwater levels to the base of the pits (ie. more than the current mine water demand), and that the drawdown impacts would be significant and extend well into the off tenement area.

8. IMPACT ASSESSMENT

This groundwater impact assessment uses the results of modelling and assessment of available regional reports and data to quantify the potential impacts of the PIOP on local and regional groundwater resources.

The impact assessment quantifies the net impact mine dewatering may have on the volume of water stored in the interconnected aquifers in the study area and present the magnitude and extent of drawdown. The results will be discussed in relation to:

- On tenement areas at Champion, Eagle, Delta, Blackjack, and Ajax;
- Off tenement areas at Serenity and immediately north of Champion, Blackjack and Ajax; and
- The Millstream Water Reserve.

8.1 Dewatering Volumes

The PIOP will affect groundwater resources at Champion, Eagle, Delta Blackjack and Ajax and the adjacent off tenement areas. In general, it is assumed that the deposits will be mined from surface down to the BIF bedrock. The CID/BID aquifers are also the host rock deposits, so the majority of groundwater will be removed via dewatering systems to allow mining of the host rock deposits.

Modelling suggests that mine dewatering is likely to draw groundwater from off tenement areas and that the mine dewatering volumes may exceed the mine water demand (4GL/a over 15 years) so excess mine dewater may need to be returned to the aquifer off tenement to minimise drawdown impacts. It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine.

8.2 Drawdown

The magnitude and extent of drawdown impacts associated with pumping 1.33 GL/a from the Champion, Eagle and Delta deposits is shown by the groundwater contours generated by groundwater models under average and dry conditions and plotted in Figure 7-5 and Figure 7-7 respectively.

Table 8-1 presents the maximum drawdown predicted across the study area. The maximum predicted drawdown at Serenity is considerably lower due to the significantly greater storage capacity and semi confining properties. Modelling suggests that mine dewatering would depressurise the aquifer at Serenity rather than dry it out.

Figure 7-6 shows the depth to the total head (m) predicted by groundwater models at Serenity and north of Champion after 15 years of pumping 1.33 GL/a from the Champion, Eagle and Delta deposits

(4 GL/a in total) under dry conditions. The depth to total head varies between 30m and 75m within the model areas in the areas where GDEs have been identified. The actual depths to groundwater at Serenity are likely to be greater than shown in Figure 7-6 in areas where there is an extensive clay layer overlying the CID/BID aquifer.

Mine Area	Maximum reduction in saturated aquifer thickness (m)	Maximum Drawdown in Total Head (m) 70	
Eagle	60		
Delta	48	70	
Champion	66	66	
Blackjack	Insufficient data available	Insufficient data available	
Ajax	Insufficient data available	Insufficient data available	
Off-Tenement at Serenity (at Eagle and Delta)	0	9.5	
Off-Tenement at Champion	40	40	

Table 8-1: Maximum Predicted Drawdowns

8.3 Impacted Aquifers

The areas and volumes of aquifers impacted by mine dewatering have been calculated as the extents and volumes of the aquifers that have been dried out due to dewatering. This assumes that an aquifer is impacted when the saturated thickness is reduced to "dry out" portions of the aquifer (ie. dewatering must lower the total head in the aquifer to a level below the clay layer located at the top of the CID/BID aquifer).

The conceptual model for Serenity has a continuous clay layer present across most of aquifer, which results in semi confined conditions. Therefore mine dewatering would need to reduce the total head by between 15m and 35m at Serenity before it drops below the elevation of the clay layer and reduces the saturated thickness of the aquifer (ie. before the aquifer is impacted).

The calculated areas and volumes are presented in Appendix 8.

8.3.1 Areas

The extent of the interconnected aquifer systems considered in this investigation for the local on and off tenement areas is shown in Figure 6-1. The aquifers cover a combined area of approximately 78.5 km². The total area of aquifer impacted by drawdown across the local on and off tenement areas has been assessed and the results presented in Appendix 8 suggest that mine dewatering may have the

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT **GROUNDWATER IMPACT ASSESSMENT REPORT**

potential to impact approximately 38% of the local on and off tenement areas considered by groundwater modelling.

The potential extent of the interconnected CID units within the Caliwigina Creek and Weelumurra Creek catchments is shown in Figure 6-2. Although the CID unit mapped in Figure 6-2 contains significant volumes of groundwater, it does not represent the full extent of the potential aquifers because the BID and DID units are also likely to contain groundwater. The area covered by the aquifer extent mapped in Figure 6-1 is approximately 180% greater than the area of CID units mapped in Figure 6-2 within the same area. This factor was used to estimate the total aquifer area within the Caliwigina Creek and Weelumurra Creek catchments. The resulting total aquifer area is 292.6km².

The total area of aquifer impacted by drawdown across the Caliwigina Creek and Weelumurra Creek catchment areas has been assessed using this total aquifer area and the results presented in Appendix 8 suggest that mine dewatering may have the potential to impact approximately 10% aquifers within the Caliwigina Creek and Weelumurra Creek catchments.

The impacts associated with mine dewatering are of a transient nature and groundwater flows will be re-established post mining.

8.3.2 Volumes

The total volume of aquifer impacted by drawdown across the on and off tenement areas considered in this modelling exercise has been assessed and the results presented in Appendix 8 suggest that mine dewatering may have the potential to impact approximately 17% of the total aquifer volume considered by the groundwater models, by reducing the saturated aquifer thickness within the combined on and off tenement areas considered.

Similar volume calculations to assess the impact that dewatering may have on the inferred CID aquifer volume across the Caliwigina Creek and Weelumurra Creek catchments (Figure 6-2) were not made due to insufficient data. However comparison of aquifer volumes and areas suggests that the percentage impact mine dewatering may have on the aquifer within the Caliwigina Creek and Weelumurra Creek catchments is expected to be less than 10%.

8.4 Recharge

Groundwater recharge at the Champion, Eagle and Delta deposits will be intercepted and removed by dewatering systems. The combined average annual recharge at these deposits is estimated at approximately 1.8 GL/a by assuming 5% of average annual rainfall (see Appendix 7). Therefore an additional 2.2 GL/a of mine dewater drawing water from off tenement areas would be needed to meet the project water demands (4GL/a) once the groundwater storage within the on tenement aquifer systems have been depleted.

WorleyParsons

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

The Champion, Eagle and Delta deposits lie within the Millstream Catchment Area, which is a Priority 2 Public Drinking Water Source Area (PDSWA). Therefore mine dewatering will impact on the volume of recharge at Millstream, which was estimated by Barnett and Davidson (1985) to be 27.7GL/a based on recharge estimates for five contributing catchment areas. The Millstream Status Report (DoW, 2009) presents a slightly lower estimated average annual recharge of 18 GL/a to Millstream and is based on estimates presented in the Hydrologic Investigations for the Harding Dam (SMEC 1982) and Millstream Groundwater Scheme Review (WAWA, 1992). The value of 27.7 GL/a was selected for the calculations presented in Table 8-2 because it is based on more recent work completed by Barnett and Davidson (1985).

The ratio of catchment areas for the Champion, Eagle, Delta deposits, to the Millstream catchment area was multiplied by the estimated Millstream recharge to determine estimate the volume of recharge mine dewatering is likely to remove from the Millstream system. The results presented in Table 8-2 indicate that mine dewatering will remove 1.4% or 0.39 GL of the average annual recharge to the Millstream aquifer over the life of mine (15 years). If we assume a lower average annual recharge at Millstream (18 GL/a) based on the Millstream Status Report (DoW, 2009), then mine dewatering will remove 1.4% or 0.25GL of the average annual recharge to the Millstream aquifer.

Mine Area	Catchment Area (km ²)	% of Millstream Catchment Area	Recharge (GL)
Ajax	36	0.7%	0.18
Blackjack	11	0.2%	0.06
Champion	31	0.6%	0.16
Delta	19	0.3%	0.09
Eagle	27	0.5%	0.14
Champion, Eagle and Delta Combined	77	1.4%	0.39
Millstream*	5,480	100%	27.7

Table 8-2: On-Tenement Recharge Estimates

* Source: Barnett and Davidson, 1985. Hydrogeology of the Western Fortescue Valley, Pilbara Region, WA, Geological Survey 1985. This area excludes the upper Fortescue River catchment area, which dissipates into the Fortescue Marsh and is not considered to contribute recharge to Millstream.

8.5 Closure

The mine pits are to be backfilled with material that are expected to have similar or higher permeabilities than the existing geological units. This is expected to promote higher recharge rates during rainfall events and result in unconfined aquifer conditions.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

The pits will be backfilled to ensure that the finished surface is at a higher elevation than the predicted post development groundwater levels, to prevent the formation of pit lakes. This will prevent salt accumulation which could impact on groundwater quality. The groundwater chemistry within the aquifer systems within the on tenement areas post closure will be a function of the geochemical composition of the backfilling material, which is discussed in detail in the report by Graeme Campbell and Associates (2011).

9. CONCLUSIONS

It is currently planned to pump approximately 1.33 GL/a from the Champion, Eagle and Delta deposits to make up the 4 GL/a needed to meet the project water demand over the life of mine (4GL/a over 15 years). This groundwater is to be sourced from mine dewatering systems, with any excess mine dewater returned to the aquifer off tenement to minimise drawdown impacts. Groundwater modelling was used to assess the net impact the abstraction of 4GL/a has on groundwater resources and whether mine dewatering can be used to meet the projects water demands for life of mine.

Detailed mine dewatering and aquifer reinjection systems have not been included in model simulations. Only the net impact of abstracting 4GL/a has been assessed. However sensitivity analysis was performed to assess the need for reinjection systems.

The results suggest that it may be possible to meet the projects water demands for life of mine (4GL/a over 15 years) by extracting 1.33GL/a from the Delta, Eagle and Champion deposits. The results also suggest that mine dewatering volumes may exceed the mine water demand, and therefore excess mine dewater may need to be returned to the aquifer via reinjection off tenement to minimise drawdown impacts.

Recharge calculations and groundwater modelling suggest that the majority of groundwater recharge at the Champion, Eagle, Delta deposits will be intercepted and removed by dewatering systems. The combined average annual recharge at these deposits is estimated at approximately 1.8 GL/a by assuming 5% of average annual rainfall (see Appendix 7). Therefore an additional 2.2 GL/a of mine dewater may need to be drawn in from off tenement areas to meet the project water demands (4GL/a) once the groundwater storage within the on tenement aguifer systems have been depleted.

The depths to total head (m) predicted by groundwater models at Serenity and north of Champion after 15 years of pumping 1.33 GL/a from the Champion, Eagle and Delta deposits (4 GL/a in total), vary between 30m and 75m within the model areas in the areas where GDEs have been identified. The actual depths to groundwater at Serenity are likely to be even greater in areas where there is an extensive clay layer overlying the CID/BID aquifer (semi confining conditions).

The results of groundwater modelling and impact assessments suggest that the PIOP may have the following impacts on groundwater resources:

Modelling suggests that mine dewatering will reduce water levels (total head) within aquifers located at the Champion, Eagle, Delta, Blackjack and Ajax deposits and also within hydraulically connected off tenement aquifers. The maximum predicted reduction in total head off tenement at Serenity and Champion are expected to be in the order of 9.5m and 40m respectively;

- It is anticipated that the deposits will be mined from surface down to the BIF bedrock. Therefore the CID/BID aquifers and the water contained within will be removed via dewatering systems. Modelling suggests that mine dewatering may also draw some groundwater from off tenement areas;
- Mine dewatering may have the potential to impact approximately 38% of the estimated total local on and off tenement aquifer *area* considered by the groundwater models⁴, by reducing the saturated aquifer thickness. This impact reduces to approximately 10% when the entire potential aquifer extent, inferred from available data within the Caliwigina Creek and Weelumurra Creek catchments is considered;
- Mine dewatering may have the potential to impact approximately 17% of the estimated total local on and off tenement aquifer *volume* considered by the groundwater models⁴, by reducing the saturated aquifer thickness. Although there is insufficient data to assess regional impacts on aquifer volumes, comparison of aquifer volumes and areas suggests that the impact would reduce to less than 10% when the entire potential aquifer extent, inferred from available data within the Caliwigina Creek and Weelumurra Creek catchments is considered; and
- It is anticipated that mining will intercept and remove groundwater recharge at each of the deposits. Average annual recharge from the combined on tenement areas normally accounts for approximately 1.4% or between 0.25 to 0.39GL of the total average annual recharge to the Millstream aquifer. Therefore the intercepted volume is small when compared with the total annual recharge.

The mine pits are to be backfilled with material that are expected to have similar or higher permeabilities than the existing geological units. This is expected to promote higher recharge rates during rainfall events and result in unconfined aquifer conditions.

The pits will be backfilled to ensure that the finished surface is at a higher elevation than the predicted post development groundwater levels, to prevent the formation of pit lakes. This will prevent salt accumulation which could impact on groundwater quality. The groundwater chemistry within the aquifer systems within the on tenement areas post closure will be a function of the geochemical composition of the backfilling material, which is discussed in detail in the report by Graeme Campbell and Associates (2011).

⁴ The groundwater models cover a limited area and do not account for the full extent of the interconnected regional aquifer system

10. REFERENCES

ANZECC/NHMRC, 1992. Australian Water Quality Guidelines for Fresh and Marine Waters. National Water Quality Management Strategy Paper No.4

ANZECC/NHMRC, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

Barnett, J.C and Commander, D.P. 1985. Hydrogeology of the Western Fortescue Valley, Pilbara Region, western Australia, GSWA Record 1986/8.

Bureau of Meteorology 2009a, Climate Statistics for Australian Locations [online] http://www.bom.gov.au/jsp/ncc/cdio/cvg/av accessed 9 November 2009.

Bureau of Meteorology 2009b, Tropical Cyclones Affecting Inland Pilbara towns [online]

De la HUNTY, L. E., 1965, Mount Bruce, W.A.: Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 28p.

Department of Water (DoW), 2009. Millstream status report, A review of management and consolidation of current understanding, Department of Water, Environmental Water Report Series, Report no. 9, September 2009

Fortescue Metals Group, October 2010. Water Management for the Solomon Project. 13th International River Symposium, Perth. FMS, 2010a. Archaean-Proterozoic geology of the Flinders Mines Hamersley Prospects, FMS, 2010

FMS, 2010b. BLACKSMITH MINERALISATION REPORT under Section 74(1)(ca)(ii) of the Mining Act 1978, Document No: PIL-REP-003, Flinders Mines Limited, August 2010.

Freeze and Cherry, 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ 07632.

Graeme Campbell and Associates, 2011. Flinders Pilbara Iron-Ore Project (FPIOP): Geochemical Characterisation of Mine-Waste Samples from Delta, Eagle, and Champion Pits - Implications for Mine-Waste Management, November 2011.

http://www.flindersdiamonds.com/e47882.html

http://www.riotintoironore.com/ENG/operations/497 geology.asp

Johnson, S.L and Wright, A.H, 2001, Central Pilbara Groundwater Study, Water and Rivers Commission, Hydrogeological Record Series, Report HG 8, 102, p.2001.

NHMRC and NRMMC (2004) Australian Drinking Water Guidelines 2004, National Water Quality Management Strategy, National Health and Medical Research Council and the Natural Resource Management Ministerial Council.

Snowy Mountain Engineering Corporation 1982, Hydrologic Investigations for the Harding Dam Volume 1, prepared for Public Works Department, Western Australia.

Snowy Mountain Engineering Corporation 1982, Hydrologic Investigations for the Harding Dam Volume 2, prepared for Public Works Department, Western Australia.

Thorne, A. M., and Tyler, I. M., 1997, Mount Bruce, W.A. (2nd Edition): 1:250 000 Geological Series Explanatory Notes, 28p.

Public Works Department, WA, 1982. Hydrologic Investigations for the Harding dam, Volumes 1 and 2, April, 1982.

Water Authority of WA 1992, Millstream groundwater scheme review, Report no. WG 136 March 1992, unpublished report.

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 1: Ajax Characterisation Report

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

Select Level 7, QV1 Building 250 St Georges Terrace Perth WA 6000 Australia Telephone: +61 8 9278 8111 Facsimile: +61 8 9278 8110 worleyparsons.com WorleyParsons Services Pty Ltd ABN 61 001 279 812

Ref: 201012-00322 File: 201012-00322

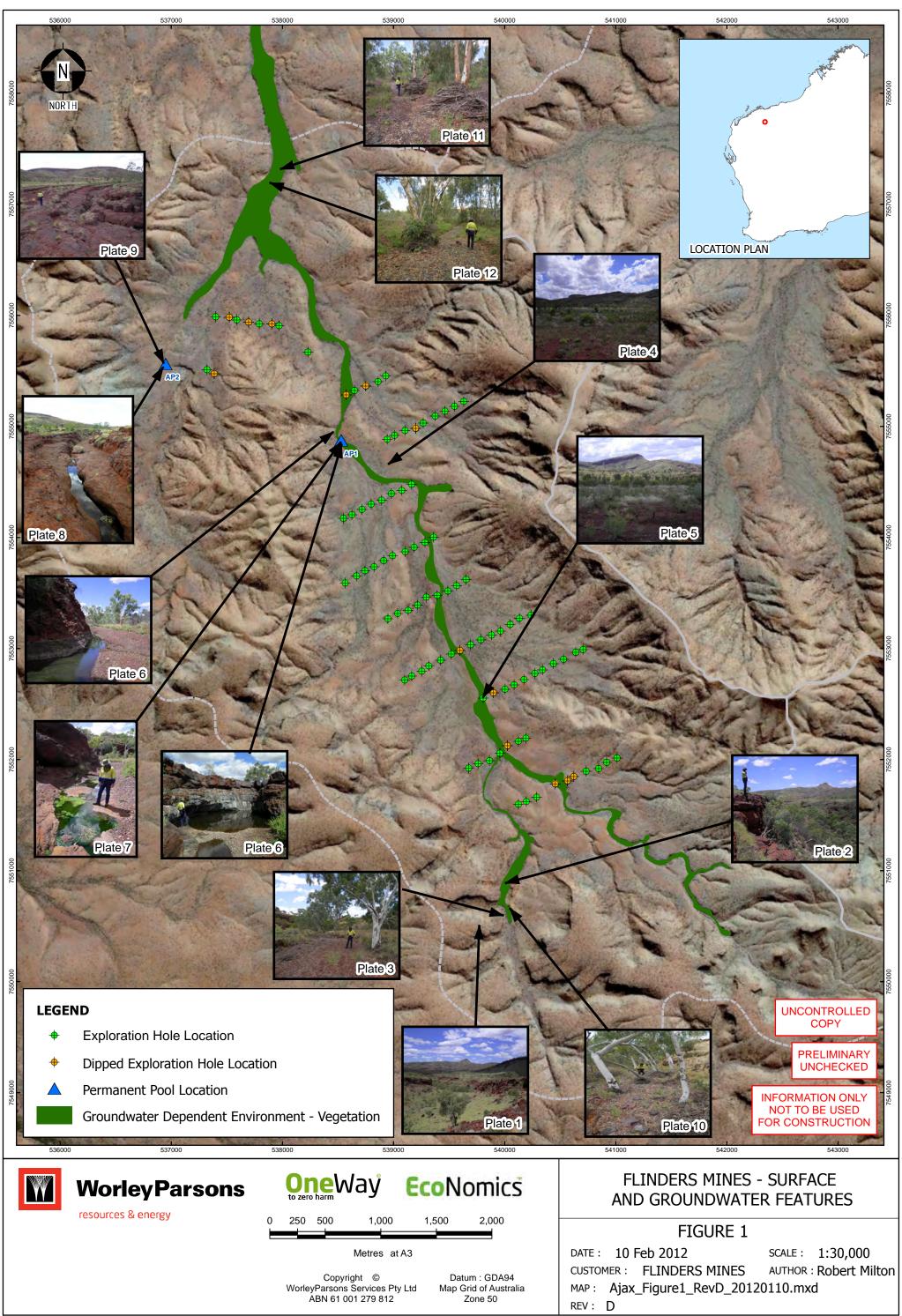
2 March 2012

Mick Anstey Flinders Mines Limited 62 Beulah Road Norwood South Australia 5067

Dear Mick

AJAX SITE CHARACTERISATION REPORT

Background


A meeting was held between Flinders, Ecoscape and WorleyParsons in Perth on the 2nd October 2011 to discuss the presence of groundwater dependant ecosystems (GDE) identified during recent surveys at locations within and in proximity to Flinders' Blacksmith and Anvil tenements. Ajax was identified as an area with GDEs including two permanent pools with significant heritage value. Figure 1 shows the Ajax catchment and location of identified GDEs.

In this meeting it was decided that further work was needed to characterise the surface water hydrology and subsurface hydrogeology of the Ajax deposit, with particular reference to GDEs and the pools with significant heritage value. This report presents the results of this investigation work.

Scope of Work

The Scope of Work (SoW) for this investigation included:

- Site visit to collect field data and observations;
- Desk top analysis of available reports and data;
- Characterisation of the hydrology and hydrogeology of the Ajax deposit;
- Discussion on the relationship between the surface hydrology and subsurface hydrogeology relative to the presence of GDEs; and
- Present potential environmental impacts associated with mining at Ajax and corresponding mitigation measures to minimise impacts.

Location: I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Ajax investigations\GDE_Report\ArcGIS\Map_Docs\Ajax_Figure1_RevD_20120110.mxd

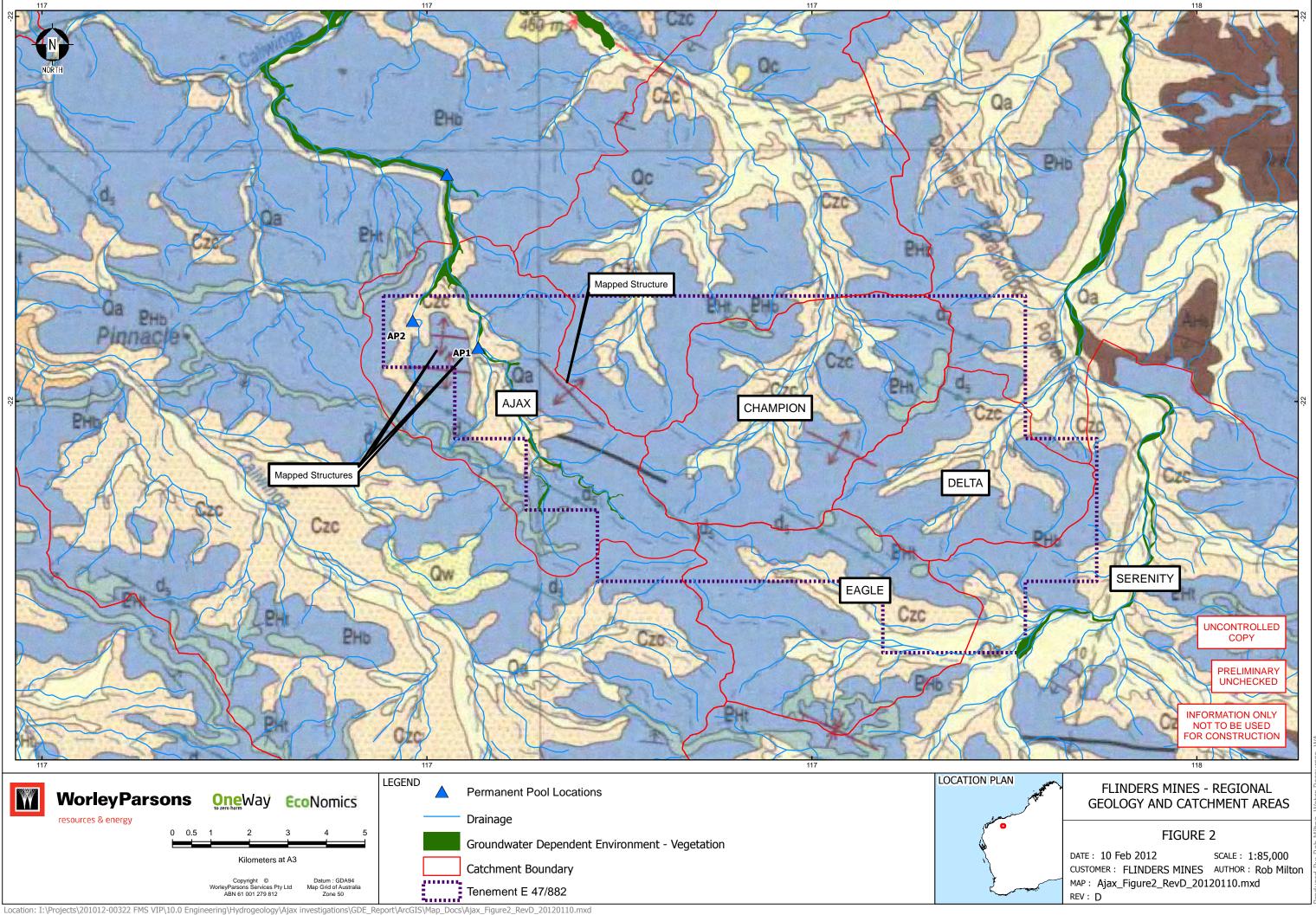
Site Visit

A site visit was conducted between the 20th and 23rd of November to walk over the Ajax deposit and collect field data and observations needed to evaluate the surface hydrology and hydrogeology of the Ajax deposit. Watercourses, GDEs, permanent pools and geological features were identified and photographed. A selection of these photographs is provided in Appendix A (Plates 1 to 12), while their locations are shown in Figure 1.

Two significant permanent pools with significant heritage value, defined as Ajax Pool 1 (AP1) and Ajax Pool 2 (AP2) in this report, were visited during the site visit (Plates 6 to 9), and measurements taken to estimate the approximate standing water level in mAHD. The location of these pools are shown on Figure 1.

Piles of debris deposited within the main channels of watercourses at Ajax were located and the maximum height of the debris measured and their location recorded using a hand-held GPS. The heights were converted to debris levels (in mAHD) using ground levels estimated using airborne LIDAR survey data. The debris levels represented the maximum water level experienced during recent flood events. All debris level measurements are presented in Appendix B.

Several exploration holes were located at Ajax and the depth to groundwater recorded in the holes that had not collapsed for comparison with standing water levels at the pools. These depths were then converted to water levels (in mAHD) using ground levels estimated using airborne LIDAR survey data.


Local Hydrology

The Ajax catchment area shown in Figure 2 has an area of approximately 36km² delineated using topographic contours generated using LIDAR survey data and 90m SRTM data. This catchment lies within the Millstream catchment which has an approximate area of 4,770km². Therefore the Ajax catchment represents 0.7% of the Millstream catchment area.

The Champion, Eagle and Delta catchments are presented in Figure 1 for comparison and also lie within the Millstream catchment area.

The average annual rainfall at Ajax is 459mm based on rainfall recorded at Wittenoom between 1950 and 2011 (BoM #5026) while the average annual pan evaporation exceeds 3,000mm (BoM). Because annual evaporation greatly exceeds rainfall, the ability of porous sediments within the catchment to capture rainfall recharge, store and discharge groundwater is extremely important for preservation of the permanent pools.

The largest ephemeral creek at Ajax flows north through the centre of the catchment with a channel grade of approximately 1% and bounded by steep and rocky terrain. The majority of surface water runoff generated within the Ajax catchment during rainfall events flows via this ephemeral creek north to Caliwingina Creek before discharging into the Fortescue River (Figure 2).

The channel widths of creeks in this catchment reduce when they pass through deeply incised valleys (Plate 2), then increase in areas where the valley widens (Plate 4 and 5). The creeks have thicker alluvial sediments in areas where the channel grade is low and the channel width is greatest. This is because the flood flows have lower velocities which promote the deposition of sediments. The creeks contain thin alluvial sediments in the areas where they pass through narrow and deeply incised valleys bounded by steep rocky slopes (Plate 10). The flows in these areas are concentrated through a smaller cross sectional area, which increases flow velocities causing scour of sediments and exposure of bedrock. The permanent pools at AP1 and AP2 have been formed by erosion and scour of exposed bedrock while the creeks are in flow (Plates 6 to 9).

Due to the steep and rocky terrain, surface water runoff from this catchment is expected to be rapid in response to rainfall resulting in flash floods during extreme events associated with cyclonic activity or local thunderstorm activity. The steep terrain, incised nature of the creek and presence of exposed and near surface bedrock suggests that the catchment also has limited storage capacity. This means that groundwater recharge is limited and only occurs during a short period when there is stream-flow in the creek, with the majority of water flowing north out of the catchment area.

The Champion, Delta and Eagle catchment areas contribute water into the Serenity catchment to the East and are not linked to the Ajax catchment in any way except that they separately contribute surface water runoff to the Fortescue catchment. These catchments are similar however, in that they are each formed through the weathering and erosion of the Brockman formation and each receive similar rainfall patterns.

Local Geology

The Regional Geology of the area is described in the 1:250,000 Mt Bruce Map Sheet (SF50-11) and associated explanatory notes as first and second editions (de la Hunty, 1965; Thorne et al (GSWA), 1997). An extract from this geological map sheet is presented in Figure 2. The majority of the regional geology has no bearing upon the hydrogeology within the Ajax Catchment however it is important to note that each of the surrounding catchments within tenement E47/882 are also within the Brockman formation's Banded Iron Formation (BIF), Cherts and Shale.

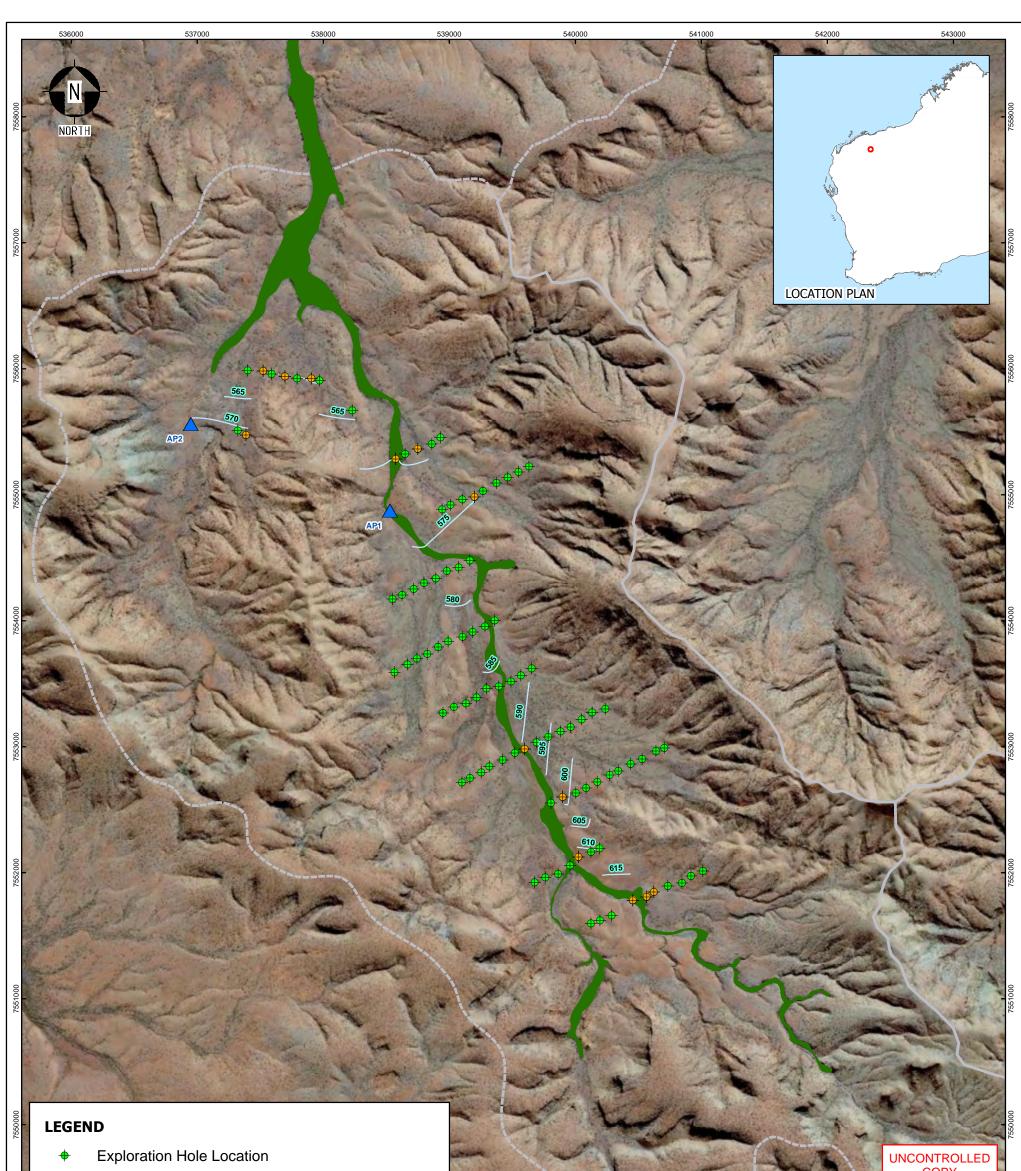
The Ajax Deposit is situated within a valley containing Quaternary and Cainozoic sediments overlying BIF bedrock from the Brockman formation, a part of the Hamersley group. The Brockman Iron Formation, with an estimated maximum thickness of about 550m, is the main iron-bearing formation within the Hamersley Group and has been described in detail by Trendall and Blockley (1970). The various members have been subdivided into the Whaleback Shale member, the Dales Gorge member, the Joffre BIF member, and the Yandicoogina Shale member (Thorne et al (GSWA), 1997). Within Ajax, the particular member could not be determined due to a lack of information however, during 250k geological mapping (GSWA, 1997), several W-E oriented (hinge) folds were encountered on the SW flank and one NW-SE oriented (hinge) fold was encountered on the NE flank of the Ajax catchment.

Large quantities of Banded Iron Formation (BIF), chert and shale are scattered throughout the landscape. Steep slopes can be found within the Ajax catchment covered with remnants of BIF and Detrital Iron and the valley contain some alluvial clay, Channel Iron Deposits (CID's) and Banded Iron Deposits (BID's) overlying BIF, chert and shale bedrock.

Exploration drilling has been performed along a number of cross sections shown in Figure 3. The geological logs and site observations have been used to develop a series of conceptualised cross sections for Ajax (Appendix C). The cross sections suggest that conceptual geology at Ajax differs from the Champion, Eagle and Delta within the FMS tenement, because there is a much shallower soil profile overlying the BIF bedrock, varying between 0m to 26m (in the drilled area). The BID and CID deposits, which are known to be the most transmissive units and most likely to contain groundwater, are thin and not extensive throughout the catchment. Therefore the storage capacity of the CID and BID units at Ajax is likely to be significantly smaller than at Champion, Eagle and Delta.

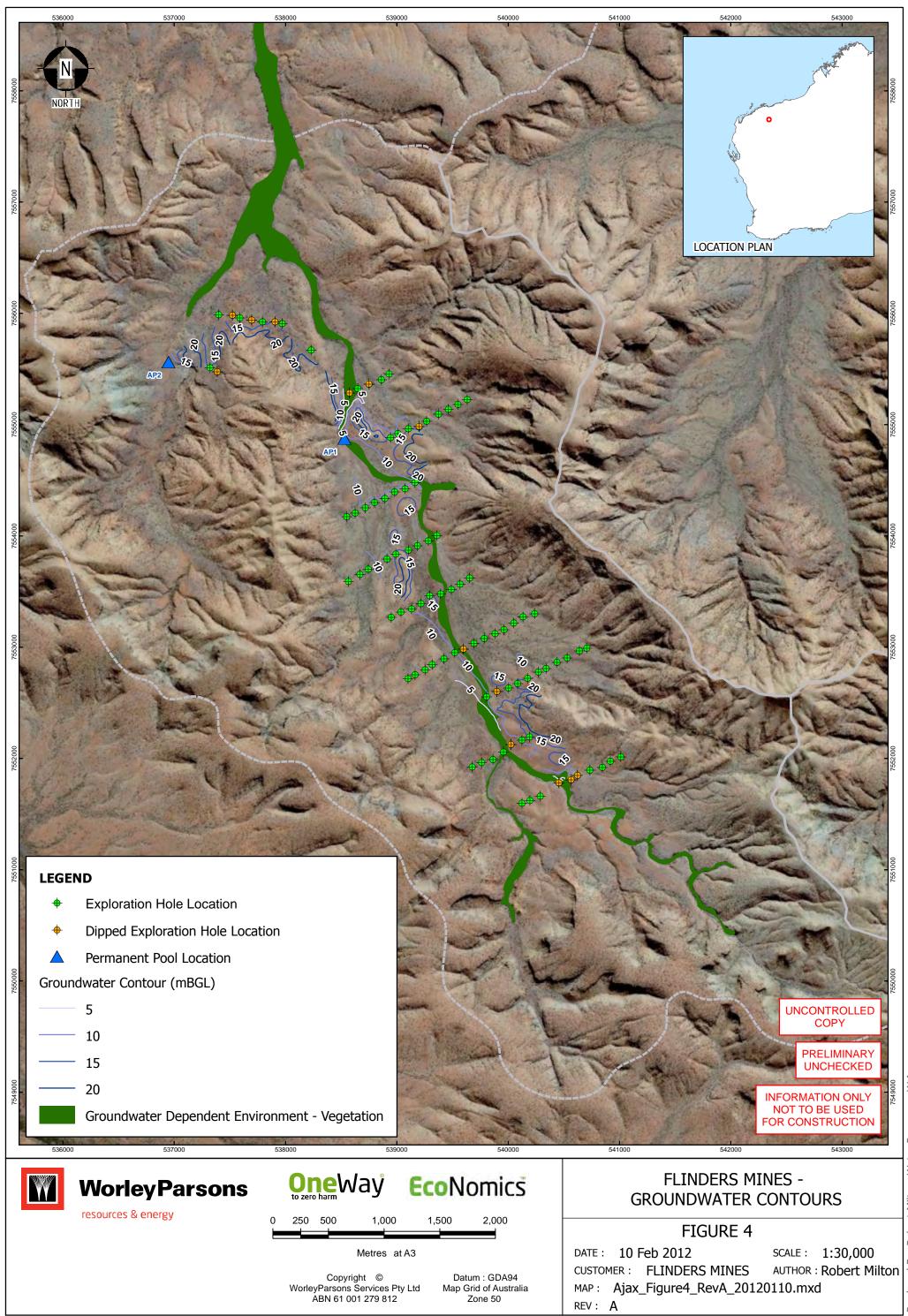
Local Hydrogeology

Groundwater levels recorded in open exploration holes and at the pools during the recent site visit were have been used to plot groundwater contours (depth bgl) in Figure 4. The contours show that direction of groundwater flow is to the north, and that near surface groundwater is present in the vicinity of the GDEs.


The measured groundwater levels have also been used to develop inferred groundwater levels in the cross sections presented in Appendix C.

Analysis of the geological cross sections and water levels recorded in exploration holes and pools suggests there are two distinctive occurrences of groundwater at Ajax:

- 1. A more extensive groundwater aquifer located at an elevation within the BID and DID deposits, just above the existing BIF bedrock; and
- 2. Pockets of perched groundwater associated with less extensive porous zones of alluvial sediments underlain by surface clays and located within or adjacent to creeks.


Local surface aquifers are restricted to saturated zones of a porous material above clay layers resulting from depositional changes during rainfall events. These zones naturally follow creek beds and channels within the top several metres of colluvium. The deeper aquifer tends to follow the surface of the highly-resistant and impermeable Brockman formation (BIF).

The degree of connectivity between the shallow perched groundwater and the deeper aquifer cannot be determined accurately with the existing geological data.

7549000	♦	Dipped Exploration Hole Loca Permanent Pool Location Groundwater Height (mAHD) Groundwater Dependent Envi				COPY PRELIMINARY UNCHECKED INFORMATION ONLY NOT TO BE USED FOR CONSTRUCTION
	536000	537000	538000 539	39000 540000	541000 542000	543000
	WorleyPars		One Way		FLINDERS M GROUNDWATER	-
		resources a chelby	0 250 500 1,000	0 1,500 2,000	FIGURE 3	
			Metres a	at A3	DATE : 10 Feb 2012	SCALE : 1:30,000
	WorleyParsons Servi		Copyright © WorleyParsons Services F ABN 61 001 279 812		CUSTOMER : FLINDERS MINES MAP : Ajax_Figure3_RevA_2012 REV : A	AUTHOR : Robert Milton 20110.mxd

Location: I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Ajax investigations\GDE_Report\ArcGIS\Map_Docs\Ajax_Figure3_RevA_20120110.mxd

Location: I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Ajax investigations\GDE_Report\ArcGIS\Map_Docs\Ajax_Figure4_RevA_20120110.mxd

The available geological data and field observations for Ajax has identified potential confining layers within the DID and underlying the shallow alluvial sediments at some locations within the catchment. This suggests that shallow perched groundwater may not be connected in many areas along the creek beds, and potentially connected at some of the deeply incised valleys where BID and CID is in direct contact with shallow alluvial sediments. Further investigation is needed to confirm the degree of connectivity between the shallow perched groundwater and the deep aquifer.

The Mt Bruce 250k map sheet (Figure 2) shows several structures present are likely to have contributed to the presence of near surface BIF bedrock observed at or in the vicinity of the permanent pools AP1 & AP2.

The long section presented in Appendix C shows the elevation of BIF bedrock gradually decreasing to the north, which promotes groundwater flow in that direction. The elevation of the bedrock increases significantly in the vicinity of permanent pool AP1, which forces groundwater to flow up and over the bedrock at this location. This channelling of flow through a thin layer of alluvial sediments causes groundwater to breach the surface, flow overland across or through fractures in exposed bedrock, and into the permanent pool AP1. Similar conditions are observed at AP2.

This continuous flow of groundwater and seasonal flooding scours and erodes the bedrock, deepening the pools and maintaining water levels. Plates 6 to 9 show the presence of the exposed bedrock at both AP1 and AP2.

Groundwater quality data was not collected at Ajax. However the geology is similar to that of Champion, Eagle and Delta, so the water quality is also expected to be similar. Water quality data collected at Champion, Eagle and Delta are presented in Appendix D.

Interpreted Influence of Groundwater on GDEs

The report completed by Ecoscape (19th Dec 2011) shows the locations of several types of GDE's and their dependence upon groundwater (Figure 1). The report does not recognise the presence of shallow perched groundwater and the deeper aquifer found within Ajax nor does it specify the depth at which the GDEs are relying upon subsurface water or the lateral distance GDEs would search for water.

The GDEs identified at Ajax are almost always located in or adjacent to creeks and low lying areas containing alluvial sediments (Figure 1). The majority of GDEs are likely to be relying on pockets of shallow perched groundwater within these sediments which is being fed by shallow through flow from up gradient areas and recharge from seasonal flooding. There may also be some areas where GDEs are accessing groundwater stored in near surface deposits of CID and BID within or adjacent to creek beds. The depth that roots would need to penetrate to access this shallow perched groundwater is not yet known, so additional investigations are needed to confirm the GDEs dependence on groundwater.

Potential Impacts of Mining at Ajax

The aquifers within the upper catchment area supply groundwater flow which supports and maintains the permanent pools and GDEs downstream. The mining of these aquifers

is likely to reduce the supply of water so mitigation measures are needed to maintain the groundwater flow and quality of water reaching the permanent pools and GDEs.

The GDE's and permanent pools also rely on seasonal flooding to recharge aquifers, which increases storage and maintains groundwater flows throughout the year. Mining has the potential to starve downstream areas of surface water flow unless managed carefully using diversions and mine planning.

Conclusions & Recommendations

The proposed mining operation at Ajax has the potential to alter surface and groundwater flows and quality, which could have an adverse environmental impact on GDE's and permanent pools, if left unmanaged.

It is recommended that appropriate management measures are developed and incorporated into mine planning to ensure that surface and groundwater flows, volumes and gualities are maintained at pre development conditions, at the GDE's and permanent pools to minimise adverse environmental impacts.

Management measures may include:

- Acid mine drainage (AMD) will need to be managed during mining operations and at closure to ensure that downstream permanent pools and GDEs are not affected;
- Mining of the aquifer may impact on flows to the permanent pools and GDEs, so ٠ mine dewater may need to be pumped to sensitive areas during mining operations to maintain flows:
- Surface water flow through mine areas will need to be managed using diversions, sedimentation ponds and appropriate mine planning to ensure that pre and post development flows and quality at the GDEs and permanent pools are similar;
- Backfilling mine pits with porous sediments to ensure that sufficient water storage is • retained is the upper reaches of the catchment which can maintain flow to the permanent pools and GDEs following mine closure; and
- Mine pits should be backfilled and watercourses reinstated at similar locations and using appropriate materials to maintain flow and prevent scour and sedimentation downstream following mine closure.

Yours sincerely WorleyParsons

Stuart ATKINSON Water Resources Manager

CC Appendix A: Site Photos Appendix B: Debris Levels Appendix C: Conceptual Hydrogeological Cross Sections Appendix D: Water Quality Data

Dan CRAVENS

Principal Hydrogeologist

References

Bureau of Meteorology 2009a, Climate Statistics for Australian Locations [online] http://www/bom.gov.au/jsp/ncc/cdio/cvg/av accessed 6th February 2012

De la HUNTY, L. E., 1965, Mount Bruce, W.A.: Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 28p.

Thorne, A. M., and Tyler, I. M., 1997, Mount Bruce, W.A. (2nd Edition): 1:250 000 Geological Series Explanatory Notes, 28p.

Trendall, A.F. and Blockley, J.B., 1970, *The Iron formations of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite*: Western Australia Geological Survey, Bulletin 119, p. 174-254.

Ecoscape (Australia) Pty Ltd, 2011, *Groundwater Dependent Ecosystem Mapping – Flinders Mines Limited* (Ref: 8086-2463-11R), unpublished document.

Appendix A: Site Photos

Plate 1. Steep rocky slopes along perimeter of the Ajax catchment

Plate 2. Steep rocky catchments and deeply incised valleys

Plate 3. Creek bed with shallow alluvium, in a narrow valley bounded by steep rocky slopes

Plate 4. Wide Valley Basins

Plate 5. Ephemeral creek flowing through a wide valley

Plate 6. Permanent Pool AP1

Plate 7. Exposed basement rock in the creek bed with little or no alluvium, adjacent Permanent Pool AP1

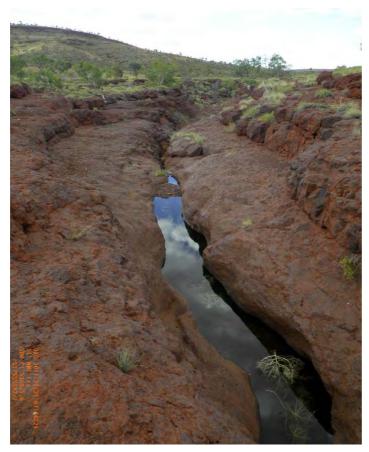


Plate 8. Permanent Pool AP2, with little or no alluvium

Plate 9. Exposed basement in the creek bed at Permanent Pool AP2

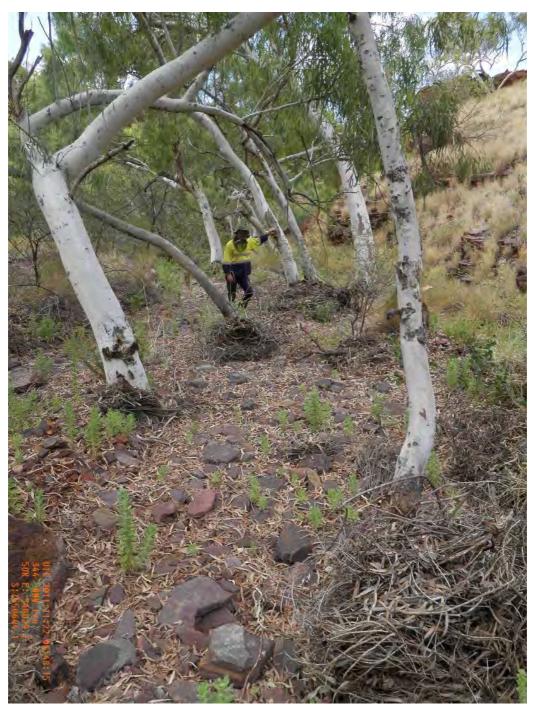


Plate 10. Debris levels recorded at site D01, within a deeply incised valley bounded by steep rocky slopes.

Plate 11. Debris levels recorded at site D02

Plate 12. Debris levels recorded at site D03

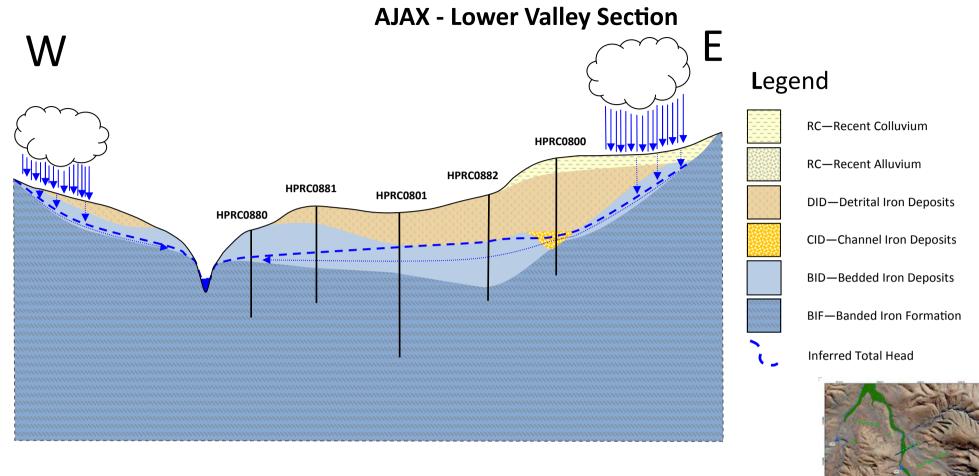
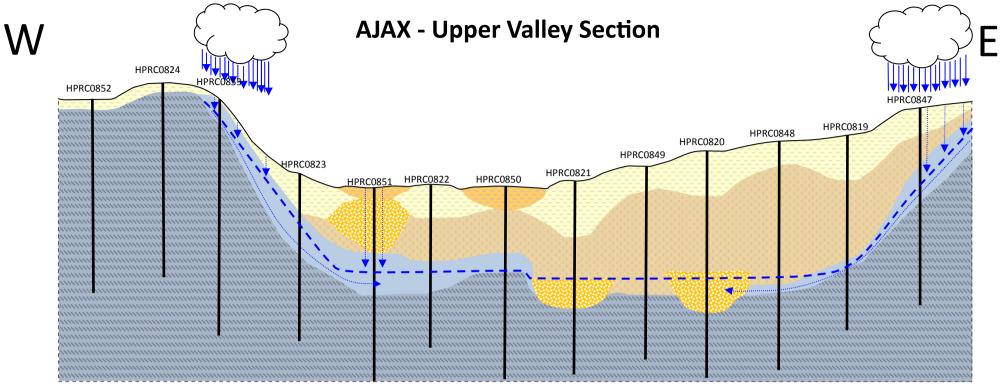
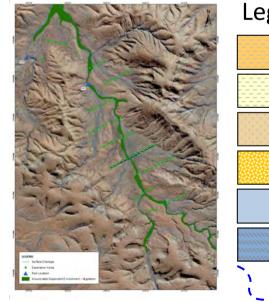

Appendix B: Debris Levels

Table 1. Ajax Debris Levels

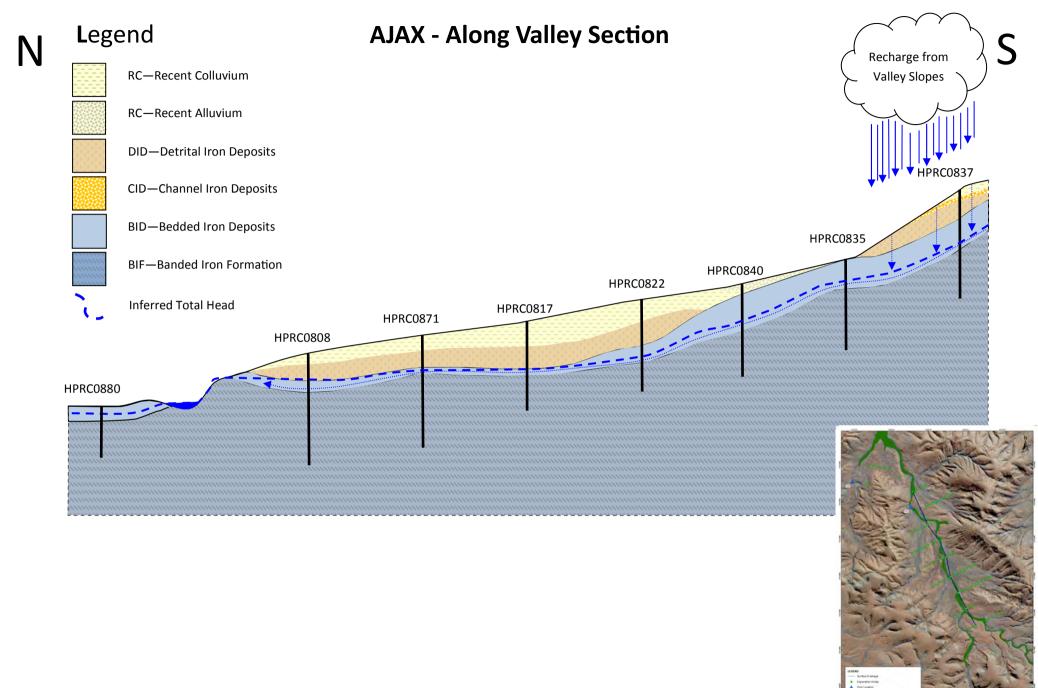
Site Ref	Photo Ref	Easting	Northing	Estimated Debris Height (m)	Estimated Debris Level (mAHD)
D01	RIMG1124	540030	7550644	0.5	642.36
D02	RIMG1172	537961	7557300	1.8	550.49
D03	RIMG1170	537858	7557211	1.8	552.97



Appendix C: Conceptual Hydrogeological Cross Sections



Approximately 10x Vertical exaggeration



Approximately 9x Vertical exaggeration

Legend

Approximately 10x Vertical exaggeration

resources & energy

Appendix D: Water Quality Data Collected at Champion, Eagle and Delta

Analuto	Units	Bore ID			NHMRC Drinking Water Guideline	
Analyte	Units	BH-DP	BH-EP	BH-CHP	Health	Aesthetic
рН		7.26	7.03	7.18	-	6.5-8.5
Electrical Conductivity @25°C	μS/cm	352	248	315	-	-
Total Dissolved Solids @180°C	mg/L TDS	241	187	269	-	500
Suspended Solids	mg/L SS	<5	<5	10	-	-
Hydroxide Alkalinity	mg/L CaCO₃	<1	<1	<1	-	-
Carbonate Alkalinity	mg/L CaCO₃	<1	<1	<1	-	-
Bicarbonate Alkalinity	mg/L CaCO ₃	113	82	99	-	-
Total Alkalinity	mg/L CaCO ₃	113	82	99	-	-
Sulfate	mg/L SO ₄	12	8	5	500	250
Chloride	mg/L Cl	38	32	43	-	250
Calcium	mg/L Ca	18	12	13	-	-
Magnesium	mg/L Mg	18	13	15	-	-
Sodium	mg/L Na	27	24	27	-	180
Potassium	mg/L K	9	6	6	-	-
Total Anions	meq/L	3.58	2.71	3.3	-	-
Total Cations	meq/L	3.78	2.87	3.21	-	-
Ionic Balance	%	2.77	N/A	1.3	-	-

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 2: Geophysical Survey Results

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

Geophysical modelling of palaeochannel aquifer systems in the eastern Blacksmith tenement, W.A.

May - June 2011

Job 2455

Airborne & Ground Geophysics

1	JOB SUMMARY	4
	1.1 INTRODUCTION	4
	1.2 LOCATION DIAGRAM	
	1.3 PERSONNEL	
	1.4 XTEM SURVEY SUMMARY	7
2	SAMPLING TECHNIQUES AND DATASETS	8
	2.1 AIRBORNE XTEM SURVEY	8
	2.2 DIGITAL ELEVATION MODEL	
	2.3 AIRBORNE MAGNETICS	
	2.4 GEOPHYSICAL AND GEOLOGICAL WELL LOGS AND PROFILE INTERPRETATIONS	8
	2.5 GROUND GRAVITY AND FREQUENCY DOMAIN EM	
	2.6 GEOPHYSICAL DATASETS AND RANGE OF INVESTIGATION	9
3	PROCESSING AND INTERPRETATION WORKFLOW	. 10
	3.1 PRELIMINARY MODELLING USING HISTORIC GROUND GRAVITY AND FREQUENCY DOMAIN EM.	. 11
	3.2 PROFILE MODELLING & CONSTRUCTING THEMATIC MAPS	
	3.2.1 Initial processing	
	3.3 CONSTRAINTING TO THE GEOLOGY	
	3.3.1 Technique	. 16
4	PRODUCTS DELIVERED	. 19
	4.1 FINAL IMAGES AND MAPS	20
	4.1.1 Recent (RCT) / Detrital Iron (DID) interface Depth Model	
	4.1.2 Detrital Iron (DID) / Channel Iron (CID) interface Depth Model	
	4.1.3 Channel Iron (CID) base surface Depth Model	
	4.1.4 Clay (CLY) top surface Depth Model	
	4.1.5 Clay (CLY) base surface Depth Model	
	4.1.6 Banded Iron (BID) top surface Depth Model	. 25
	4.1.7 Banded Iron (BID) base surface Depth Model 4.1.8 Basement (BMT) Depth Model	
	4.1.9 DID Thickness Model	
	4.1.10 Clay Thickness Model	
	4.1.11 Consolidated Channel Iron (CIDg) –Thickness Model	
	4.1.12 Porous Channel Iron (CIDh) – Thickness Model	
	4.1.13 BID Thickness Model	
	4.1.14 Valley Flatness Factor	
	4.1.15 Average Conductivity	
	4.1.16 Conductivity Roughness 4.1.17 Uncertainty of measurements	
_		
5	CONCLUSIONS AND RECOMMENDATIONS	-
	5.1 BACKGROUND AND GUIDING FACTORS	
	5.2 EXTENT AND CONFIDENCE.	
	5.2.1 Noise, misfit and resolution	
	5.3 ASSUMPTIONS 5.3.1 Airborne EM - Conductivity	. 31 27
	5.4 RECOMMENDATIONS	
6		
7	BIBLIOGRAPHY	
	APPENDIX A: SURVEY LINES START AND END COORDINATES	
8		
9	APPENDIX B: J2455 XTEM SURVEY SPECIFICATIONS	. 40

TABLE OF FIGURES

Figure 1: F	-light Path map	5
Figure 2: [Drillhole Location and Basement Outcrop Map	6
Figure 3: 0	Overview of the model area shown in red	7
Figure 4: [DigHEM and Ground Gravity Survey	9
Figure 5: S	Scale of resolution for each of the survey types used (Rubin Y., 2005)	10
Figure 6: \	Norkflow of a hydrogeophysical survey (Esben Auker, 2003)	10
	nitial basement clay surface interpretation using DigHEM and ground gravity	
Figure 8: Is	sosurface map showing areas of high conductivity over the survey area	12
	EM Aquifer target (Kirsch, 2010)	
	Sediment / fluid effect on conductivity (Kirsch, 2010)	
Figure 11:	The amplitude of the 3D analytic signal (Macleod et al., 1993)	14
	XTEM CDI section example	
	Basement model with CDI profiles	
	DID Top Surface Depth Model	
	CID Top Surface Depth Model	
	CID Base Surface Depth Model	
	Clay Top Surface Depth Model	
	Clay Base Surface Depth Model	
	BID Top Surface Depth Model	
	BID Base Surface Depth Model	
	Basement Depth Model	
	DID Thickness Model	
	Clay Thickness Model	
	CIDg Thickness Model	
	CIDh Thickness Model	
	BID Thickness Model	
	Palaeochannel valley bottom flatness factor - used in outcrop estimates	
	Average conductivity distribution	
	Magnitude of the rate-of-change in conductivity with depth	
Figure 30:	Uncertainty related to borehole proximity and survey density	36

1 JOB SUMMARY

1.1 INTRODUCTION

In May 2011 GPX Surveys performed an XTEM helicopter electromagnetic survey and interpretation of geophysical and drillhole datasets in the eastern drainage channels of Flinders Mines Blacksmith tenement in the central Pilbara. The aim of the project was to model and gain information on the structure and lithology of the area, targeting palaeochannels following the current drainage network.

Using the data acquired from this XTEM survey along with historical ground gravity, Airborne Frequency Domain EM, geophysical and geological logs and profile interpretations 'On-tenement', GPX Surveys continued to expand outside the tenement and produce a 3D sedimentary interpretation.

The project was completed in five stages:

- 1.) Interpretation of historical gravity and FDEM datasets for Flinders over the on-tenement areas of the block.
- 2.) Acquisition QC and processing of XTEM data producing Conductivity/ Depth Images (CDI).
- 2.) Profile modelling of the EM data comparing with other datasets and separating horizons.
- 3.) 2/3D expansion and combination of the EM and geological models and comparison with the previous interpretation, drillhole data and outcrop estimates to produce a modelled basement.
- 4.) Defining sedimentary horizons and 2/3D expansion of profile models to determine major lithology trends comparing with drillhole data.
- 5.) Production of final images, maps and report.

1.2 LOCATION DIAGRAM

Figure 1 and Figure 2 show maps of the acquired XTEM flight path and the drillhole locations and estimated surface outcrop boundary.

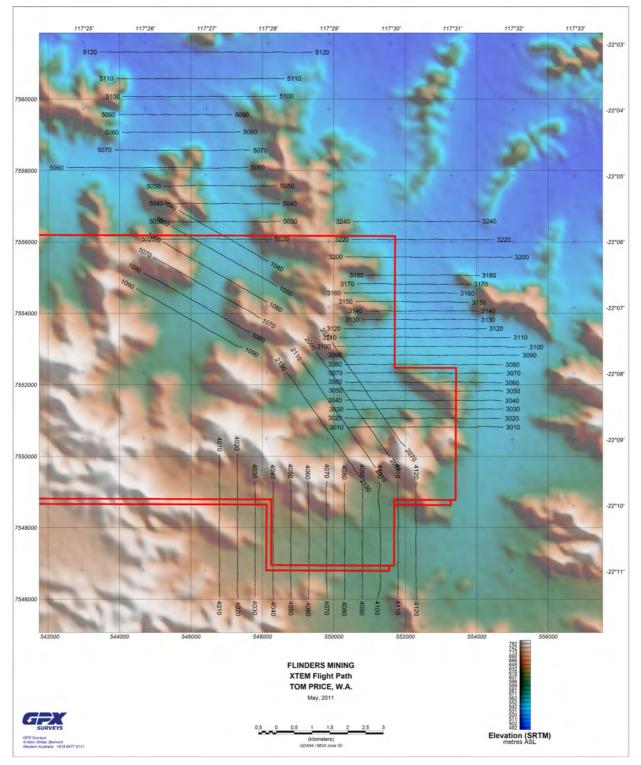


Figure 1: Flight Path map

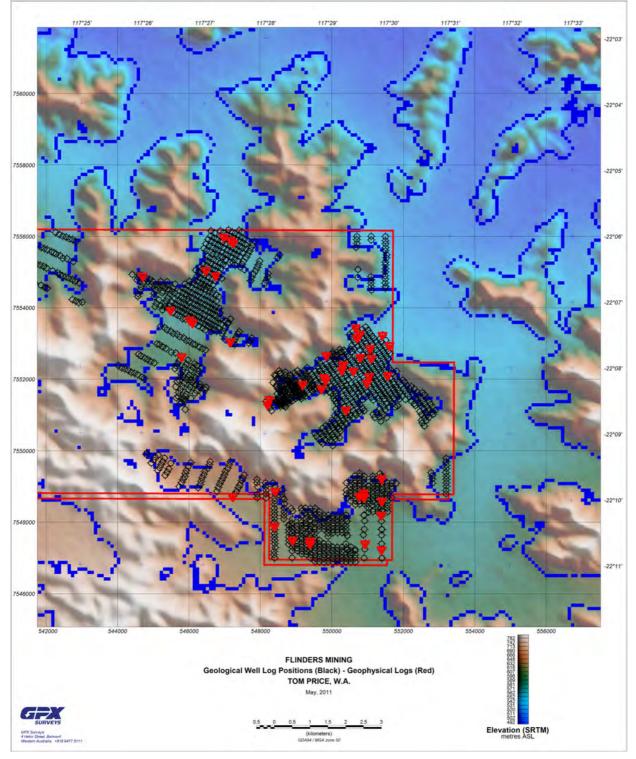


Figure 2: Drillhole Location and Basement Outcrop Map

Figure 3: Overview of the model area shown in red

1.3 PERSONNEL

The following personnel were involved in this project:

<u>Task</u>

Project Manager XTEM Processing - Field Data Processor - Final Data Processing Interpretation and Report

1.4 XTEM SURVEY SUMMARY

On the 28th April the GPX Surveys crew began to mobilise from Perth, arriving at Blacksmith Camp on the 30th April 2011. The crew assembled the XTEM rig. The helicopter arrived on site on the 30th April and the crew conducted ground tests. High level

Katherine McKenna

Joe Kita Dean Reynolds Mark Lowe

test flights required for commencement of survey were also carried out on the 30th April and production commenced the following day. The base station magnetometer was set up near the aircraft landing site which was adjacent to the Blacksmith Camp helicopter pad. Production began on the 1st May and was completed the following day. For safety reasons and data quality line 5120 the most northern line in the survey area was shifted 250m north of its original planned survey path to avoid the 125 feet high power line that ran down the length of the planned line. At the end of each day's flying all data was sent back to the offices of GPX Surveys for further processing and review. The rig was dismantled on the 3rd May 2011 and the aircraft and crew demobilised the same day.

2 SAMPLING TECHNIQUES AND DATASETS

2.1 AIRBORNE XTEM SURVEY

Boundary Coordinates

Start and end coordinates of each line can be found in Appendix A.

Line Specifications

The line specifications for the survey areas are as follows:

Traverse line spacing:	500 metres	
Traverse line direction:	000°-180°(NW/NE)	
	090°-270°(S)	
	~135° - 315° (W / Delta)	
Traverse line numbers:	1040 – 5120 (54 lines)	

2.2 DIGITAL ELEVATION MODEL

The elevation model used in this survey is taken from the freely available SRTM satellite digital terrain model with ~90m cell size spacing.

An interpreted basement outcrop filter file was also created in-house using the DEM.

2.3 AIRBORNE MAGNETICS

Magnetics are used in this interpretation to find major structural features. The data is taken from the merged Australia wide Geoscience Australia (GA) Mag-spec survey with ~400m cell size.

2.4 GEOPHYSICAL AND GEOLOGICAL WELL LOGS AND PROFILE INTERPRETATIONS

A suite of well logs were provided by Flinders Mines with geological, hydrological and geophysical information. All the wells are located inside Flinders tenement boundary accounting for around 35% of the model area. These were accompanied with profile geological interpretations which were used along with the well logs.

2.5 GROUND GRAVITY AND FREQUENCY DOMAIN EM

Flinders Mines provided ground gravity over the delta deposit and 5 – frequency DigHEM data over much of the on-tenement part of the survey and also extending in the northeast. The DigHEM data was limited in penetration depth by the targeted frequencies – 900 Hz, 5500 Hz, 7200 Hz and 56000 Hz.

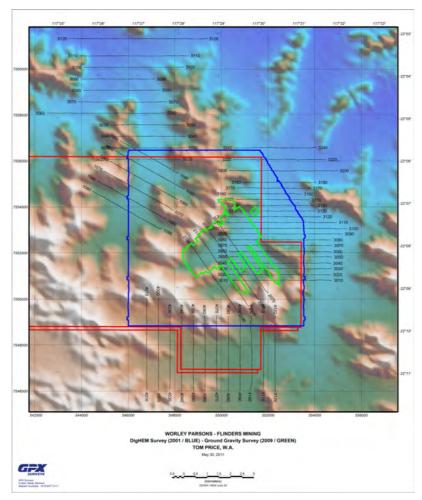


Figure 4: DigHEM and Ground Gravity Survey

2.6 GEOPHYSICAL DATASETS AND RANGE OF INVESTIGATION

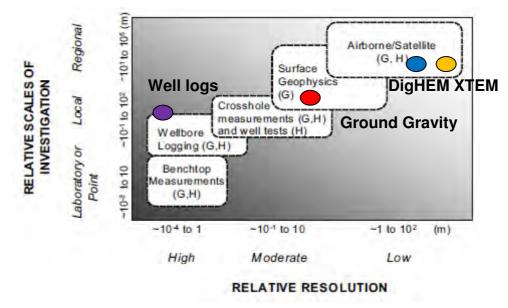


Figure 5: Scale of resolution for each of the survey types used (Rubin Y., 2005)

3 PROCESSING AND INTERPRETATION WORKFLOW

This section focuses on the process of constructing and defining geological models based on the different geophysical datasets and geological borehole and surface observations. Processing steps for airborne EM including creating CDI's are expanded on in the logistics reports for Job's 2455 and have been left out of this report, though parameters for the system are shown in Appendix B: J2455 XTEM Survey Specifications A schematic summary of the geophysical modelling steps involved are illustrated in Figure 6.

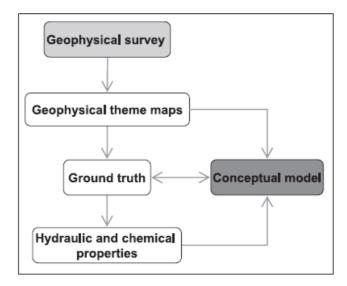


Figure 6: Workflow of a hydrogeophysical survey (Esben Auker, 2003)

In this case a preliminary model was created using historic DigHEM and ground gravity to assess the trend of the targeted basement surface off-tenement and to better focus the flight lines.

3.1 PRELIMINARY MODELLING USING HISTORIC GROUND GRAVITY AND FREQUENCY DOMAIN EM.

Figure 4 shows the extent of the 2009 ground gravity and 2001 DigHEM surveys. The purpose of the DigHEM survey was to detect zones of conductive mineralization and to provide information which could be used to map the geology and structure of the survey area (Fugro Report #3010). The frequencies used for this survey allow for only a moderate depth of penetration given the bulk conductivity of the area. The ground gravity was modelled for a single basement horizon using depth-to-basement and apparent density calculations. This was used to fit the depth solutions from the lowest frequency (900 Hz) DiGHEM response in the thicker parts of the palaeochannel where the EM couldn't penetrate the cover. This produced a preliminary depth-to-basement surface (Figure 7) which was used in the targeting of the XTEM flight lines.

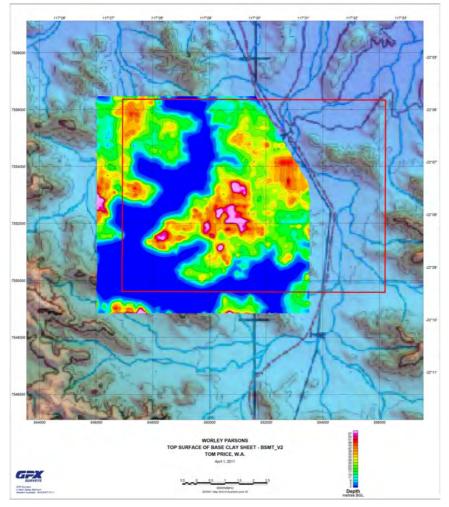


Figure 7: Initial basement clay surface interpretation using DigHEM and ground gravity

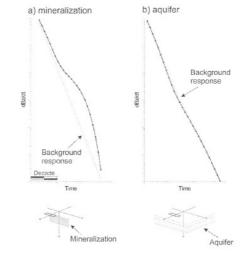
3.2 PROFILE MODELLING & CONSTRUCTING THEMATIC MAPS

The next stage of the modelling project involved importing final CDI databases and depthslice grids from XTEM Job 2455. These CDI databases have been produced using EMaxAir software (see Theory section below). 1D filtering was then applied to the EM to produce preliminary depth-to-basement models along the profiles.

3.2.1 Initial processing

Targeting potential fields requires an amount of observation and pass/rejecting of spurious or regionally biased effects based on an understanding of the geological background. The sedimentary geology in this area is assumed to be a lateral sequence of horizons with changing thickness and elevation, determined by the lie of the tectonic basement and having undergone some weathering. Target conductivities are extracted from the TEM profiles by using a suite of 1D filters of the cond vs. depth, cond vs. distance, and depth vs. distance. Horizontal and vertical derivatives are used to seek out lateral changes in EM and separate their apparent magnitude by comparing with the entire along-line dataset. Conductivity vs. depth processing produces conductivity roughness and minimamaxima profiles and grids which are used to determine continuous levels. These target conductivities are used to constrain the limits of 'significant' solutions, i.e. those conductivity solutions assumed to be related to geology at a given depth, and especially those above the level of the tectonic basement.

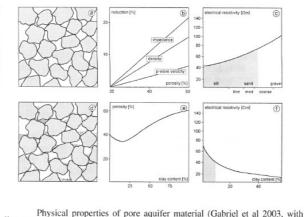
With these constraints, thematic maps based on changes in bulk conductivity and measurement density distribution are used to highlight any faults or rapid changes in elevation of highly contrasting units.


Figure 8: Isosurface map showing areas of high conductivity over the survey area

Theory

3.2.1.1.1 Airborne EM in Groundwater Exploration:

A number of important parameters that are used for groundwater exploration can be derived from variations in conductivity. It is sensitive to variations of porosity, water saturation, conductivity of the pore fluid and the clay content (Kirsch, 2010). If the background geology is known, these variations can be extracted from the conductivity measurements. The example below shows a typical TEM response of a discrete conductor compared to the response from a modelled aquifer.



Comparison of the responses of a base metal mineral exploration and a hydrological target as approximated by a vertical thin sheet and layered-earth model, respectively. The mineral exploration target is a vertical sheet measuring 90 m by 30 m at a depth of 20 m, with a conductance of 100 S, in a 100 Ω m half space. The parameters for a three-layer hydrological model with a layer representing a sandy aquifer are: $\rho_1 = 50 \ \Omega$ m, $\rho_2 = 100 \ \Omega$ m, $\rho_3 = 10 \ \Omega$ m, $t_1 = 30$ m, and $t_2 = 50$ m, where t is the layer thickness. The parameters for the background model (without an aquifer or a sheet) are: $\rho_1 = 50 \ \Omega$ m, $\rho_2 = 10 \ \Omega$ m and $t_1 = 80$


Figure 9: EM Aquifer target (Kirsch, 2010)

Targetting these aquifers is dependent on relative change in conductivity. Because of the nature of TEM measurement there is only limited sensitivity to high-resistivity layers. This means that the conductivity of resistive layers sandwiched between conductive layers will produce only a minimal distortion and it is up to the accuracy of measurements of the conductive layers to determine the appropriate thickness and relative conductivity of the resistors. This causes models to produce similar results within the measuring error, called equivalent models. The grey shaded areas in the image below denote similar resistivities for clayey and clay-free material (Kirsch, 2010).

Physical properties of pore aquifer material (Gabriel et al 2003, with permission from Elsevier): influence of porosity and clay content on density, seismic velocity, and electrical resistivity: (a) well sorted, clay free sediment, (b) reduction of p-wave velocity (after Morgan 1969), density, and impedance as a function of porosity, (c) electrical resistivity as a function of grain size for fresh water saturated material (after TNO 1976), (d) clayey sediments, pore space partly filled with clay minerals, (e) porosity related to clay content (artificial sand – clay mixture, Marion et al. 1992), (f) electrical resistivity related to clay content after Sen et al. (1988)

Typical values for effective porosity are: clay < 5%, fine sand 10-20%, coarse sand 15-30%. It follows that most geophyiscal aquifer targets are relatively resistive.

3.2.1.1.2 Horizontal and Vertical Derivative

The horizontal and vertical derivatives of profiles are used to find lateral and mixed lateral/vertical changes. These are then combined in the depth-to-basement calculations discussed below.

3.2.1.1.3 Analytic Signal

The Analytic solution uses line profile data to estimate the depth to source. The model assumes that the source is either a vertical or horizontal contact with infinite depth. A window of different width increments slides along the line profile and solutions for both types of sources are generated. The solutions are derived from dx, dy and dz and then interpolated and defined by the window width and increment.

To reduce the number of possible sources the solutions may be clustered. The final clustered solutions are then plotted on a map and a depth analysis can be conducted. The technique is summarised in the following equation by (MacLeod I.N., 1993)

The amplitude of the analytic signal (|A(x, y)|) at any location (x, y) is given by: $|A(x, y)| = [(\delta T/\delta x)^2 + (\delta T/\delta y)^2 + (\delta T/\delta z)^2]^{1/2}$ where T is the measured field at (x, y).

This is used for determining the palaeochannel depth in the ground gravity.

3.2.1.1.4 eMax Air CDI

EM CDI sections of the flight lines are created using eMaxAir software (by Fullagar Geophysics).

"Conductivity-depth transformation is accomplished in two steps. Measured voltages or B-field at a given delay time are first transformed to apparent conductivity. For dB/dt data, the assigned depth, *z*(t), at each time is the depth of the electric field or current maximum (Emax depth) in a half-space with conductivity equal to the apparent conductivity. For B-field data, the depth to the halfspace B-field maximum (Bmax depth) is employed. CDI sections based on apparent conductivity provide a vertically smoothed representation of the true conductivity profile. The apparent conductivity at any time can be represented as an inner product of the true conductivity with the Frechet kernel. The Frechet kernel at time t can be approximated as a linear function, decreasing from its maximum value at the surface to zero at a depth d(t). Therefore, given apparent conductivity can be generated via solution of a simple integral equation." (Fullagar, 2001)

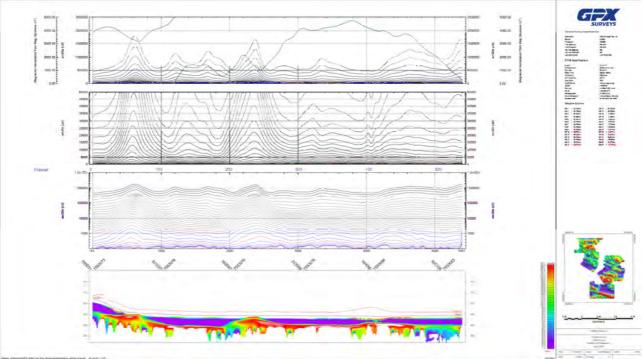


Figure 12: XTEM CDI section example

Processing Summary

A combination of Geosoft Oasis Montaj extensions, 1D-FFT, MAGMAP and Depth-to-Basement (PDepth) was used to generate profile model depths/ densities while the apparent conductivities were produced using eMax Air.

For a good review of 1D filtering methods used and a brief description on their effect on the data GETECH has a published document 'Advanced Processing and Interpretation of Gravity and Magnetic Data, 2007' (GETECH, 2007).

3.3 CONSTRAINTING TO THE GEOLOGY

Geological information is compared to geophysical responses to target horizons and thicknesses, better defining the model along line and then in 3D. Surface outcrop maps and borehole positions are used to fit the horizons between the modelled profiles.

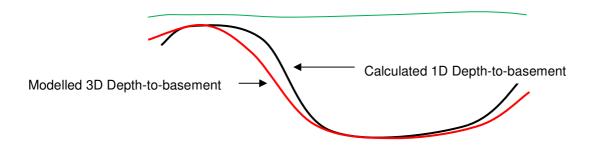
3.3.1 Technique

The process of collaborating information under probabilistic parameters according to the resolution of the different geophysical methods is based on Bayes' Theorem. "Bayes' theorem serves to update the plausibility of a proposition as the state of information changes because of the availability of new data" (Rubin Y., 2005).

Bulk conductivities and densities are established from the boreholes and surface geology, using any geophysical measurements, or assumptions from the lithology and structural background. The fitting resolution for the targeted geology will be proportional to the resolution of the geophysical and geological surveys. In areas with little geological information, depth to the basement surface determines whether the results are better determined by gravity or TEM models.

It is assumed that there is generally a lower conductivity and density contrast between the sedimentary horizons than the basement/ sediment horizon. The large density contrast between the basement and the sedimentary horizons causes the gravity solutions to be skewed. 'Visible' variation in the near surface for potential field methods is proportional to the difference in depth/thickness * conductivity/density when compared to the surrounding units (see Theory). It follows that when finding the depth-to-basement, in areas with deep basement, the EM will generally have decreased resolution and reduced conductivity contrast, and the gravity solutions will generate a more accurate result. Conversely in areas of complex and highly contrasting near surface, the TEM results are given more preference.

Importing drillhole information


Flinders Mines provided GPX Surveys with a database of the position and extent of the geological groups at the on-tenement drillhole positions. Geophysical information was also interpreted from well-logs of PDF documents though, because of the time-intensive nature of the data format and that the measurement units were not provided, only a small selection of the geophysical well logs were used for calibrating the bulk conductivities for each of the sediment groups. These groups were then gridded with varying levels of expansion to compare with the line data and to assess structural trends.

Expanding the depth-to-basement models to 2/3D.

The next stage of the processing work involved expanding the profiled basement models to an x/y/ value domain. The EM and gravity 1D-model profiles are gridded, expanded and filled in the model area. Results from both survey types are combined using the geological constraints to decrease the uncertainty between the survey lines and increase resolution. An iterative process of fit to the model is then applied with a Gaussian or cosine drop-off filter and increasingly smaller filter lengths decreasing to roughly ¹/₄ cell size of the constraint separation.

The filtering will causes a distortion of the basement level in areas with high gradient responses but will remain true to depth-to-basement calculations in areas with constant depths over distances greater than the minimum filter width. An example of this is shown below.

Separating and extracting layered earth horizons

The bulk conductivities for the assumed sedimentary groups are clustered to the resolution of the model and then the surface horizons are estimated by the level of sharpness in the depth/conductivity gradients and proximity to relative (Downhole geophysics) and 'textbook' results for the modeled rock types. Constraints are applied from the height of the DEM and the depth of the calculated basement depth.

Geological Group	Conductivity (mS/m)
Recent Alluvial (RCT)	70
Detrital Iron (DID)	30
Clay (CLY)	100-500
Channel Iron (CIDg)	120
Channel Iron (CIDh)	80
Banded Iron (BID)	300
Basement (BMT)	250 - 1500

Table 1: Estimated bulk conductivities

Expansion of stratigraphy model to 2/3D

The sedimentary horizons were expanded similar to that applied to the basement calculation. After finalising the profile models the data is gridded and then expanded to the survey area, before being filled. The constraints grid consists of a combination of

horizon conflicts and proximity to EM flight lines, drillholes and outcrop (Figure 30). Nonuniqueness is compensated for by accepting the depths and thickness most geological likely and by masking less 'visible' units.

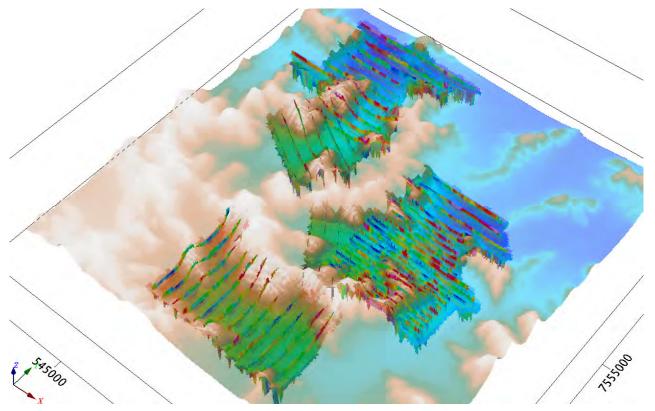


Figure 13: Basement model with CDI profiles

Processing Summary

Yoram Rubin and Susan Hubbard expand on the theory and implications of applying Bayes' Theorem and probability modelling in the section 'Stochastic Forward and Inverse Modeling: The "Hydrogeophysical" Challenge' in their book Hydrogeophysics, 2005.

4 PRODUCTS DELIVERED

Products were delivered throughout the course of the project. EM Channel MapInfo Tiffs were sent at the completion of the survey along with depth slices and CDI's. During the modelling process preliminary and final located images were sent to Flinders Mines consultants.

Final products for the interpretation and report were delivered on 17th June 2011.

DIGITAL PRODUCTS

- CDI profiles and depthslices are included in the 2455 Final Logistics Report.
- Geosoft Grids and MapInfo/ ArcView Tiffs of
 - Recent (RCT) / Detrital Iron (DID) interface Depth Model
 - Detrital Iron (DID) / Channel Iron (CID) interface Depth Model
 - Channel Iron (CID) base surface Depth Model
 - Clay (CLY) top surface Depth Model
 - Clay (CLY) base surface Depth Model
 - Banded Iron (BID) top surface Depth Model
 - Banded Iron (BID) base surface Depth Model
 - Basement (BMT) Depth Model
 - o DID Thickness Model
 - o Clay Thickness Model
 - Consolidated Channel Iron (CIDg) Thickness Model
 - Porous Channel Iron (CIDh) Thickness Model
 - BID Thickness Model
 - Valley Flatness Factor
 - Average Conductivity
 - Conductivity Roughness
 - Uncertainty of measurements
 - Digital Elevation Model
 - o Flight Path
- Digital version of the modelling and interpretation report.

HARDCOPY PRODUCTS

Two hardcopies of the final report were sent along with a DVD containing a digital version of the maps, profiles and report.

4.1 FINAL IMAGES AND MAPS

4.1.1 Recent (RCT) / Detrital Iron (DID) interface Depth Model

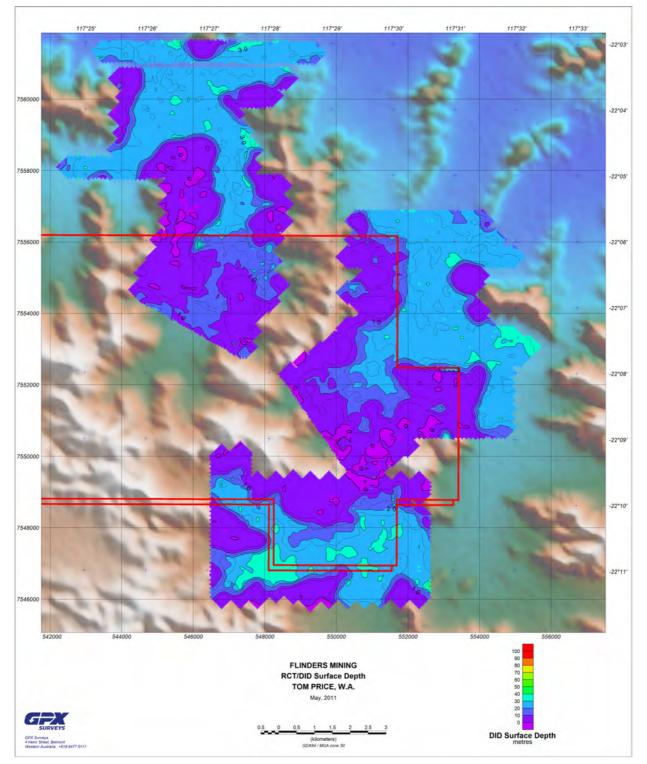
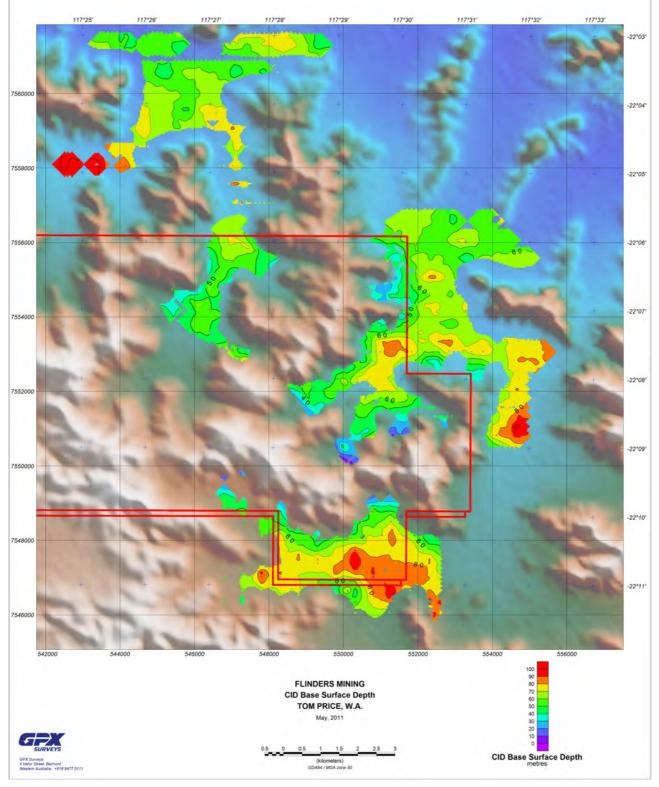
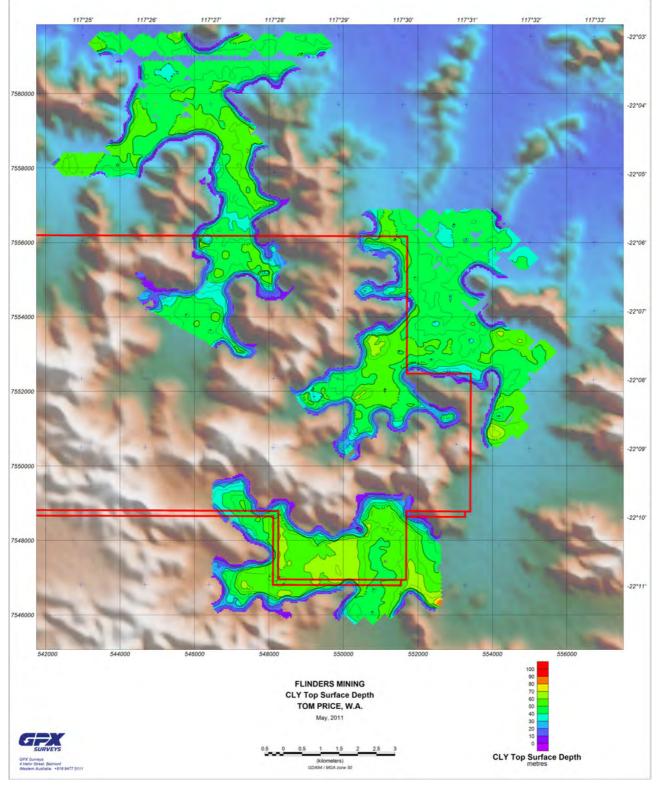


Figure 14: DID Top Surface Depth Model



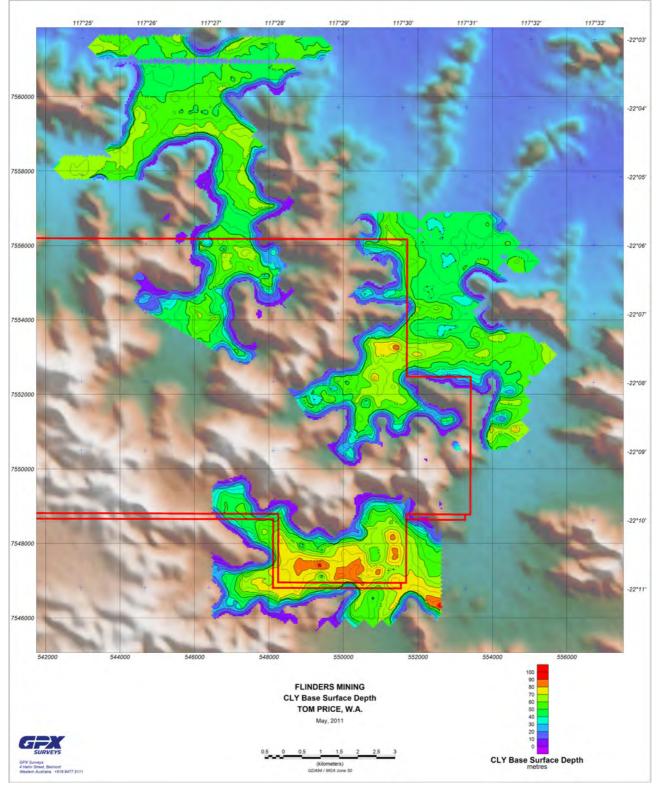
4.1.2 Detrital Iron (DID) / Channel Iron (CID) interface Depth Model

Figure 15: CID Top Surface Depth Model



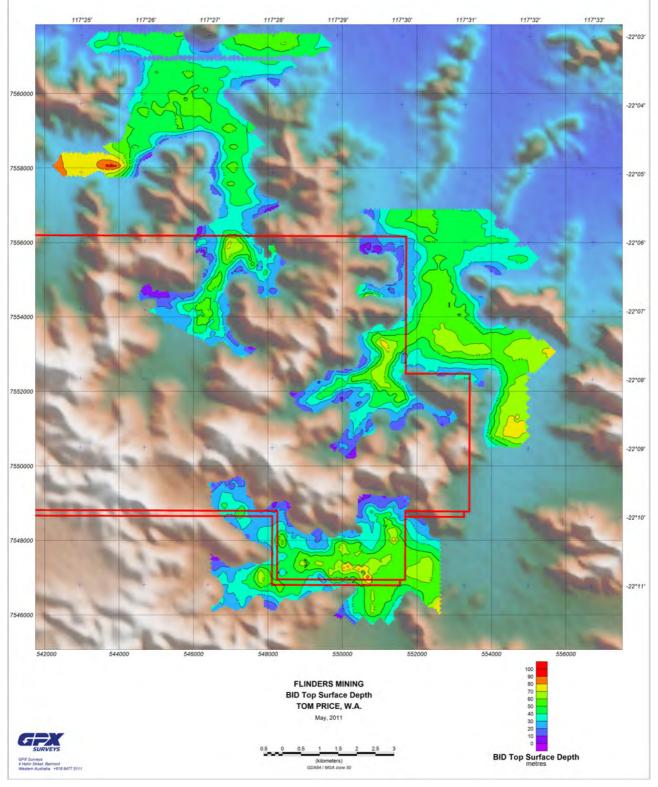
4.1.3 Channel Iron (CID) base surface Depth Model

Figure 16: CID Base Surface Depth Model



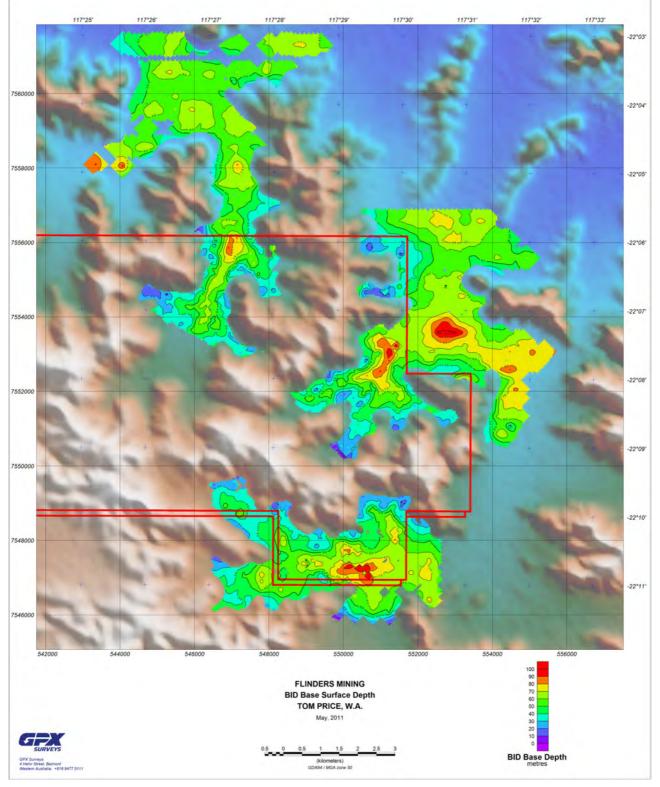
4.1.4 Clay (CLY) top surface Depth Model

Figure 17: Clay Top Surface Depth Model



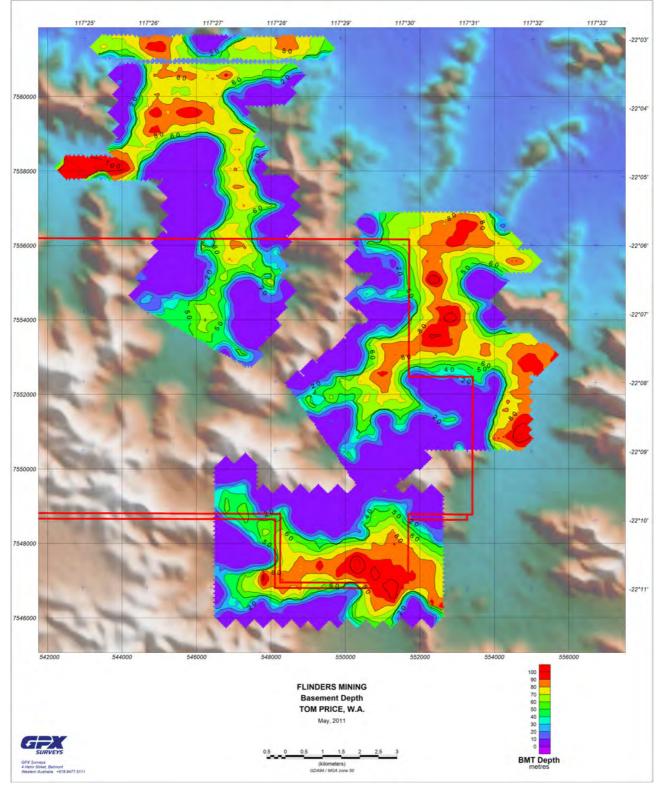
4.1.5 Clay (CLY) base surface Depth Model

Figure 18: Clay Base Surface Depth Model



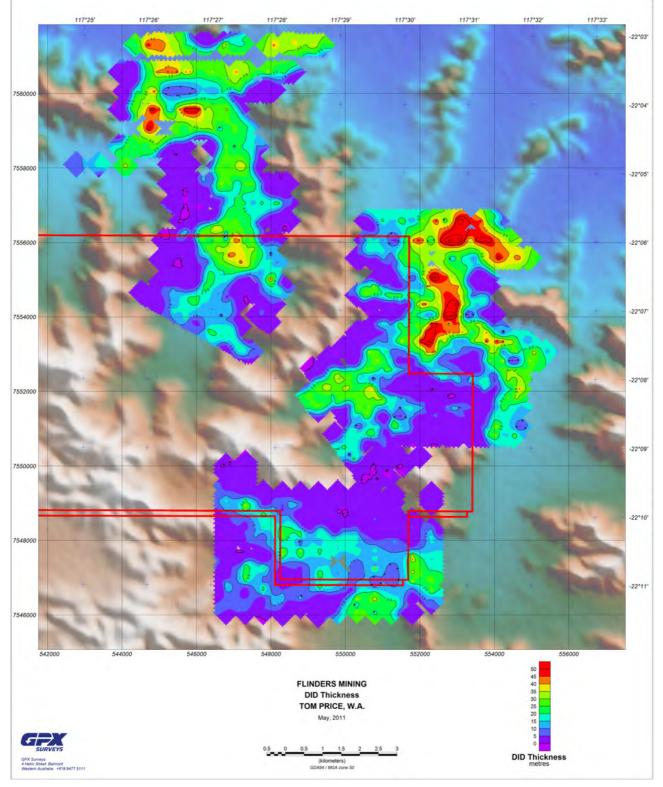
4.1.6 Banded Iron (BID) top surface Depth Model

Figure 19: BID Top Surface Depth Model



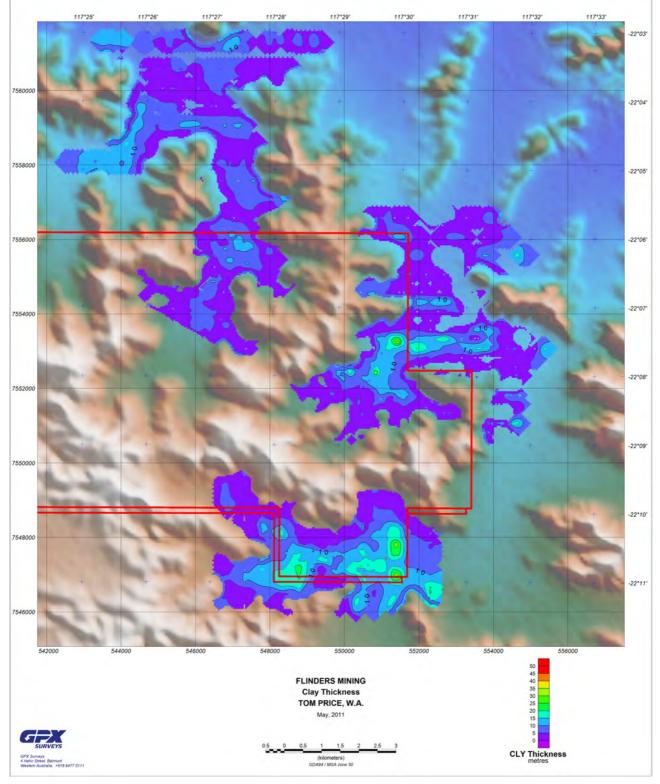
4.1.7 Banded Iron (BID) base surface Depth Model

Figure 20: BID Base Surface Depth Model



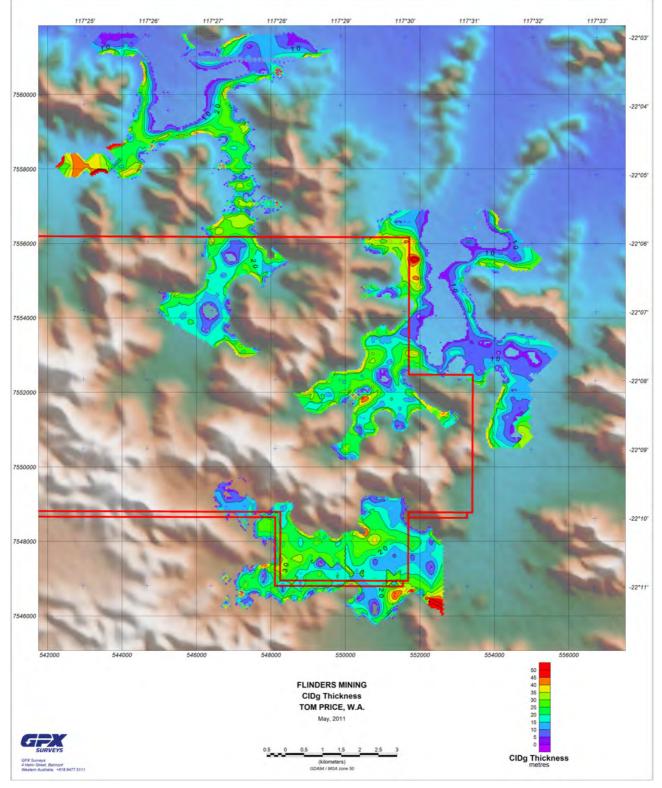
4.1.8 Basement (BMT) Depth Model

Figure 21: Basement Depth Model



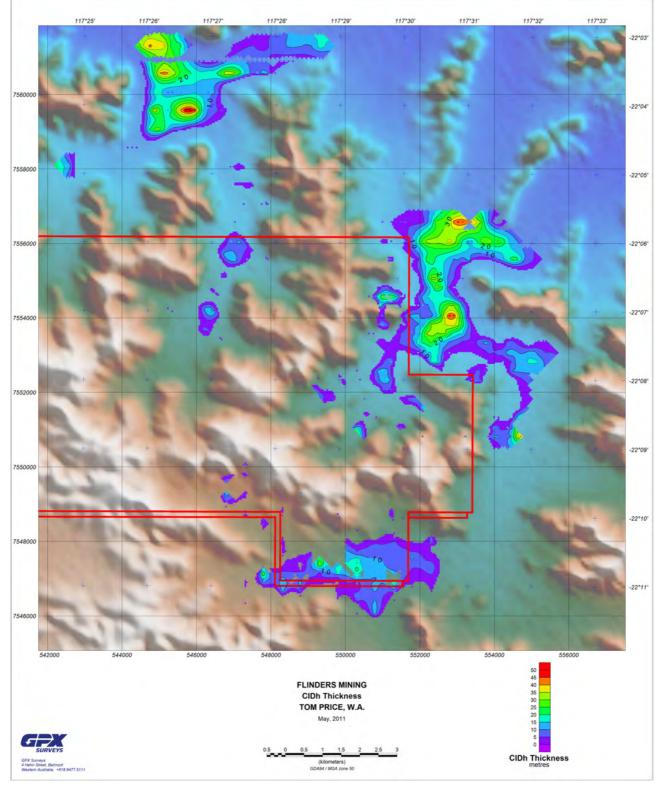
4.1.9 DID Thickness Model

Figure 22: DID Thickness Model



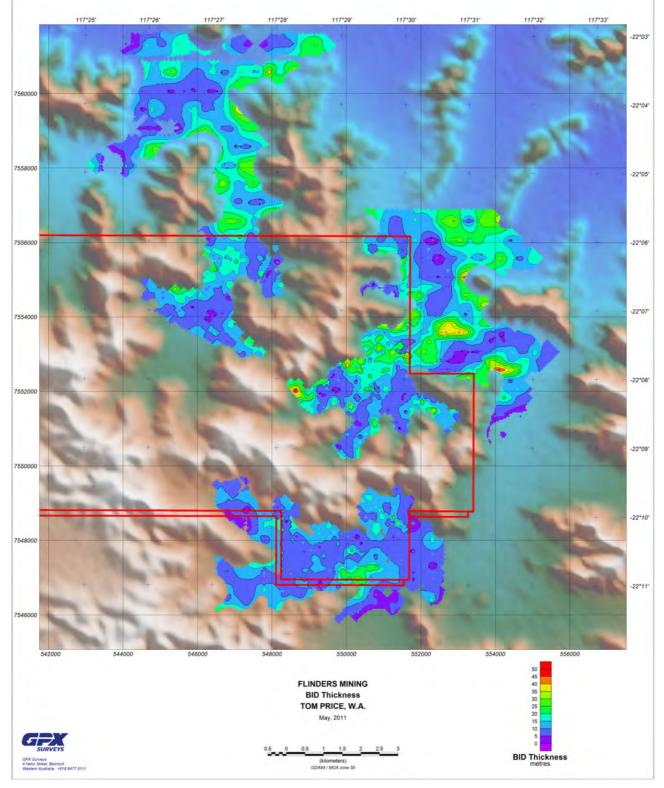
4.1.10 Clay Thickness Model

Figure 23: Clay Thickness Model



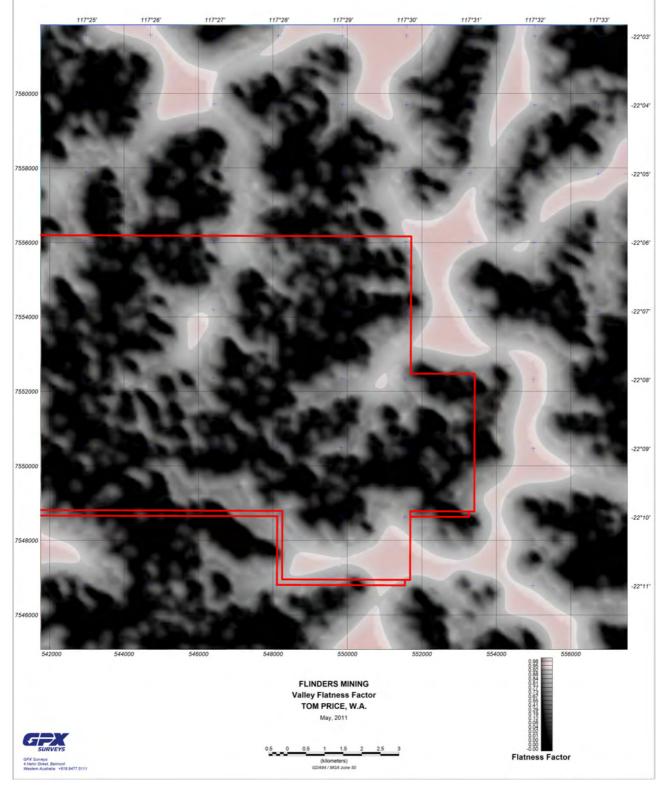
4.1.11 Consolidated Channel Iron (CIDg) – Thickness Model

Figure 24: CIDg Thickness Model



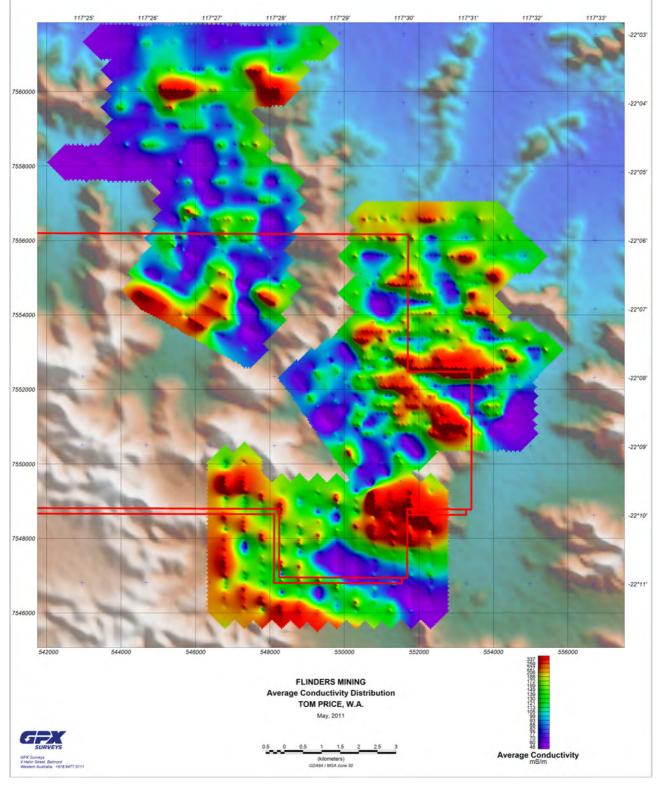
4.1.12 Porous Channel Iron (CIDh) – Thickness Model

Figure 25: CIDh Thickness Model



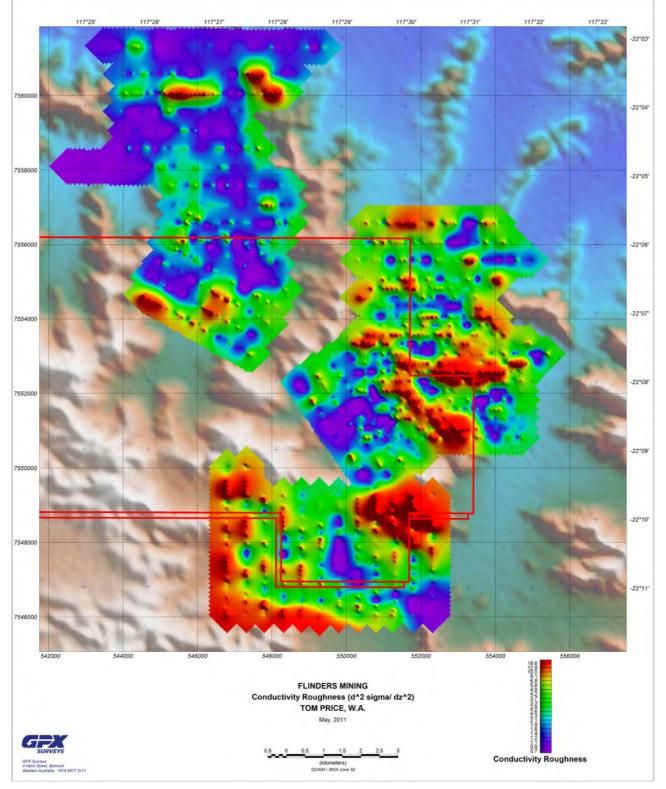
4.1.13 BID Thickness Model

Figure 26: BID Thickness Model



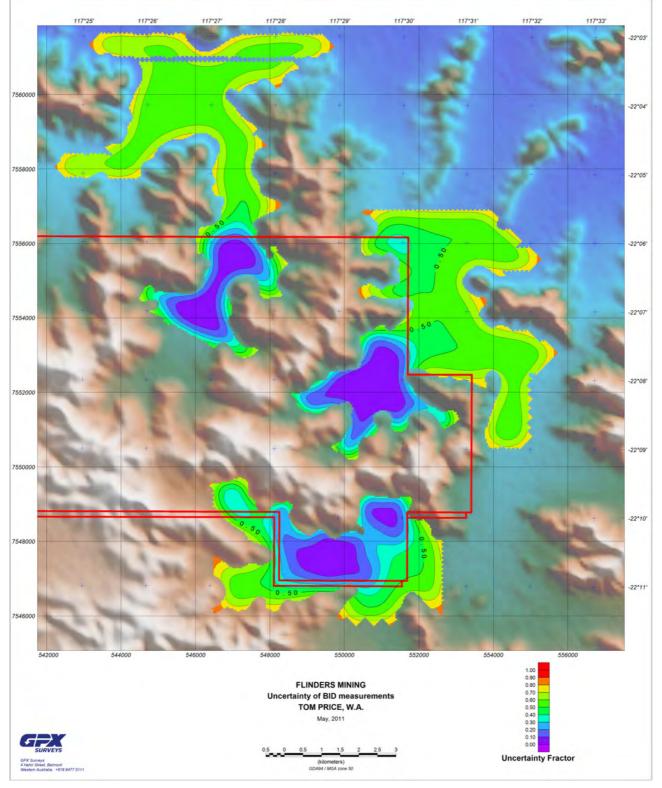
4.1.14 Valley Flatness Factor

Figure 27: Palaeochannel valley bottom flatness factor - used in outcrop estimates



4.1.15 Average Conductivity

Figure 28: Average conductivity distribution



4.1.16 Conductivity Roughness

Figure 29: Magnitude of the rate-of-change in conductivity with depth

4.1.17 Uncertainty of measurements

Figure 30: Uncertainty related to borehole proximity and survey density

5 CONCLUSIONS AND RECOMMENDATIONS

5.1 BACKGROUND AND GUIDING FACTORS

There has been extensive geophysical and geological exploration of the survey area, especially in those areas close to the known iron deposits. However, resources in those areas adjacent to and outside the tenement boundary are very limited with no exploration boreholes to use for constraining the model. Through consultation with Flinders Mines consultants, horizons were targeted that would best define the extent of the palaeochannel and these were refined by comparing downhole geophysical measurements and geological interpretations with the airborne EM.

5.2 EXTENT AND CONFIDENCE

The gridded model was extended 500m outside of the EM lines. Depths on the grids are relative to ground level but also based on elevations from the SRTM. The SRTM model takes 400m wide windows and averages the results and causes areas with high gradient and dense changes in topography to become smeared. These areas are filtered based on their valley flatness factor and the availability of other resources.

5.2.1 Noise, misfit and resolution

This is a geophysicist's interpretation and the limits of the model are always changing with the input of more information. With limited access to drillhole information outside of the tenement boundary the variability in the model is proportional to the line spacing of the model along with the distance from the drillholes. In areas with little geological constraints depth resolution is ~10-15m and $\frac{1}{4}$ line spacing cell size. In those areas near drillholes on-tenement, the resolution is increased due to the constraints of the third-party interpretations and depth estimates.

Figure 30 illustrates the change in the certainty of measurements with distance from the observed drillholes. Higher values show that a wider filter has been applied whereas a lower factor represents constraints defined more by the known geology. Values close to the mean show areas more defined by the depth and conductivity constraints from the XTEM CDI's.

Noise due to increased levels of magnetic permeability is ignored because the targeted horizons have undergone oxidation of the majority of the magnetite content. In those areas with near surface solutions for the basement, the solutions are filtered with a fraction of the valley flatness factor.

5.3 ASSUMPTIONS

5.3.1 Airborne EM - Conductivity

Contrasting susceptibility units are compared between the model profiles and the borehole information. From this information it is assumed that the basement is continuous, dense and highly conductive and the sediments increase in conductivity with decreasing porosity and grain size. Separation of the recently deposited sediments and the DID is based on the first continuous increase in conductivity with depth. To delineate the contrasting

horizons, it was assumed that the clayey sediments would have conductivities much higher and thicknesses far less than the surrounding coarser sediments. The CIDg and CIDh horizons are separated by the change in the conductivity gradient of the CID and also the knowledge that the DID is constrained by a clay horizon separating it with the CID. The separation of the basement and BID zones is based on changes in the continuity of the profiles and 2/3D models. Given that they have similar measurements and generally occur very close to each other this is harder to estimate by the EM solutions alone.

5.4 **RECOMMENDATIONS**

Figure 30 shows how result certainty based on boreholes is heavily skewed to the ontenement areas of the survey. Ground based surveying, such as downhole geophysics (resistivity and neutron) along with ground gravity traverses will help in fitting this model more accurately in those areas further away from the tenement.

Further Work - 3D Structural Inversion

The previous steps to profile model the EM and expand to 2/3D planes can produce unrealistic crossovers in units and geophysical parameters. By using the downhole geophysical constraints and then inverting back from the forward modelled response, small changes in geophysical constants and depth can be applied iteratively to create a 'more likely' distribution of rock units and parameters.

While it has been possible to produce density and magnetic 3D inversions it is at present not possible to do inversions on TEM-data in more than one dimension. In this case, the inferred relative densities from the downhole geophysics can be used to refine the model, however, further ground gravity work would have to be done to generate an observed gravity plane to run an inversion.

DISCLAIMER

Every effort has been made to make this model a useful general reference. No guarantee can be made that this model is a true representation of the structures and depths. The conclusions made in the interpretation have been based on assumptions about the data collected by GPX Surveys and another party (Flinders Mines/ Worley Parsons supplied historical FDEM, Ground gravity, downhole geophysics, geological logs and geological profile interpretations). GPX SURVEYS BEARS NO RESPONSIBILITY FOR THE RELIABILITY OR ACCURACY OF THIRD PARTY DATA AND RESULTING INTERPRETATION.

6 CONTRACTOR INFORMATION

GPX Surveys Pty Ltd ABN 48 110 619 602

Address: 4 Hehir Street, Belmont WA 6104 Australia Postal: PO Box 808, Cloverdale WA 6985 T +61 8 9477 5111 F +61 8 9477 5211 info@gpxsurveys.com.au www.gpxsurveys.com.au

7 **BIBLIOGRAPHY**

Anders V. Christiansen, E. A. (2007). Mutually and laterally constrained inversion of CVES and TEM data: a case study. *Near Surface Geophysics*, 115-123.

Esben Auker, F. J. (2003). Large-scale TEM investigation for groundwater. *Exploration Geophysics*(34), 188-194.

Fullagar, P. a. (2001). Emax conductivity-depth transformation of airborne TEM data. *15.* Brisbane: ASEG.

GETECH. (2007). Advanced Processing and Interpretation of Gravity and Magnetic Data. Retrieved from GETECH Group plc:

www.getech.com/services/advanced_processing_and_interpretation.pdf

Kirsch, R. (Ed.). (2010). *Groundwater Geophysics - A Tool for Hydrogeology* (2nd ed.). Berlin, Germany: Springer.

MacLeod I.N., J. K. (1993). 3-D analytic signal in the interpretation of total magnetic field data at low magnetic latitudes. *Exploration Geophysics*, 679–688.

Rubin Y., H. S. (Ed.). (2005). *Hydrogeophysics*. Dordrecht, The Netherlands: Springer. Telford, W. (1990). *Applied Geophysics* (2nd ed.). Cambridge: Cambridge University

Press.

8 APPENDIX A: SURVEY LINES START AND END COORDINATES

Coordinates are GDA94 MAG Z50

XTEM Survey Lines

	Survey Lines			
Line	St East	St Nth	End East	End Nth
1040	545754.40	7556829.65	548569.87	7555231.46
1050	545522.54	7556390.77	548313.16	7554809.14
1060	545307.24	7555943.61	548056.46	7554361.98
1070	545025.69	7555521.29	547857.72	7553914.82
1080	544768.99	7555090.69	547576.17	7553500.78
1090	544545.41	7554643.53	547344.31	7553045.34
2070	551929.00	7550338.00	549984.00	7553116.00
2090	551517.00	7550055.00	549573.00	7552832.00
2110	551105.00	7549771.00	549161.00	7552547.00
2130	550695.00	7549486.00	548751.00	7552262.00
3010	550420.00	7550820.00	554635.00	7550820.00
3020	550420.00	7551070.00	554635.00	7551070.00
3030	550420.00	7551320.00	554638.00	7551320.00
3040	550420.00	7551570.00	554642.00	7551570.00
3050	550420.00	7551820.00	554645.00	7551820.00
3060	550420.00	7552070.00	554649.00	7552070.00
3070	550420.00	7552320.00	554652.00	7552320.00
3080	550420.00	7552570.00	554656.00	7552570.00
3090	550401.00	7552820.00	555095.00	7552820.00
3100	550114.00	7553070.00	555317.00	7553070.00
3110	550237.00	7553320.00	554851.00	7553320.00
3120	550360.00	7553570.00	554216.00	7553570.00
3130	550879.00	7553820.00	553937.00	7553820.00
3140	550988.00	7554070.00	553988.00	7554070.00
3150	550688.00	7554320.00	553688.00	7554320.00
3160	550386.00	7554570.00	553386.00	7554570.00
3170	550739.00	7554820.00	553739.00	7554820.00
3180	551015.00	7555070.00	554015.00	7555070.00
3200	550405.00	7555570.00	554887.00	7555570.00
3220	550612.00	7556070.00	554403.00	7556070.00
3240	550600.00	7556570.00	553977.00	7556570.00
4010	546800.00	7546100.00	546800.00	7549950.00

4020 4030 4040 4050 4060 4070 4080 4090 4100 4110	547300.00 547800.00 548300.00 548800.00 549300.00 549800.00 550300.00 550800.00 551300.00 551800.00	7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00 7546100.00	547300.00 547800.00 548300.00 548300.00 549300.00 549800.00 550300.00 550800.00 551300.00 551800.00	7550000.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00 7549200.00
4100	551300.00	7546100.00	551300.00	7549200.00
4110	551800.00	7546100.00	551800.00	7549200.00
4120	552300.00	7546100.00	552300.00	7549200.00
5020	545159.00	7556070.00	548159.00	7556070.00
5020 5030 5040	545423.00 545393.00	7556570.00 7557070.00	548423.00 548393.00	7556570.00 7557070.00
5050	545343.00	7557570.00	548343.00	7557570.00
5060	542605.00	7558070.00	547494.00	7558070.00
5070	543966.00	7558570.00	547609.00	7558570.00
5080	544157.00	7559070.00	547275.00	7559070.00
5090	544075.00	7559570.00	547075.00	7559570.00
5100	544165.00	7560070.00	548303.00	7560070.00
5110	543997.00	7560570.00	548509.00	7560570.00
5120	543549.00	7561070.00	549334.00	7561070.00

9 APPENDIX B: J2455 XTEM SURVEY SPECIFICATIONS

The specifications of the XTEM transmitter, receiver and receiver coil are as follows:

Transmitter

Waveform:	25% duty cycle square wave
Pulse on Time:	5 ms (inc. 1ms cosine ramp on)
Pulse off Time:	15 ms
Pulse Current:	300 Amps
Switch on Ramp:	0.75 ms
Switch off Ramp:	45 µs
Tx Loop Area:	340 m ²
Tx NIA:	103,200
Tx Frequency:	25 Hz
_ /	
Receiver	
A-D Circuitry:	24 bit
Sample Time:	0 – 12 ms
Sampling:	512 Linear channels
Windowed Data:	30 channels

Receiver Coil

Effective NA:

Bandwidth:

10,000 Square Metres 45,000 Hz

EM Data Channel Specifications

NB: Time 0 is at the start of the switch off ramp and all times are in μ Sec.

	30 Channel Sampling Scheme (45 µSec ramp)											
Channel	Begin Time	End Time	Centre Time	Width in Time								
1	101.01	126.26	113.64	25.25								
2	126.26	151.52	138.89	25.25								
3	151.52	176.77	164.14	25.25								
4	176.77	202.02	189.39	25.25								
5	202.02	227.27	214.65	25.25								
6	227.27	252.53	239.90	25.25								
7	252.53	277.78	265.15	25.25								
8	277.78	303.03	290.40	25.25								
9	303.03	328.28	315.66	25.25								
10	328.28	378.54	353.41	50.25								
11	378.54	428.79	403.66	50.25								
12	428.79	479.04	453.91	50.25								
13	479.04	554.29	516.67	75.25								
14	554.29	629.55	591.92	75.25								
15	629.55	729.80	679.67	100.25								
16	729.80	855.05	792.42	125.25								
17	855.05	1005.30	930.18	150.25								
18	1005.30	1205.56	1105.43	200.25								
19	1205.56	1455.81	1330.68	250.25								
20	1455.81	1756.06	1605.93	300.25								
21	1756.06	2131.31	1943.69	375.25								
22	2131.31	2581.57	2356.44	450.25								
23	2581.57	3131.82	2856.69	550.25								
24	3131.82	3832.07	3481.94	700.25								
25	3832.07	4682.32	4257.20	850.25								
26	4682.32	5732.58	5207.45	1050.25								
27	5732.58	7032.83	6382.70	1300.25								
28	7032.83	8608.08	7820.45	1575.25								
29	8608.08	10558.33	9583.21	1950.25								
30	10558.33	12908.58	11733.46	2350.25								

Table 2: Data channel specifications for XTEM.

resources & energy

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 3: Borehole Logs

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

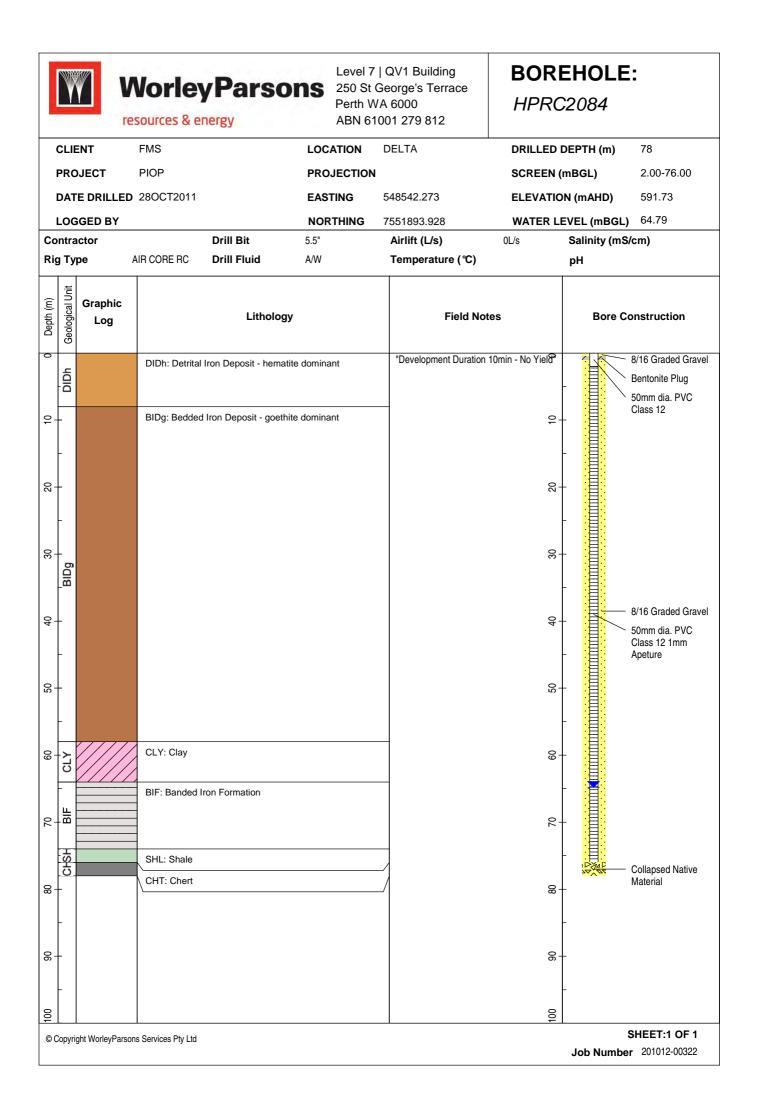
	Y		Vorley Pa sources & energy	arson	250 St C Perth W	QV1 Building George's Terrace A 6000 001 279 812	BORI HPRC	E HOLE: 24053
	CLI	ENT	FMS		LOCATION	EAGLE	DRILLED I	DEPTH (m) 70
	PRC	JECT	PIOP		PROJECTION		SCREEN (mBGL) 25.56-43.65
	DAT	E DRILLED	40772		EASTING	551285.983	ELEVATIO	N (mAHD) 594.413
	LOG	GED BY			NORTHING	7548613.494	WATER L	EVEL (mBGL) 32.6
		actor	Drill		5.5"	Airlift (L/s)	0	Salinity (mS/cm)
Ri	g Ту	pe A	IR CORE RC Drill	Fluid /	A/W	Temperature (°C)		рН
Depth (m)	Ğ	Graphic Log		Lithology		Field Not		Bore Construction
0	COL		COL: Recent Colluviur	n		"Development Duration ceased thereafter; T	n - 15min - airlift DS- 112.0ppm	
10	ALL		ALL: Recent Alluvium				0-	
-	BIC		BIDh: Bedded Iron De	posit - goethite w	ith hematite		÷	8/16 Graded Gravel
20	-		DIDh: Detrital Iron Dep	oosit - hematite d	ominant		- 30	- 50mm dia. PVC Class 12 - Bentonite Plug
30	DIDh						- 30	- 8/16 Graded Gravel
40							- 4	50mm dia. PVC Class 12 1mm Apeture Bentonite Plug
50			BIDg: Bedded Iron De	nosit - goethite d	ominant	_	- 20	
	BIDg		Diby. Dedded lloit De	Poon goenine u				Collapsed Native
09	SHL		SHL: Shale				9-	
20	В	111111111	DOL: Dolerite				0-	
80	-						08 -	-
100 90	-						100	-
		abt Worldy Doros	Sanvigas Phylip				10	SHEET:1 OF 1
	Copyri	ght WorleyParsons	S Services Pty Lta					Job Number 201012-00322

	W		Vorley sources & er		ns 250 St (Perth W	QV1 Building George's Terrace /A 6000 001 279 812	BORI HPRC	EHOLE: 24052
	CLII	ENT	FMS		LOCATION	EAGLE	DRILLED	DEPTH (m) 76
	PRC	JECT	PIOP		PROJECTION		SCREEN (mBGL) 11.50-43.50
	DAT	E DRILLED	01NOV2011		EASTING	551272.683	ELEVATIO	N (mAHD) 592.768
		GED BY			NORTHING	7548503.04		EVEL (mBGL) Dry
		actor		Drill Bit	5.5"	Airlift (L/s)	Dry	Salinity (mS/cm)
	g Ту ∣	pe A	AIR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Lithology		Field Not		Bore Construction
10	ALL		ALL: Recent A	lluvium		"Dry Bor	e" 0	- 8/16 Graded Gravel 50mm dia. PVC Class 12
20	-		DIDh: Detrital	Iron Deposit - hematit	e dominant		-50	- Bentonite Plug
30							-30	- 8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture
40	DIDh						-40	
50	-						- 20	
60	CHBIIDIDg			Iron Deposit - goethite			09-	Collapsed Native
20	DG BIF CI	38535355	CHT: Chert BIF: Banded I DOL: Dolerite	ron Formation			0	
8							8-	-
06							6-	-
100							100	
©	Copyri	ght WorleyParson	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322

	W		lorley	Paren	ne	Level 7 250 St G	QV1 Building eorge's Terrace	BOR	EHOLE	:
		_	sources & en		113	Perth WA	A 6000 01 279 812	HPRC	24029	
	CLI		FMS		1004		EAGLE		DEPTH (m)	64
			PIOP			JECTION		SCREEN (2.00-62.50
					EAST		550653.063		N (mAHD)	610.99
		GED BY					7548792.622		EVEL (mBGL	
		actor		Drill Bit	5.5"		Airlift (L/s)		Salinity (m	
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН	
Depth (m)	Geological Unit	Graphic Log		Lithology	y		Field No		Bore C	Construction
0	COL	· · · · · · · · · · · · · · · · · · ·	COL: Recent C	Colluvium			"Not enough wa	ter to airlift"		 8/16 Graded Gravel Bentonite Plug
	CII		CIDh: Channel	I Iron Deposit - hema	atite domina	ant	-			50mm dia. PVC
ę.	+		\	Iron Deposit - hemati			1	6-		Class 12
	_									
50								-0		
	DIDh									
30								-30		
										- 8/16 Graded Gravel
	-									50mm dia. PVC Class 12 1mm
40			BIDg: Bedded	Iron Deposit - goethi	ite domina	nt		40-		Apeture
	BIDg									
								_		
20	BIF		BIF: Banded In	on Formation				20		
	CHT		CHT: Chert							
60	Ξ		SHL: Shale					09-		
	BIFSHL		BIF: Banded In	on Formation			_			Collapsed Native
	-								-	Material
20	+							20	-	
	_								-	
								0		
80-								8-		
	╞								F	
06-	ļ							06-	ŀ	
0	ſ							100	ſ	
00 1 00		ght WorleyParsons	Services Ptv I to					10	L	SHEET:1 OF 1
	зоруп	yn woneyr aisoll	S OCIVICES F LY LIU						Job Numb	er 201012-00322

	W			Parso	DNS 25	evel 7 0 60 St Ge erth WA	QV1 Building eorge's Terrace 6000	BORI HPRC	EHOLE 3029	:
		res	sources & er	nergy	AE	BN 6100	01 279 812			
	CLI	ENT	FMS		LOCATIO	D NC	DELTA	DRILLED	DEPTH (m)	78
	PRO	DJECT	PIOP		PROJEC	TION		SCREEN (mBGL)	46.00-76.00
	DAT	E DRILLED	29OCT2011		EASTING	G 5	51731.499	ELEVATIO	N (mAHD)	561.529
	LOC	GED BY			NORTHI	NG 7	551693.877	WATER LI	EVEL (mBGL) 51.99
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS	6/cm)
Ri	g Ty	r pe A	IR CORE RC	Drill Fluid	A/W		Temperature (°C)		рН	
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Field Not		Bore C	construction
0	COL		COL: Recent (Colluvium			"Development Duration TDS- 398p			
₽.	F		DIDh: Detrital	Iron Deposit - hemat	ite dominant			6-	-	
20	DIDh							- 20	-	8/16 Graded Gravel
	BII		BIDh: Bedded	Iron Deposit - goeth	ite with hematit	te			-	50mm dia. PVC Class 12
30	BIDg		BIDg: Bedded	Iron Deposit - goeth	ite dominant			-30		
	BIDh		BIDh: Bedded	Iron Deposit - goeth	ite with hemati	te				
40	BIF		BIF: Banded I	ron Formation				-40	- : :	
	SHL		SHL: Shale							Bentonite Plug
50	BIF		BIF: Banded I	on Formation				- 20		
09	CHT		CHT: Chert					- 69		8/16 Graded Gravel 50mm dia, PVC
	- -		0.11.5							Class 12 1mm Apeture
20	SHCHSI		SHL: Shale					20		
			SHL: Shale			/				
	BIF		BIF: Banded I	ron Formation]				Collapsed Native
80	-					/		8-	-	Material
06	-							6-	-	
100								100		
	Copyr	ght WorleyParsons	s Services Pty Ltd					·		SHEET:1 OF 1 er 201012-00322

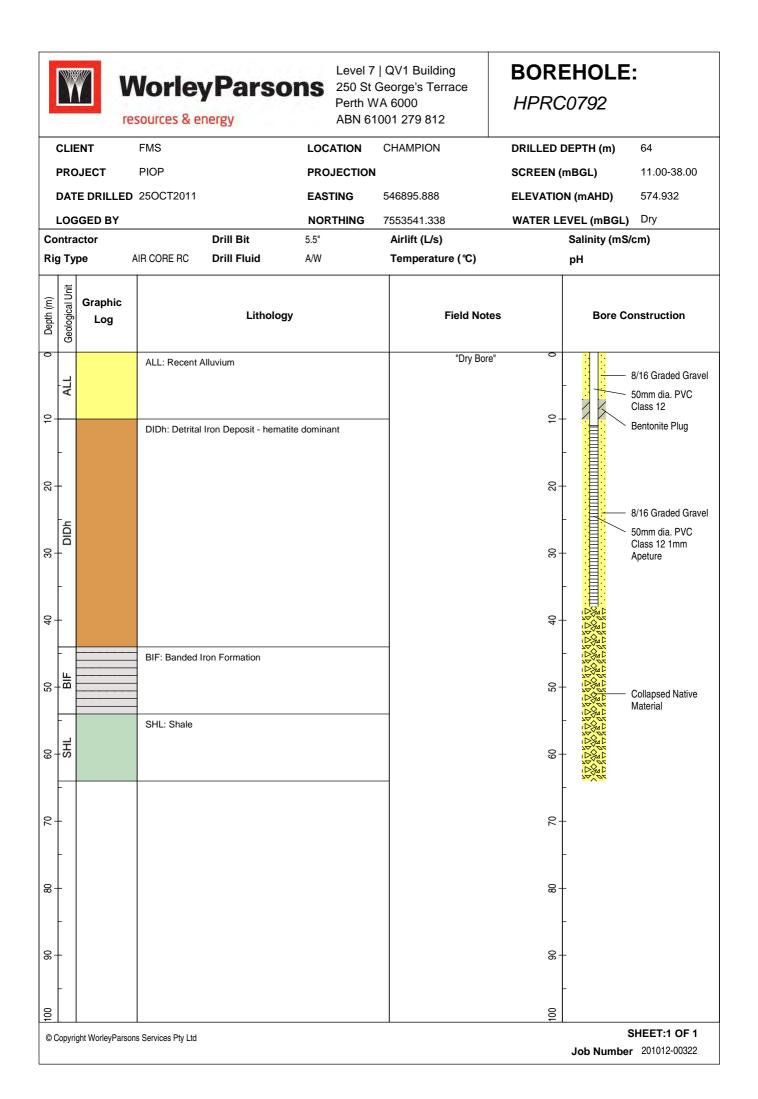
	Y		Vorley		Perth V	7 QV1 Building t George's Terrace WA 6000 t1001 279 812	BORI HPRC	E HOLE: 3019
-	CLII		FMS		LOCATION	DELTA	DRILLED	DEPTH (m) 82
	PRC	JECT	PIOP		PROJECTIO	N	SCREEN (
	DAT	E DRILLED	29OCT2011		EASTING	552339.719		N (mAHD) 568.504
	LOG	GED BY			NORTHING	7551490.384	WATER LI	EVEL (mBGL) 58.08
Co	ontra	actor		Drill Bit	5.5"	Airlift (L/s)	0	Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (°C)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	у	Field No		Bore Construction
0	COL		COL: Recent C	olluvium		"Development Duration	15min - No Yield	-
- 10	DIDh		DIDh: Detrital Ir	on Deposit - hemat	ite dominant		6-	-
20	BIDh		BIDh: Bedded I	ron Deposit - goeth	ite with hematite		- 0	8/16 Graded Gravel 50mm dia. PVC Class 12
30	-		CHT: Chert				-39	-
40	CHT		SHL: Shale				-40	- Bentonite Plug
50	SHL			ron Deposit - goeth	ite with hematite		- 20	
	BIDh							- 8/16 Graded Gravel
09	-						0-20	50mm dia. PVC Class 12 1mm Apeture
20	CHT		CHT: Chert SHL: Shale				0-	
80	F SHL						8-	- Collapsed Native
	BIF		BIF: Banded Iro	on Formation		_	ω	- Material
06							6-	-
100							100	SHEET:1 OF 1
	Copyri	ght WorleyParsons	s Services Pty Ltd					Job Number 201012-00322


	W		lorlo	yParso	ne	Level 7	QV1 Building George's Terrace	BOR	EHOLE:
			sources & e		112	Perth W		HPRC	2302
	CLI		FMS	10.93	1.00		DELTA		DEPTH (m) 66
		JECT	PIOP			JECTION	DELIA	SCREEN (
			310CT2011			TING	550189.613		DN (mAHD) 577.423
		GED BY				RTHING	7550852.432		EVEL (mBGL) 23.46
-		actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	IJ		Field No		Bore Construction
0	COLAL		ALL: Recent				"Not enough wat	ter to airlift"	8/16 Graded Gravel
	-8		COL: Recent				_		50mm dia. PVC Class 12
9	Ļ		DIDh: Detrital	I Iron Deposit - hema	tite domina	ant		9-	Bentonite Plug
	-c								
20	DIDh							-0	8/16 Graded Gravel
	-								50mm dia. PVC
								0	Apeture
30	Ī							8-	
	- 6		BIDg: Beddeo	d Iron Deposit - goet	nite domina	ant	-		Bentonite Plug
.	BIDg							-40	
	F		CHT: Chert				-		
	G								
50	-		BIF: Banded	Iron Formation				- 20	Collapsed Native
									Material
	BIF								
60	t							- 60	
	<u> </u>								
20								0_	
×.	ſ							Ϋ́,	
	╞								F
8	+							8-	 +
	Ī								F
6	╞							06-	ł
	ļ								-
100								00	
	Copyri	ght WorleyParson	I services Pty Ltd				- 1	<u> </u>	SHEET:1 OF 1
	1.1.1								Job Number 201012-00322

	W		Vorley	yParso	ons 2	250 St Ge	QV1 Building eorge's Terrace		EHOLE:	
			sources & e		- F	erth WA	.6000 01 279 812	HPRC	2249	
	CLI	ENT	FMS		LOCAT	ΓΙΟΝ [DELTA	DRILLED	DEPTH (m) 5	54
	PRC	JECT	PIOP		PROJE	ECTION		SCREEN (mBGL) 3	5.50-53.50
	DAT	E DRILLED	30OCT2011		EASTI	NG 5	550720.202	ELEVATIO	N (mAHD) 5	58.081
	LOG	GED BY			NORTI	HING 7	7551836.465	WATER LI	EVEL (mBGL) 4	3.61
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)	0.01	Salinity (mS/cm)
Ri	д Ту	pe A	AIR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН	
Depth (m)	Geological Unit	Graphic Log		Litholog	ЭУ		Field Not		Bore Cons	truction
0	AL		ALL: Recent	Alluvium		/	"Development Duration 219ppm			
10	DIDh		DIDh: Detrital	l Iron Deposit - hema	atite dominant			6-		
	BIDh		BIDh: Beddeo	d Iron Deposit - goet	hite with hema	atite			- 0/10	6 Graded Gravel
	В							0		nm dia. PVC
20	BIDg		BIDg: Beddeo	d Iron Deposit - goet	hite dominant			- 50		ss 12
30	С		CHT: Chert					-30	- : :	
			BIF: Banded	Iron Formation					Ben	tonite Plug
								-		
40	BIF							40-	8/16	6 Graded Gravel
								0	E Clas	nm dia. PVC ss 12 1mm
20							-	- 20		eture lapsed Native
	ſ							-	Mat	erial
09	Ť							- 60		
	-							-	-	
70	Ť							- 20	F	
	F								-	
8-	+							- 80	-	
	-								-	
6	╞							06-	-	
	-								-	
100								100		
©	Copyri	ght WorleyParson	s Services Pty Ltd						SHE Job Number 2	EET:1 OF 1 01012-00322

		Vorley	yParso	Level 7 250 St 0 Perth W	QV1 Building George's Terrace A 6000	BOREHOLE: HPRC2174		
	re	esources & e	nergy		001 279 812		<i>72</i> 1 1 1	
СІ	LIENT	FMS		LOCATION	DELTA	DRILLED	DEPTH (m) 90	
PF	ROJECT	PIOP		PROJECTION		SCREEN ((mBGL) 41.50-85.50	
D	ATE DRILLED	280CT2011		EASTING	551059.185	ELEVATIO	DN (mAHD) 549.187	
LC	DGGED BY			NORTHING	7553294.069	WATER LI	EVEL (mBGL) 47.12	
	tractor		Drill Bit	5.5"	Airlift (L/s)	0.13	Salinity (mS/cm)	
Rig	Гуре	AIR CORE RC	Drill Fluid	A/W	Temperature (℃)		pH	
Depth (m)	Graphic Log Log		Lithology		Field Not	es	Bore Construction	
-		COL: Recent	Colluvium		"Development Duratio 185ppm		-	
₽- <u></u>	3					6-	-	
- 20		DIDh: Detrital	Iron Deposit - hematit	e dominant	_	- 50	8/16 Graded Gravel 50mm dia. PVC Class 12	
- 30						- œ	-	
- 40						- 40	- Bentonite Plug	
20						- 20		
- 60						- 60	8/16 Graded Gravel 50mm dia. PVC	
- 70						0-	Class 12 1mm Apeture	
		BIDg: Beddec	I Iron Deposit - goethit	e dominant		8-		
06		SHL: Shale			-	6-	Collapsed Native	
100						100	-	
© Cop	oyright WorleyParso	ons Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322	

	W		Vorle sources & e		ons	250 St G Perth WA	QV1 Building eorge's Terrace A 6000 101 279 812	BOR HPRC	E HOLE: 2144
	CLI	ENT	FMS		LOCA	ATION	DELTA	DRILLED	DEPTH (m) 78
	PRC	JECT	PIOP		PROJ	JECTION		SCREEN (mBGL) 52-69
	DAT	E DRILLED	28OCT2011		EAST	ING	550102.991	ELEVATIO	DN (mAHD) 559.453
	LOC	GED BY			NOR	THING	7552276.963	WATER L	EVEL (mBGL) 46.82
		actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Field No	tes	Bore Construction
0			ALL: Recent	Alluvium			"Development Duration TDS- 230p		
0.	ALL							6-	-
20			DIDh: Detrita	ıl Iron Deposit - hema	tite dominar	nt		-20	-
30	DIDh							-30	- 8/16 Graded Gravel 50mm dia. PVC Class 12
40	_							6-	-
20	BIF		BIF: Banded	Iron Formation			-	- 20	Bentonite Plug
	₽		SHL: Shale				_	0	8/16 Graded Gravel
09	IT SHL		CHT: Chert				_	09	50mm dia. PVC Class 12 1mm
	CHT	- 1 - 1 - 1 - 1 - 1 - 1					_		Apeture
20	BF		BIF: Banded	Iron Formation				20	
	SHL		SHL: Shale						Collapsed Native
	<u>с</u>		CHT: Chert					-	
80								8-	-
06								6-	-
100								100	
	Copyri	I ght WorleyParson	s Services Pty Ltd				1		SHEET:1 OF 1 Job Number 201012-00322


	Ŵ			Parso	ns 250 St	QV1 Building George's Terrace /A 6000	BOREHOLE: HPRC2118			
		res	sources & e	nergy	ABN 61	001 279 812				
	CLI	ENT	FMS		LOCATION	DELTA	DRILLED	DEPTH (m) 66		
	PRC	JECT	PIOP		PROJECTION	l	SCREEN (mBGL) 46.00-64.00		
	DAT	E DRILLED	28OCT2011		EASTING	549487.191	ELEVATIC	DN (mAHD) 569.84		
	LOG	GED BY			NORTHING	7551828.264	WATER L	EVEL (mBGL) 51.18		
Co	ontra	actor		Drill Bit	5.5"	Airlift (L/s)	0L/s	Salinity (mS/cm)		
Ri	g Ty	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН		
Depth (m)	Geological Unit	Graphic Log		Lithology		Field No	tes	Bore Construction		
0	COL	· · · · · · · · · · · · · · · · · · ·	COL: Recent	Colluvium		"Development Duration TDS- 192p		-		
10	-		DIDh: Detrital	Iron Deposit - hematit	e dominant		6-	-		
20	-						-2	- 8/16 Graded Gravel		
30	DIDh						õ-	- Class 12		
40	-						6-	_		
50	BIC					_	- 20			
	B		BIDg: Bedded	Iron Deposit - goethit	e aominant			_ 8/16 Graded Gravel		
09	CHT		CHT: Chert				09-	50mm dia. PVC Class 12 1mm Apeture		
	-							- Collapsed Native Material		
70	t						0	-		
80	+						8-	_		
06 -							6-	-		
100							100			
©	Copyri	ght WorleyParsons	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322		

	Y				1S 250 S Perth	7 QV1 Building t George's Terrace WA 6000	BOREHOLE: HPRC1026			
		re	sources & er	nergy	ABN 6	61001 279 812				
	CLI	ENT	FMS		LOCATION	CHAMPION	DRILLED	DEPTH (m) 22		
	PRC	JECT	PIOP		PROJECTIO	Ν	SCREEN (mBGL) 2.00-22.00		
	DAT	E DRILLED	23OCT2011		EASTING	547882.973	ELEVATIC	DN (mAHD) 595.701		
	LOG	GED BY			NORTHING	7553186.708	WATER L	EVEL (mBGL) 16.46		
		actor		Drill Bit	5.5"	Airlift (L/s)	0	Salinity (mS/cm)		
Ri	д Ту	pe A	AIR CORE RC	Drill Fluid	A/W	Temperature (℃)		pH		
Depth (m)	Geological Unit	Graphic Log		Lithology		Field No		Bore Construction		
0	ALL		ALL: Recent A	lluvium		"Development Duration	10min- No Yield	Bentonite Plug		
20 10	SHL		SHL: Shale				-10	50mm dia. PVC Class 12 8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture Bentonite Plug		
30	-						<u>ଚ</u> -	-		
40	-						6-	-		
50	-						- 20	-		
60	-						6-	-		
20	-						- 2	-		
8	+						8-	-		
06 0	+						0 ₆ -	-		
100	<u> </u>	L	<u> </u>				100	SHEET:1 OF 1		
©	Copyri	ght WorleyParson	s Services Pty Ltd					Job Number 201012-00322		

	W		lorley	Parso	Level 7 QV1 Building 250 St George's Terrace Perth WA 6000 BOREHOLE: HPRC0973			
		res	sources & er	nergy		1001 279 812		,0975
	CLII	ENT	FMS		LOCATION	CHAMPION	DRILLED	DEPTH (m) 52
	PRC	JECT	PIOP		PROJECTION	N	SCREEN (mBGL) 16.00-52.00
	DAT	E DRILLED	26OCT2011		EASTING	548034.734	ELEVATIO	N (mAHD) 562.843
	LOG	GED BY			NORTHING	7555166.046	WATER L	EVEL (mBGL) 22.93
		actor		Drill Bit	5.5"	Airlift (L/s)	0.38	Salinity (mS/cm)
RI	д Ту	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Lithology		Field No		Bore Construction
10	ALL		ALL: Recent A	lluvium		"Development Durati 152ppr		- 8/16 Graded Gravel 50mm dia. PVC Class 12 Bentonite Plug
20	DIDh		DIDh: Detrital	Iron Deposit - hematite	e dominant		-20	
30	CIDh		CIDh: Channe	I Iron Deposit - hemati	te dominant		- 8 8	- 8/16 Graded Gravel 50mm dia. PVC Class 12 1mm
40	SHL		SHL: Shale				-40	- Apeture
20	BIF		BIF: Banded I	ron Formation		_	-20	- EOH 52m
60	-						09-	-
20	-						0-2	-
8-							8-	-
06							6-	-
© 100	Copyri	ght WorleyParsons	s Services Pty Ltd				00	SHEET:1 OF 1
								Job Number 201012-00322

	W		Vorley	Parso	NS 250 St	QV1 Building George's Terrace /A 6000	BOREHOLE: HPRC0919		
		re	sources & ei	nergy		001 279 812		,0919	
	CLIE	ENT	FMS		LOCATION	CHAMPION	DRILLED	DEPTH (m) 64	
	PRC	JECT	PIOP		PROJECTION		SCREEN ((mBGL) 42.00-59.00	
	DAT	E DRILLED	27OCT2011		EASTING	546259.945	ELEVATIC	DN (mAHD) 568.602	
	LOG	GED BY			NORTHING	7553639.857	WATER L	EVEL (mBGL) 38.13	
		actor		Drill Bit	5.5"	Airlift (L/s)	0.12	Salinity (mS/cm)	
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН	
0 Depth (m)	G	Graphic Log		Lithology	,	Field No		Bore Construction	
	AL		ALL: Recent A			"Development Durati 218ppr			
10	-		DIDh: Detrital	Iron Deposit - hemati	te dominant		ę.	-	
20	DIDh						- 50	8/16 Graded Gravel 50mm dia. PVC Class 12	
30	-						е-	-	
40	CIDg		CIDg: Channe	el Iron Deposit - goeth	ite dominant	-	- 4	- / / Bentonite Plug	
50	+						- 20	8/16 Graded Gravel	
	CHT		CHT: Chert					50mm dia. PVC Class 12 1mm	
09	BIF		BIF: Banded I	ron Formation			-09		
	- -					_		Collapsed Native Material	
20	-						0-	-	
80	-						&-	-	
06							6-	_	
100							100		
	Copyri	ght WorleyParson	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322	

	W		lorle	yParso	ns	250 St G	QV1 Building eorge's Terrace	BOREHOLE: HPRC0766			
		_	sources & e			Perth WA	A 6000 01 279 812	HPRC	20766		
	CLI	ENT	FMS		LOC	ATION	CHAMPION	DRILLED	DEPTH (m)	58	
	PRC	JECT	PIOP		PRO	JECTION		SCREEN ((mBGL)	32.00-56.00	
	DAT	E DRILLED	24OCT2011		EAS	TING	545920.967	ELEVATIO	ON (mAHD)	568.461	
	LOG	GED BY			NOR	RTHING	7554368.005	WATER L	EVEL (mBGL	.) 39.87	
		actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (m	S/cm)	
Ri	g Ty	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН		
Depth (m)	Geological Unit	Graphic Log		Lithology	,		Field No	tes	Bore (Construction	
0	COL		COL: Recent	Colluvium			"Development Duration	10min- No Yield	-		
9	-		DIDh: Detrital	Iron Deposit - hemati	te domina	ant	_	6-	-		
	F									 8/16 Graded Gravel 50mm dia. PVC 	
20	DIDh							-0	-	Class 12	
30				dhaa Daarah arahi			_	90	_ / /	- Bentonite Plug	
	BIDg		-	I Iron Deposit - goethi			_				
40			bii . Banueu i	ion i omation				- 46		 8/16 Graded Gravel 50mm dia. PVC 	
50	BIF							- 20		Class 12 1mm Apeture	
	F									- Bentonite Plug	
60	-							- 60		 Collapsed Native Material 	
									-		
70	-							2	-		
								_			
80	ļ							8-	+		
06	-							06-	+		
Ģ	-							0	-		
100	L	abt))/(a::1-::-D	Convicto Di Litti					100	I	SHEET:1 OF 1	
	Copyri	ght WorleyParson	s Services Pty Ltd						Job Numb	er 201012-00322	

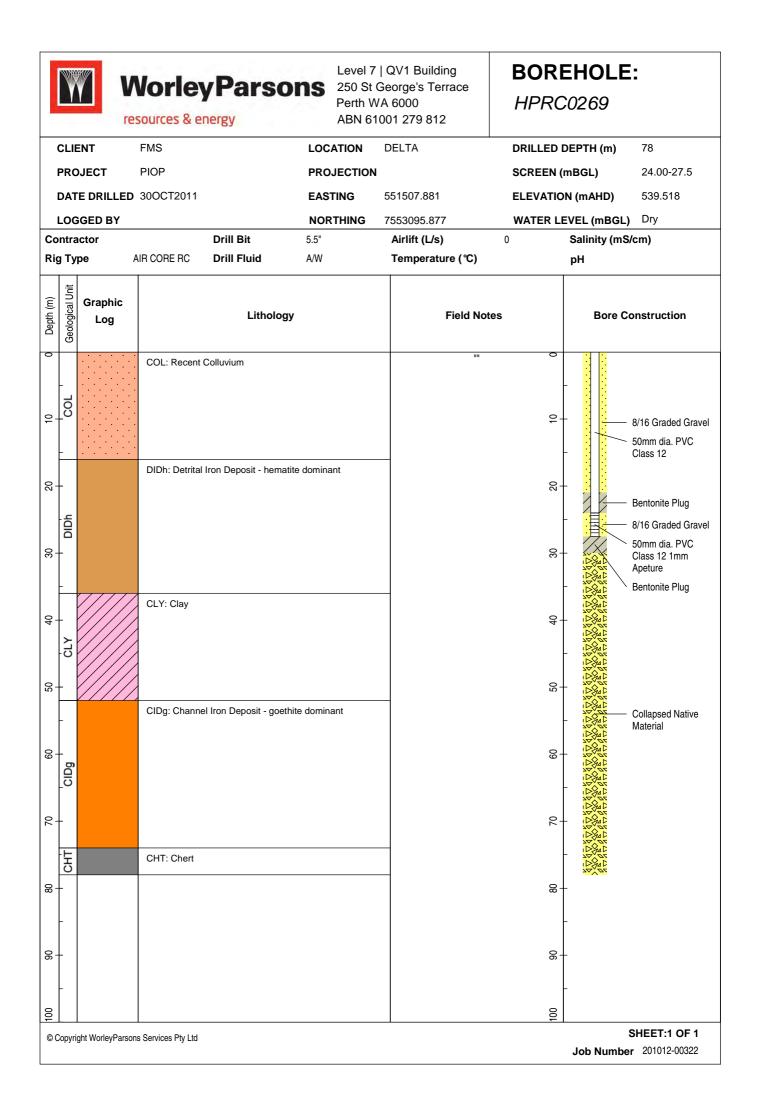
	W		lorle	Parec	ne	Level 7 250 St G	BOREHOLE:			
			sources & e		113	Perth WA	6000 01 279 812	HPRC	0689	
	CLI	ENT	FMS		LOC		CHAMPION	DRILLED	DEPTH (m) 30	
	PRC	DJECT	PIOP		PRC	JECTION		SCREEN (mBGL) 2.00-29.00	
	DAT	E DRILLED	24OCT2011		EAS	TING	544663.444	ELEVATIO	N (mAHD) 592.44	
	LOG	GED BY			NOF	RTHING	7554588.262	WATER L	EVEL (mBGL) 25.39	
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS/cm)	
Ri	g Ty	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН	
Depth (m)	G	Graphic Log		Litholog	IJ		Field Not	es	Bore Construction	
0	BIICO		COL: Recent	Colluvium			"Development Duration	10min- No Yiela	Bentonite Plug	
	-		BIDg: Beddeo	d Iron Deposit - goeth	nite domina	ant/			50mm dia. PVC	
9	ļ		BIF: Banded	Iron Formation				6-		
	BF								- 8/16 Graded Gravel	
50	ł							- 50	Class 12 1mm	
	SHL		SHL: Shale				-			
30	0						-	30	_ <u> Collapsed Native</u> Material	
	-								-	
40								6-		
4	T							4-		
	-								-	
50	Ļ							-0	-	
	-								-	
09	+							09-	-	
									-	
70	t							20	+	
	-								-	
80								8-		
8								ω -		
	F								-	
6	ļ							6-	-	
	Ē							~		
100								100	SHEET:1 OF 1	
©	Copyri	ght WorleyParson	s Services Pty Ltd						Job Number 201012-00322	

	Ŵ		Vorle sources & e	y Parso	DNS 250 S Perth	7 QV1 Building It George's Terrace WA 6000 61001 279 812	BOR HPRC	EHOLE: 20672
	CLII	ENT	FMS		LOCATION	CHAMPION	DRILLED	DEPTH (m) 62
	PRC	JECT	PIOP		PROJECTIC	DN	SCREEN	(mBGL) 32.00-56.00
	DAT	E DRILLED	23OCT2011		EASTING	547008.045	ELEVATIO	DN (mAHD) 577.397
	LOG	GED BY			NORTHING	7553444.277	WATER L	EVEL (mBGL) 47.17
		ictor		Drill Bit	5.5"	Airlift (L/s)	0	Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholo	gy	Field N		Bore Construction
0	COL		COL: Recent	Colluvium		"Development Durat	ion 10min- No Yieldີ	-
9-			DIDh: Detrital	I Iron Deposit - hem	atite dominant		6.	- 8/16 Graded Gravel
20							20	50mm dia. PVC Class 12
30	DIDh						90	Bentonite Plug
40	BIF		BIF: Banded	Iron Formation			6-	8/16 Graded Gravel
20	CHT		CHT: Chert				-20	50mm dia. PVC Class 12 1mm Apeture
60	BIF		BIF: Banded	Iron Formation			09-	Collapsed Native
20	-						02	-
80	-						8-	-
06-	-						06-	-
100							100	
	Copyri	ght WorleyParsons	s Services Pty Ltd			1		SHEET:1 OF 1
								Job Number 201012-00322

	W		Vorley sources & e	y Parso	Perth	St Ge n WA	QV1 Building eorge's Terrace 6000 01 279 812	BORI HPRC	E HOLE: 20641
	CLII	ENT	FMS		LOCATION	С	HAMPION	DRILLED	DEPTH (m) 78
	PRC	DJECT	PIOP		PROJECTIO	ON		SCREEN (mBGL) 40.00-70.00
	DAT	E DRILLED	24OCT2011		EASTING	5	46441.869	ELEVATIO	N (mAHD) 566.984
	LOG	GED BY			NORTHING		554919.119		EVEL (mBGL) 49.63
		actor	IR CORE RC	Drill Bit Drill Fluid	5.5" A/W		Airlift (L/s)	0	Salinity (mS/cm)
	д Ту				A/ W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Field Not		Bore Construction
10	-		DIDh: Detrital	Iron Deposit - hema	tite dominant		"Development Duration	10min- No Yielයි ද -	
50	-							- 30	- 8/16 Graded Gravel 50mm dia. PVC Class 12
30	DIDh							-90 0	- - Bentonite Plug
40	-							-40	
20								- 20	- 8/16 Graded Gravel
09	cibg		CIDg: Channe	el Iron Deposit - goet	hite dominant			9-	50mm dia. PVC Class 12 1mm Apeture
70	IRSH BIF		BIF: Banded I SHL: Shale	ron Formation				0-	- Bentonite Plug
	SHDCBIRSH	33333333	BIF: Banded I	Iron Formation					Collapsed Native
80.			DOL: Dolerite			/		- 80	
	-		SHL: Shale]		- ω	-
06	+							6-	-
0	-							6	-
100	L	<u> </u>	<u> </u>					100	SHEET:1 OF 1
©	Copyri	ght WorleyParson	s Services Pty Ltd						Job Number 201012-00322

	Ŵ		Vorie sources & e	yParso	Pert	St Ge th WA	QV1 Building eorge's Terrace 6000 01 279 812	BORI HPRC	EHOLE: 20631
	CLI	ENT	FMS		LOCATIO	N C	CHAMPION	DRILLED	DEPTH (m) 54
	PRC	DJECT	PIOP		PROJECT	ION		SCREEN (mBGL) 30.2-48.2
	DAT	E DRILLED	07SEP2011		EASTING	5	46893.535	ELEVATIO	DN (mAHD) 552.823
	LOG	GED BY			NORTHIN	G 7	7555104.519	WATER LI	EVEL (mBGL) 35.54
		actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS/cm)
Ri	g Ту	n pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		pH
Depth (m)	Geological Unit	Graphic Log		Litholog	y		Field Not		Bore Construction
0	ALL		ALL: Recent	Alluvium			"Development Duration	10min- No Yield	
20 10	DiDh		DIDh: Detrita	I Iron Deposit - hemat	ite dominant			- 0	- 8/16 Graded Gravel - 50mm dia. PVC Class 12
2			BIDg: Bedde	d Iron Deposit - goeth	ite dominant			N	Bentonite Plug
	BIDg		_						
8.	BIC		BIDh: Bedde	d Iron Deposit - goeth	ite with hematite	/		- 30	
			BIF: Banded	Iron Formation					
40	BIF						-	-40	8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture
	CHT		CHT: Chert						
50	BIF		BIF: Banded	Iron Formation			-	- 20	- Collapsed Native Material
09	-							- 60	-
70	-							0-	-
80	-							- 88	-
06	-							8-	-
100								100	
	Copyri	ght WorleyParsons	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

	Ŵ			Parso	Level 7 QV1 Building 250 St George's Terrace Perth WA 6000 ABN 61001 279 812			BOREHOLE: HPRC0549			
		res	sources & er	hergy	ABN 6						
	CLI	ENT	FMS		LOCATION	С	CHAMPION	DRILLED	DEPTH (m) 66	
	PRC	JECT	PIOP		PROJECTION	1		SCREEN (mBGL)	24.50-59.50	
	DAT	E DRILLED	26OCT2011		EASTING	5	47642.192	ELEVATIO	N (mAH	D) 553.989	
	LOG	GED BY			NORTHING	7	555493.228	WATER L	EVEL (m	BGL) 30.46	
		actor		Drill Bit	5.5"		Airlift (L/s)	0.2	Salinity	y (mS/cm)	
Ri	g Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН		
Depth (m)	Geological Unit	Graphic Log		Lithology			Field Not		B	ore Construction	
0	COL		COL: Recent (Colluvium			"Development Duratio 164ppm				
<u>6</u> -	-		DIDh: Detrital	Iron Deposit - hematit	e dominant			6-		8/16 Graded Gravel 50mm dia. PVC Class 12	
20								-50		Bentonite Plug	
30	DID							8- 9			
40								- 40		8/16 Graded Gravel 50mm dia. PVC Class 12 1mm	
20	BIDg		BIDg: Bedded	Iron Deposit - goethite	e dominant			50		Apeture	
	CHBIRDII		DIDh: Detrital	Iron Deposit - hematit	e dominant						
	R		BIF: Banded I	ron Formation							
60	BIF		CHT: Chert					60		Bentonite Plug	
	- -		BIF: Banded I	ron Formation						Collapsed Native	
20	-							0-	-		
8-	-							8-	-		
06	+							6-	-		
100								100			
	Copyri	ght WorleyParson	s Services Pty Ltd					***	Job N	SHEET:1 OF 1 umber 201012-00322	


	W			Daraa	20	Level 7	BOREHOLE:			
	ľ				115	Perth WA	6000	HPRC	0531	
		res	sources & er	nergy		ABN 610	01 279 812			
	CLI	ENT	FMS		LOC	ATION (CHAMPION	DRILLED	DEPTH (m)	48
	PRO	DJECT	PIOP		PRO	JECTION		SCREEN (mBGL)	18.00-42.00
	DAT	E DRILLED	230CT2011		EAS	TING 5	545490.472	ELEVATIO	N (mAHD)	577.112
-		GED BY				THING 7	7553341.661		EVEL (mBGL)	36.14
	ontra g Ty	actor A	IR CORE RC	Drill Bit Drill Fluid	5.5" A/W		Airlift (L/s) Temperature (℃)	0	Salinity (mS/ pH	cm)
	1				7000				pii	
Depth (m)	Geological Unit	Graphic Log		Lithology			Field No	tes	Bore Co	onstruction
0		· · · · · · · · · · · ·	COL: Recent (Colluvium			"Development Duration	10min- No Yield		
	Ļ									
	۲							0	· · · · · ·	8/16 Graded Gravel 50mm dia. PVC
9-	0 CO							6-		Class 12
	ŀ	· · · · · · · · · · · · · · · · · · ·							-	Bentonite Plug
50		· · · · · · · · · · · · · · · · · · ·					_	-0		
			DIDh: Detrital	Iron Deposit - hematit	e domina	ant				
	DIDh									
30								-30		8/16 Graded Gravel
	CIDh		CIDh: Channe	I Iron Deposit - hemat	ite domir	nant	-			50mm dia. PVC Class 12 1mm Apeture
40	CHBIC		BIDg: Bedded	Iron Deposit - goethite	e domina	ant		-40		
	ш		CHT: Chert			/				Collopeed Native
	B		BIF: Banded I	ron Formation			-			Collapsed Native Material
50	ł							20	-	
	Ļ								-	
_								_		
09	t							- 60	+	
	╞								 _ 	
20	ļ							2-	-	
								12		
	F								F	
8-	ł							- 88	-	
6	╞							06-	-	
	Ļ								-	
100								100		
	Copyr	ight WorleyParsons	s Services Pty Ltd				1			SHEET:1 OF 1
	-		-						Job Number	201012-00322

CLENT FMS LOCATION CHAMPION DRILLED DEPTH (m) 66 PROJECT FI/O PROJECT SCREEN (mBGL) 30.20.51.20 DATE DRILLED OTSEP2011 EASTING 546001.13 ELEVATION (mAHD) 505.13 LOGGE BY Drill Bit 5.5' Artifit (L/A) 0 Salinity (mS/m) Rig Type AR CORE RO Drill Bit 5.5' Artifit (L/A) 0 Salinity (mS/m) Image: Transmission of the product of the		Y		Vorle sources & e	yParso energy	DNS 250 Pert	St Ge h WA	QV1 Building eorge's Terrace 6000 01 279 812	BORI HPRC	EHOLE: 20395
DATE DRILLED 07SEP2011 EASTING 546801.13 ELEVATION (mAHD) 55:13 LOGGED BY NORTHING 7555504.01 WATER LEVEL (mBGL) 39.8 Contractor Drill BH 55' Alrift (L/s) 0 Salinity (mScm) Rg Type AIR CORE RC Drill Fluid AW Temperature (°C) pH Image: Contraction Oraphic Lithology Field Notes Bore Construction Image: Contraction COL: Recent Collovium 'Development Duration 10min- He Yeld' Image: Contraction Bit Contraction Image: Col: Recent Collovium DDh: Derinal Iron Deposit - hematite dominant Image: Collovium Image: Collovium Image: Collovium Image: Col: Recent Collovium DDh: Derinal Iron Deposit - hematite dominant Image: Collovium Image: Collovium Image: Collovium Image: Col: Recent Alluvium DDh: Derinal Iron Deposit - contraction dominant Image: Collovium Image: Collovium Image: Collovium Image: Col: Recent Alluvium DDh: Derinal Iron Deposit - contraction dominant Image: Collovium Image: Collovium Image: Collovium Image: Coll Recent Alluvium Image: Coll Recent Alluvium Image: Coll Recent Alluvi		CLII	ENT	FMS		LOCATION	N C	CHAMPION	DRILLED I	DEPTH (m) 66
LOGGED BY NORTHING 755504.01 WATER LEVEL (mGL) 39.8 Contractor AIR CORE RC Drill Bit 5.5' AIrlift (La) 0 Salinity (mS/cm) Rig Type AIR CORE RC Drill Bit 5.5' AIrlift (La) 0 Salinity (mS/cm) reg Drill Fuid AW Temperature (°C) pH reg COL: Recent Colluvium Field Notes Bore Construction reg COL: Recent Colluvium "Development Duration 10mic: No Yaid" Strif Graded Gravel reg DIDb: Detrital Iron Deposit - tematite dominant Field Notes Bore Construction reg ALL: Recent Alluvium Strif Graded Gravel Strif Graded Gravel reg BID: Detrital Iron Deposit - tematite dominant Strif Graded Gravel Strif Graded Gravel reg BIF: Banded Iron Formation Strift Graded Gravel Strift Graded Gravel Strift Graded Gravel reg BIF: Banded Iron Formation Strift Graded Iron Strift Graded Gravel Strift Graded Gravel reg BIF: Banded Iron Formation Strift Graded Gravel S		PRC	DJECT	PIOP		PROJECT	ION		SCREEN (mBGL) 39.20-51.20
Contractor Drill Bit 5.5' Aritift (L/s) 0 Salinity (mSkm) Rig Type AR CORE RC Drill Fluid AW Temperature (*C) pH gig Big Graphic Lithology Field Notes Bore Construction 0 0 COL: Recent Coluvium 'Development Duation Tome- No Yield' - 0 0 COL: Recent Coluvium 'Development Duation Tome- No Yield' - 0 0 COL: Recent Coluvium 'Development Duation Tome- No Yield' - 0 0 COL: Recent Coluvium 'Development Duation Tome- No Yield' - 0 0 Col: Recent Alluvium - - - 0 0 Definition Deposit - termatite dominant - - - 0 0 Detroite Plug - - - - - 0 0 SHI: State - - - - - - - 0 - - - - - <t< td=""><td></td><td>DAT</td><td>E DRILLED</td><td>07SEP2011</td><td></td><td>EASTING</td><td>5</td><td>46661.13</td><td>ELEVATIO</td><td>N (mAHD) 555.13</td></t<>		DAT	E DRILLED	07SEP2011		EASTING	5	46661.13	ELEVATIO	N (mAHD) 555.13
Rig Type AIR CORE RC Drill Fluid AW Temperature (°C) pH Image: Strate Stra		LOG	GED BY			NORTHIN	G 7	555504.01	WATER LE	EVEL (mBGL) ^{39.8}
Image: Section of the section of t	Co	ontra	actor		Drill Bit	5.5"			0	Salinity (mS/cm)
COL: Recent Colluvium "Development Duration 10min- No Yeal?" ALL: Recent Alluvium P ALL: Recent Alluvium P ALL: Recent Alluvium P DDh: Detrial Iron Deposit - homatite dominant 8/16 Graded Gravel BIDg. Bedded Iron Deposit - goethile dominant 8/16 Graded Gravel BIDg. Bedded Iron Deposit - goethile dominant 8/16 Graded Gravel BIF: Banded Iron Formation 8/16 Graded Gravel BIF: Banded Iron Formatio	Ri	gТy	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
COL: Recent Colluvium COL: Recent Colluvium ALL: Recent Alluvium ALL: Recent Alluvium DDh: Detrial Iron Deposit - hematite dominant ALL: Recent Alluvium DDh: Detrial Iron Deposit - hematite dominant BIDg: Bedded iron Deposit - goethile dominant BIDg: Bedded iron Deposit - goethile dominant BIF: Banded Iron Formation BIF: BIF: BIF: BIF: BIF: BIF: BIF: BIF:		Geological Unit	-		Litholog	у		Field Not	les	Bore Construction
P DIDh: Detrital Iron Deposit - hematite dominant 8/16 Graded Gravel Somm dia, PVC Somm dia, PVC Class 12 BilDg: Bedded Iron Deposit - hematite dominant BIDg: Bedded Iron Deposit - geethite dominant 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Class 12 BIF: Banded Iron Formation 8/16 Graded Gravel Somm dia, PVC Somm dia, PVC Collapsed Native 8/16 Graded Gravel Somm dia, PVC Somm dia, PVC Somm dia, PVC <td>0</td> <td>COL</td> <td></td> <td>COL: Recent</td> <td>t Colluvium</td> <td></td> <td></td> <td>"Development Duration</td> <td>10min- No Yield</td> <td>-</td>	0	COL		COL: Recent	t Colluvium			"Development Duration	10min- No Yield	-
ALL: Recent Alluvium DD:: Detrial Iron Deposit - hematile dominant BIDg: Bedded Iron Deposit - goethite dominant BIF: Banded Iron Formation BIF: Banded Iron Formation	ę.	ALL		ALL: Recent	Alluvium				10-	-
ALL: Recent Alluvium DD:: Detrial iron Deposit - hematite dominant BIDg: Bedded iron Deposit - goethite dominant BIF: Banded iron Formation BIF: Banded iron Formation		IIDII		DIDh: Detrita	al Iron Deposit - hema	tite dominant	/			- 8/16 Graded Gravel
Class 12 Class 12 BIDg: Bedded Iron Deposit - hematite dominant BIDg: Bedded Iron Deposit - goethite dominant BIF: Banded Iron Formation BIF: Banded Iron Formation	20			ALL: Recent	Alluvium		/		20	
8 BIDg: Bedded Iron Deposit - goethite dominant 9 6 9 6 9 8 9 9 8 <td></td> <td>Ч</td> <td></td> <td>DIDh: Detrita</td> <td>al Iron Deposit - hema</td> <td>tite dominant</td> <td></td> <td></td> <td></td> <td>Class 12</td>		Ч		DIDh: Detrita	al Iron Deposit - hema	tite dominant				Class 12
BIDg: Bedded Iron Deposit - goethite dominant BIDg: Bedded Iron Deposit - goethite dominant BIF: Banded Iron Formation BIF: BIF: BIF: BIF: BIF: BIF: BIF: BIF:		ō								
Comparing WorkeyParsons Services Py Ltd Bit - Difference Py Ltd Bit - Difference Py Ltd Bit - Difference Py Ltd	30	-							30	-
Q G A 8/16 Graded Gravel Somm dia. PVC Class 12 1mm Q BIF: Banded Iron Formation Bentonite Plug Q BIF: Banded Iron Formation Q BIF Banded Iron Formatiron Q				BIDg: Bedde	d Iron Deposit - goeth	nite dominant				Bentonite Plug
0 Hi: Banded Iron Formation 0 HI: Shale 0 Collapsed Native 0 Hi: Shale 0 Hi: Shale <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-								
BIF: Banded Iron Formation SHL: Shale BIF: Banded Iron Formation Bentonite Plug BIF: Banded Iron Formation Collapsed Native BIF BIF BIF BIF BIF Banded Iron Formation	40	BD							40	-
BIF: Banded Iron Formation SHL: Shale BIF: Banded Iron Formation SHL: Shale BIF: Banded Iron Formation Statistic BIF Banded Iron Formation BIF Banded Iron										8/16 Graded Gravel
BIF: Banded Iron Formation Apeture BIF: Banded Iron Formation Collapsed Native BIF: Banded Iron Formation Collapsed Native BIF Banded Iron Formation BIF B										
BIF: Banded Iron Formation Collapsed Native Material BIF Collapsed Native Material Collapsed Native Material Collapsed Native Material SHEET: 1 OF 1	50			BIF: Banded	Iron Formation				50	- Apeture
Collapsed Native Material BIF BIF BIF Collapsed Native Material BIF BIF BIF BIF BIF BIF BIF BIF BIF BIF		SH		SHL: Shale			/			Bentonite Plug
Image: Copyright WorleyParsons Services Pty Ltd Material Image: Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1				BIF: Banded	Iron Formation					
P	09	뷺							60	
P		Ļ					/			
Image: Services Pty Ltd Image: Services Pty Ltd				BIF			/			
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	70	t							20	-
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		-								-
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1									_	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	8	t							- 80	-
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		F								-
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	0								0	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	6	Γ							6-	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		╞								-
o opyright woneyr disons derwices i ty Ltd	100								100	
	©	Copyri	ght WorleyParson	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

	W		lorlo	yParso	Le	vel 7 0	QV1 Building	BORI	EHOLE:
			sources & e		Pe	rth WA	6000 01 279 812	HPRC	0352
_	CLI		FMS	neigy			HAMPION		DEPTH (m) 56
			PIOP		PROJEC			SCREEN (()
					EASTING		45564.959		DN (mAHD) 577.199
		GED BY			NORTHI		553282.635		EVEL (mBGL) Dry
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)		Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Lithology			Field Not	es	Bore Construction
0	COL		COL: Recent	Colluvium			"Dry Bor	e" O	- 8/16 Graded Gravel
ę.	ALL		ALL: Recent					0-	50mm dia. PVC Class 12 Bentonite Plug
20	DIDh		DIDh: Detrital	l Iron Deposit - hematii	e dominant			- 5	8/16 Graded Gravel
30			CIDh: Channe	el Iron Deposit - hema	ite dominant			- 30	Class 12 1mm
40	CIDh							-40	Collapsed Native
20	BIF		BIF: Banded	Iron Formation				- 20	- 72×12 - 7
09	_							- 80	-
20	_							0-	-
8 [.]								8-	-
06								6-	-
100								100	
©	Copyri	ght WorleyParson	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

WorkeyParson 29:03 George's Torraco heritw A R0101 279 812 User of the second of the		W		lorle	Parso	ne	Level 7 250 St G	QV1 Building eorge's Terrace	BOR	EHOLE	:
PROJECT PIOP PROJECTION SCREEN (mBGL) 22.00-34.00 DATE DRILLED 24OCT2011 EASTING 546581.314 ELEVATION (mAHD) 559.275 Contractor Drill Bit 557 Airlit (JA) 0 Sating (mSkm) Tormparture (°C) Prill Bit 57 Airlit (JA) 0 Sating (mSkm) Tormparture (°C) Prill Bit AW Tormparture (°C) Bore Construction Tormparture (°C) Prill Pauld AW Tormparture (°C) Bore Construction Tormparture (°C) DDIt: Datinal from Daposit - hematite dominant "Development Duation 10min- No Yind9" Field Notes Bore Construction Tormparture (°C) DDIt: Datinal from Daposit - hematite dominant "Development Duation 10min- No Yind9" Field Grade6 Gravel State (°C) Bit (°C) Bartonite Fing Collass 12 trim Applic trime App						113	Perth WA	6000	HPRC	20321	
DATE DRULED 240CT2011 EASTING 546581.314 ELEVATION (mAHD) 559.275 LOGGED BY NORTHING 7554467.732 WATER LEVEL (mBGL) 30.98 Contractor DIII BIK 53° Airlift (J/S) 0 Salinity (mSCm) Ig Type AIR CORE RC DIII BIK 53° Airlift (J/S) 0 Salinity (mSCm) Image: Difference Construction PH Field Notes Bore Construction Image: Difference Collabelum DIDI:: Derivati Iron Deposition - hematile dominant Diversition Tomine No YouP Image: Difference Collabelum Image: Difference Collabelum DIDI:: Derivati Iron Deposition - hematile dominant Periodic Collabelum Periodic Collabelum Image: Difference Collabelum DIDI:: Derivati Iron Deposition - hematile dominant Periodic Collabelum Periodic Collabelum Image: Difference Collabelum Birf: Bandeel iron Formation Image: Difference Collabelum Periodic Collabelum Periodic Collabelum Image: Difference Collabelum Birf: Bandeel iron Formation Periodic Collabelum Periodic Collabelum Periodic Collabelum Image: Difference Collabelum Birf: Bandeel iron Form		CLIE	ENT	FMS		LOC	ATION	CHAMPION	DRILLED	DEPTH (m)	36
LOGGED BY NORTHING 755467.782 WATER LEVEL (mGu1) 30.98 Contractor Drill BR 5.5' Akrift (LA) 0 Satinity (mSkcm) Rig Type AR CORE RC Drill Fluid AW Temperature (C) pH Upped Graphic Lithology Field Notes Bore Construction Upped COL: Recent Columium DRDI: Decital Iron Deposit - hernalite dominant DRDI: Decital Iron Deposit - hernalite dominant P Upped BiF: Banded Iron Formation BiF: Banded Iron Formation P BiF: Banded Iron Formation BiF: Banded Iron Formatiron		PRC	JECT	PIOP		PRO	JECTION		SCREEN ((mBGL)	22.00-34.00
LOGGED BY NORTHING 7584467.782 WATER LEVEL (mBdL) 30.84 Contractor ARI CORE RC Drill Bit 5.5" Akrifit (L/a) 0 Salinity (mScm) Rig Type ARI CORE RC Drill Fluid AW Temperature (°C) pH Image: Contraction Logging Lithology Field Notes Bore Construction Image: Coll Recent Colluvium DDI: Derival Iron Deposet - hematile dominant "Development Duration 10min- No Yead" Field Notes Bore Construction Image: Coll Recent Colluvium DDI: Derival Iron Deposet - hematile dominant "Development Duration 10min- No Yead" Field Notes Bore Construction Image: Coll Recent Colluvium DDI: Derival Iron Deposet - hematile dominant "Development Duration 10min- No Yead" Field Notes Bornonia Puig Image: Coll Recent Colluvium Image: Coll Recent Colluvium Image: Coll Recent Colluvium Image: Coll Recent Colluvium Image: Coll Recent Coll Recent Colluvium Image: Coll Recent Colluvium Image: Coll Recent Colluvium Image: Coll Recent		DAT	E DRILLED	24OCT2011		EAS	TING	546581.314			559.275
Rig Type AR CORE RC Drill Fluid AW Temperature (°C) pH Image: Second		LOG	GED BY			NOR	THING	7554467.782			30.98
understand Graphic Lug Lithology Field Notes Bore Construction 0 0 COL: Recent Colluvium 'Development Duration 10min: No Yead" 0	Co	ntra	ictor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS	/cm)
COL: Recent Colluvium COL: Recent Colluvium COL: Recent Colluvium COL: Recent Colluvium DDb: Detrial Iron Deposit - hematite dominant DDb: Detrial Iron Deposit - hematite dominant BIF: Banded Iron Formation BIF	Ri	ј Ту	pe A	AIR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН	
COL: Recent Colluvium COL: Recent Colluvium COL: Recent Colluvium DIDh: Detrital Iron Deposit - hematite dominant DiDh: Detrital Iron Deposit - hematite dominant BIF: Banded Iron Formation BIF: Banded Iron Formation Collapsed Native Bentonite Pug Collapsed Native Material Collapsed Native Collapse		Geological Unit	-		Lithology	/		Field Not	tes	Bore C	onstruction
P Common dia, PVC Class 12 BIF: Banded Iron Formation BIF: Banded Iron Formation BIF: Banded Iron Formation BIF: Banded Iron Formation	0	SOL	· · · · · · · · · · · · · · · · · · ·	COL: Recent	Colluvium			"Development Duration	10min- No Yield		
P Copyright Workplateurs: Savose by Ltd State St		_0		DIDh: Detrital	I Iron Deposit - hemati	te domina	int	_			
Class 12 Bentonite Plug Bentonite Plug Bentonite Plug Collapsed Native Material Collapsed Native Collapsed Native Material Collapsed Native Material Collapsed Native Collapsed N	₽-	-		Dibli. Detilita	non Deposit Inemati		in		6-	-	
PCCopyrgt WorleyPasos Service Py Lid											
PCCopyrgt WorleyPasos Service Py Lid		DIDh									Bentonite Plua
BIF: Banded Iron Formation Somm dia. PVC Class 12 Imm Apetire P Bentonite Plug Collapsed Native Material P P <	20	-							50		
BIF: Banded Iron Formation Somm dia. PVC Class 12 Imm Apetire P Bentonite Plug Collapsed Native Material P P <		-									
Copyright Workey/Parsons Services PyLid					Iron Formation			-	_		
Copyright WoleyParsons Service SPut d	8-	Ш		BIF: Banded	Iron Formation				030		Class 12 1mm
P P Collapsed Native Material P P P <		-						_			
0 -	0								e.		Collapsed Native
0 0	4								7		Material
0 0		-								_	
0 0	50	-							20	+	
0 0											
0 0		-								-	
0 0	09	╞							- 60	ł	
0 0										L	
0 0											
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	70	╞							20	ł	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		Ļ								ŀ	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1									~		
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	8-								<u> </u>	-	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		\vdash								+	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1	06	Ļ							<u> </u>	ļ	
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1									5,		
© Copyright WorleyParsons Services Pty Ltd SHEET:1 OF 1		F								F	
a copyright workyr dronio ocivices r ty Ed									100		
	©	Copyri	ght WorleyParson	s Services Pty Ltd							

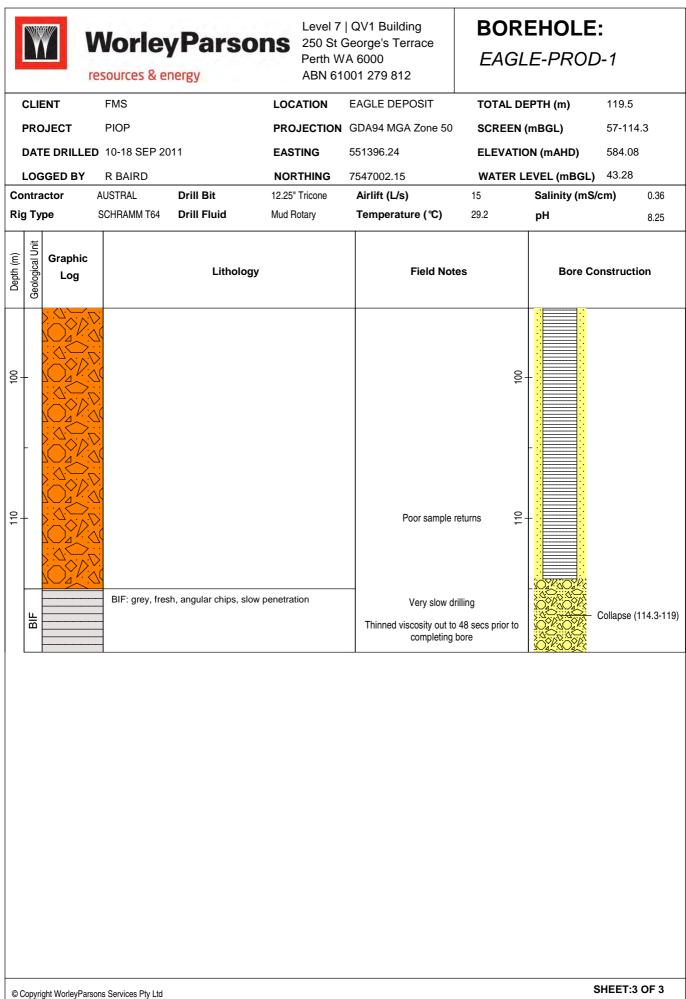
	Y		Vorie sources & e		ons	250 St G Perth W	QV1 Building George's Terrace A 6000 001 279 812	BOR HPRC	EHOLE: C0285
	CLI	ENT	FMS		LOC	ATION	DELTA	DRILLED	DEPTH (m) 54
	PRC	DJECT	PIOP		PRO	JECTION		SCREEN ((mBGL) 27.00-51.00
	DAT	E DRILLED	310CT2011		EAS	TING	550088.931		DN (mAHD) 579.832
	LOG	GED BY			NOR	THING	7550744.462	WATER L	EVEL (mBGL) 40.22
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)	~0	Salinity (mS/cm)
Ri	д Ту	r pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	IУ		Field No		Bore Construction
0	ALL		ALL: Recent	Alluvium			"Development Durati dribble; TDS-1	on 30min - only O 177ppm"	
₽.	-		DIDh: Detrital	I Iron Deposit - hema	itite domina	ant		6-	8/16 Graded Gravel
	Ļ								50mm dia. PVC
	DIDh								
20	F							- 20	
	-		BIDa: Beddeo	d Iron Deposit - goetl	nite domina	int	-		Bentonite Plug
	BIDg		2.29.20000	a non zopoon goon				_	
08. 1	B							- 30	
	BIF		BIF: Banded	Iron Formation			-		
40			SHL: Shale				-	40	8/16 Graded Gravel
4	HT SI		CHT: Chert				-	4	50mm dia. PVC Class 12 1mm
	-Ċ			Iron Formation			_		_ Apeture
50	ВF		DIF. Danueu	ITON FORMALION				20	
	-						-		Collapsed Native
60	ļ							09-	
								Q	
	F								-
20	ļ							0-	-
	-								
8	+							8-	+
6	†							06	+
	ŀ								-
100								00	
	Copyri	ght WorleyParson	s Services Pty Ltd				•		SHEET:1 OF 1
									Job Number 201012-00322

	W		lorley	Parso	Le ng 25	evel 7 0 50 St Ge	QV1 Building	BOR	EHOLE:
			sources & er		Pe	erth WA	6000 01 279 812	HPRC	0216
	CLI	ENT	FMS		LOCATI	ON [DELTA	DRILLED	DEPTH (m) 72
			PIOP		PROJEC			SCREEN (
	DAT	E DRILLED	31OCT2011		EASTIN	G 5	550278.222		DN (mAHD) 556.827
	LOG	GED BY			NORTH	ING 7	7552257.507	WATER L	EVEL (mBGL) 29.7
Co	ontra	actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (mS/cm)
Ri	д Ту	pe A	IR CORE RC	Drill Fluid	A/W		Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Lithology			Field Not	tes	Bore Construction
0		· · · · · · · · · · · · · · · · · · ·	COL: Recent (Colluvium			"Not enough wat	er to airlift"	
	_								- 8/16 Graded Gravel
₽.	COL	· · · · · · · · · · · · · · · · · · ·						6-	50mm dia. PVC
									Class 12
			DIDh: Detrital	Iron Deposit - hematite	e dominant		-		Bentonite Plug
20	F							-20	
	-								8/16 Graded Gravel
								-	50mm dia. PVC Class 12 1mm
30	DIDh							- 30	Apeture
	-								Bentonite Plug
40								-0	
4								7	
	-								
50	BIDg		BIDg: Bedded	Iron Deposit - goethite	e dominant		-	-0	
	В						-		Collapsed Native
			BIF: Banded I	ron Formation					
60	BF							- 60	
	유		CHT: Chert				-		
20			BIF: Banded I	ron Formation		/	1	-	
2							-	20	
	-								_
8-								8-	
								2	
	F								-
06	╞							06-	l T
	L								
o	ſ							0	
00 1 00		ght WorleyParson	Services Pty 1 td					100	SHEET:1 OF 1
	Jopyri	yn woneyr arson	S OFINICES FLY LIU						Job Number 201012-00322

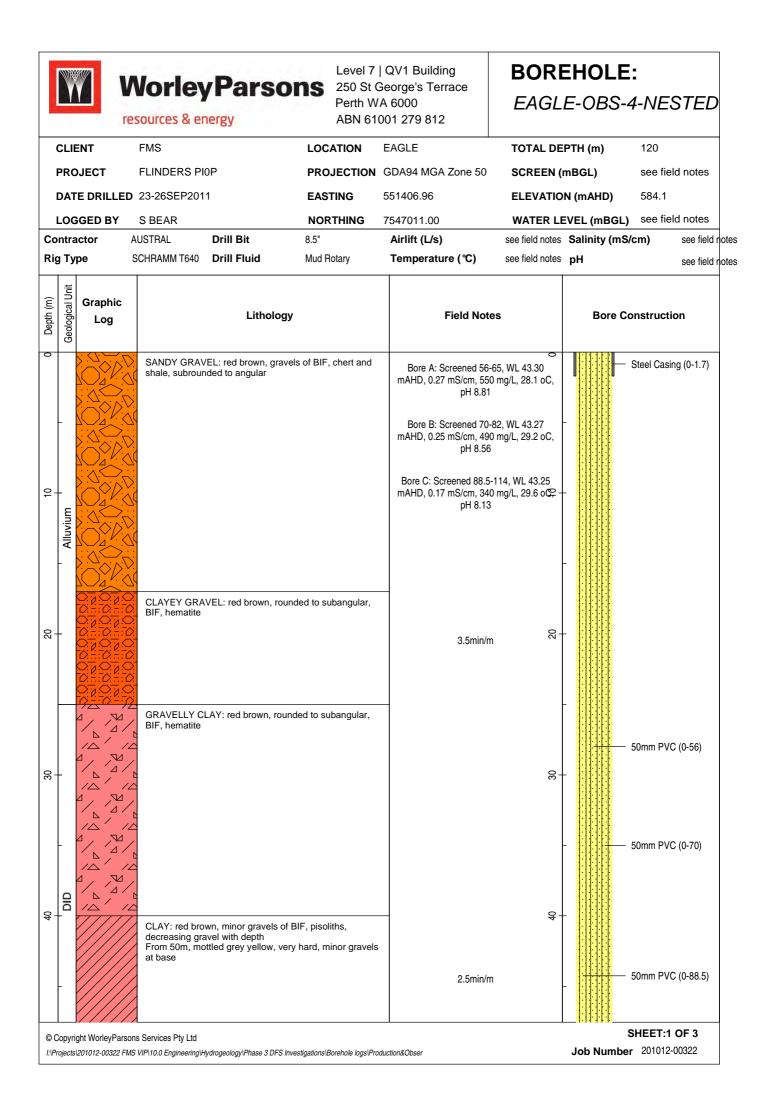
	Y		Vorle sources & e	yParso	DNS 250 Perti	el 7 QV1 Buildi St George's Ter n WA 6000 I 61001 279 812	rrace	BORI HPRC	E HOL I 20121	E:
	CLI	ENT	FMS		LOCATION	EAGLE		DRILLED I	DEPTH (m)	72
	PRC	JECT	PIOP		PROJECTI	ON		SCREEN (mBGL)	52.0-70.0
	DAT	E DRILLED	01NOV2011		EASTING	549899.447		ELEVATIO	N (mAHD)	599.975
	LOG	GED BY			NORTHING	G 7547696.095	5	WATER LI	EVEL (mBG	L) Dry
		actor		Drill Bit	5.5"	Airlift (L/s)			Salinity (m	S/cm)
Ri	g Ту	pe A	IR CORE RC	Drill Fluid	A/W	Temperatu	ıre (℃)		рН	
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Field Not		Bore	Construction
0	COL		COL: Recent	Colluvium		"Not	enough wate	er to airlift"	-	
₽.	ALL		ALL: Recent	Alluvium				10	-	
20	-		DIDh: Detrital	l Iron Deposit - hema	tite dominant			-20		 8/16 Graded Gravel
30	DIDh							-30		∽ 50mm dia. PVC Class 12
50 40	-							- 40		 Bentonite Plug
	BIF		BIF: Banded	Iron Formation						Dentonite i lug
09	BIDg			d Iron Deposit - goetł	nite dominant			-09		- 8/16 Graded Gravel
70	BIF		BIF: Banded	Iron Formation				0		 50mm dia. PVC Class 12 1mm Apeture
	-								-	 Collapsed Native Material
80	+							-88	-	
06	-							0-	-	
100								100		
	Copyri	ght WorleyParsons	s Services Pty Ltd						Job Numb	SHEET:1 OF 1 per 201012-00322

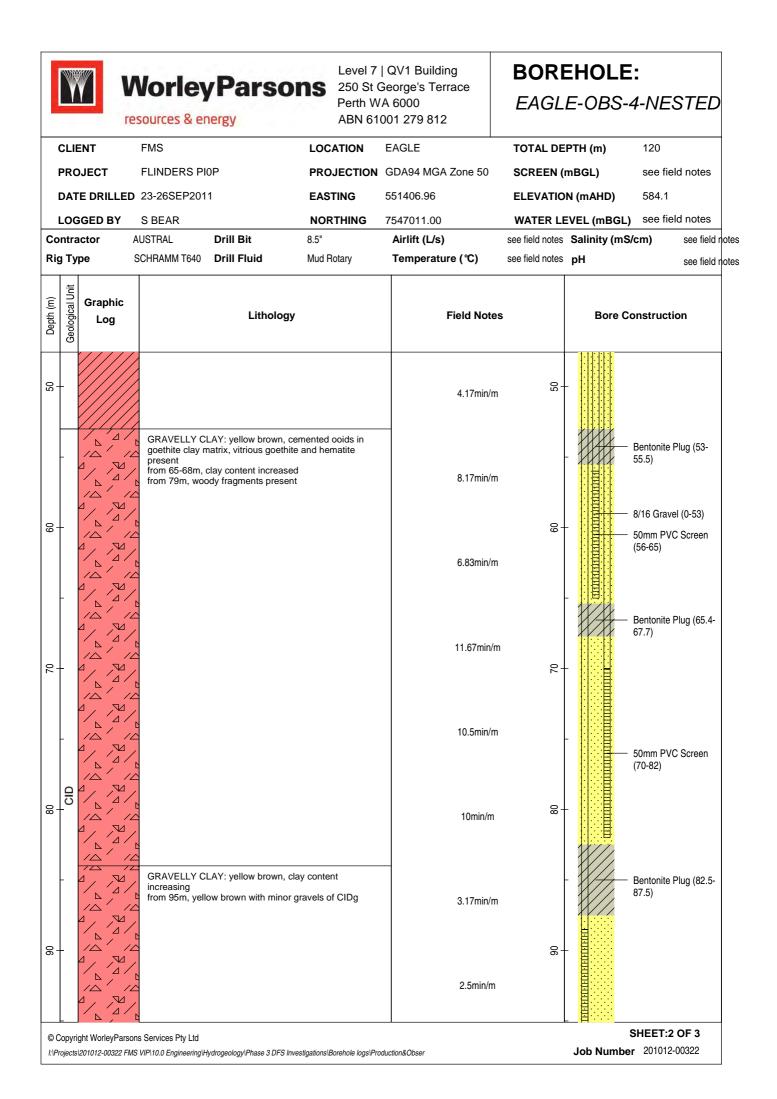
	Y		Vorle sources & e		Perth V	7 QV1 Building George's Terrace NA 6000 1001 279 812	BORI HPRC	E HOLE: 0108
	CLI	ENT	FMS		LOCATION	EAGLE	DRILLED I	DEPTH (m) 70
	PRC	DJECT	PIOP		PROJECTIO	N	SCREEN (mBGL) 48.5-60.5
	DAT	E DRILLED	02NOV2011		EASTING	548395.622	ELEVATIO	N (mAHD) 619.982
	LOG	GED BY			NORTHING	7548102.472	WATER L	EVEL (mBGL) 54.5
		actor		Drill Bit	5.5"	Airlift (L/s)		Salinity (mS/cm)
Ri	д Ту	npe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		pH
Depth (m)	Geological Unit	Graphic Log		Litholog	у	Field No		Bore Construction
10 0	COL		COL: Recent	Colluvium		"Yield ceased after 15m	nin; TDS-902ppm [®] ₽ -	
20	-						- 20	- 8/16 Graded Gravel
30	-		DIDh: Detrital	Iron Deposit - hema	tite dominant		-30	50mm dia. PVC Class 12
40	DIDh						- 40	–
50	-						-20	- 8/16 Graded Gravel
60				d Iron Deposit - goeth	ite dominant		- 60	50mm dia. PVC Class 12 1mm Apeture
	CHT		CHT: Chert					Collapsed Native
70	BIF		BIF: Banded	Iron Formation			0-	Material
80	-						- 88	-
06	+						06-	-
100							100	
	Copyri	ght WorleyParsons	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322

	W		lorley	Parso	Level	7 QV1 Building t George's Terrace	BOR	EHOLE:
		_	sources & er		Perth	WA 6000 61001 279 812	HPRO	20098
	CLI		FMS		LOCATION	EAGLE	DRILLED	DEPTH (m) 72
			PIOP		PROJECTIO		SCREEN	
		E DRILLED			EASTING	547225.338		ON (mAHD) 630.841
	LOG	GED BY			NORTHING	7548717.863		EVEL (mBGL) 61.6
Co	ontra	actor		Drill Bit	5.5"	Airlift (L/s)	0	Salinity (mS/cm)
Ri	g Ty	pe A	IR CORE RC	Drill Fluid	A/W	Temperature (°C	;)	рН
Depth (m)	Geological Unit	Graphic Log		Lithology			Notes	Bore Construction
0	COL		COL: Recent (Colluvium		"Yield ceased after	10min; TDS-255ppm	-
₽.	ALL		ALL: Recent A	lluvium			Ð.	-
- 20			DIDh: Detrital	Iron Deposit - hematite	dominant		20	- 8/16 Graded Gravel
30	DIDh						8.	50mm dia. PVC Class 12
40	-						64. 10	-
20	BII		BIDg: Bedded	Iron Deposit - goethite	dominant		20	Bentonite Plug
	HT SH		SHL: Shale CHT: Chert					
09	CHT		BIF: Banded Ir	on Formation			60	8/16 Graded Gravel 50mm dia. PVC
20	BIF						02	Class 12 1mm
2	-						κ.	Collapsed Native Material
89							8.	-
06	Ĺ						0	+ -
	-							-
100							100	
©	Copyri	ght WorleyParson	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322

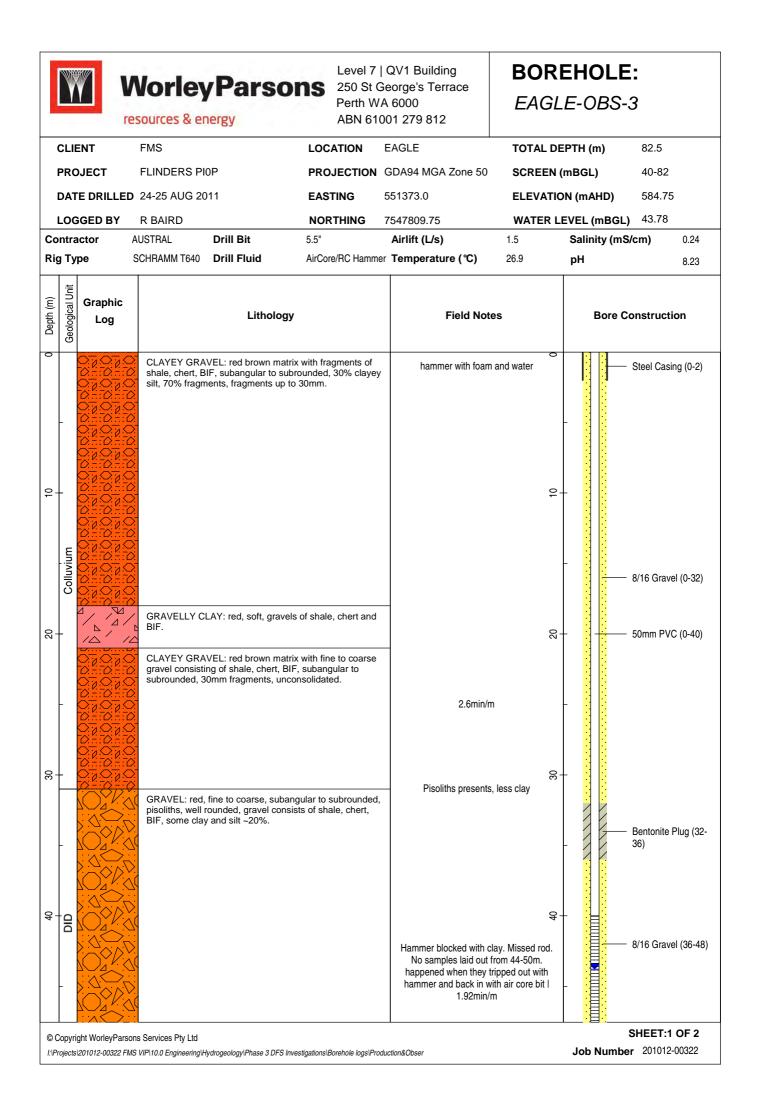

	Ŵ		lorley	Parso	ns ²	evel 7 0 50 St Ge erth WA	QV1 Building eorge's Terrace	BORI HPRC		Ξ:
		res	sources & ei	nergy)1 279 812		,0000	
	CLII	ENT	FMS		LOCAT	ION E	AGLE	DRILLED	DEPTH (m)	84
	PRC	DJECT	PIOP		PROJE	CTION		SCREEN (mBGL)	59.00-83.00
	DAT		17AUG2011		EASTIN	IG 5	48902.035	ELEVATIO	N (mAHD)	607.706
	LOG	GED BY			NORTH	IING 7	547396.143	WATER LI	EVEL (mBGL	.) 61.2
		actor		Drill Bit	5.5"		Airlift (L/s)	0	Salinity (m	S/cm)
Rię	g Ту	npe A	IR CORE RC	Drill Fluid	A/W		Temperature (°C)		рН	
Depth (m)	Geological Unit	Graphic Log		Lithology			Field Not	tes	Bore (Construction
0			ALL: Recent A	Alluvium			"Not enough Wat	er to airlift"		
9-	ŧ							6-	-	
	ALL								-	
								0		
20	T							- 20		
	-								-	
30	╞		DIDh: Detrital	Iron Deposit - hematit	e dominant			-30		 8/16 Graded Gravel 50mm dia. PVC
										Class 12
	DIDh								-	
40								- 40	-	
			CIDg: Channe	el Iron Deposit - goethi	te dominant					
50	ŧ							20		
	-								- / /	Dontonito Diug
_	cibg							_		 Bentonite Plug
09	Ö							60		
	╞									
20	ļ							2-		- 8/16 Graded Gravel
								2		50mm dia. PVC
	BII		BIDg: Bedded	Iron Deposit - goethit	e dominant	/				Class 12 1mm Apeture
8-	BF		BIF: Banded I	ron Formation				- 88		
										- Collapsed Native
	Γ									Material
6	t							06-	-	
	Ļ								-	
100								100		
	Copyri	I ight WorleyParson:	s Services Pty Ltd				1	÷.	L	SHEET:1 OF 1
	.,	- ,	,						Job Numb	er 201012-00322

	Ŵ			yParso	ons	250 St G Perth WA	0000	BORI HPRC	EHOLE: 20035
			sources & e	nergy			01 279 812		
C	LIENT		FMS		LOCA	ATION	EAGLE		DEPTH (m) 54
P	ROJEC1	-	PIOP		PRO	JECTION		SCREEN (mBGL) 2.00-51.50
D	ATE DR	ILLED	01NOV2011		EAST	FING	548398.962	ELEVATIC	DN (mAHD) 646.919
	OGGED	BY		D-111 D'1		THING	7548996.028	WATER L	EVEL (mBGL) Dry
	ntractor Type	А	IR CORE RC	Drill Bit Drill Fluid	5.5" A/W		Airlift (L/s) Temperature (<i>°</i> C)		Salinity (mS/cm) pH
									P
Depth (m)	Geological Unit Ceological Unit			Litholog	у		Field No	tes	Bore Construction
0			DIDh: Detrital	Iron Deposit - hema	tite domina	nt	"Not enough wat	er to airlift"	8/16 Graded Gravel Bentonite Plug
ę	DIDh							9-	50mm dia. PVC Class 12
20								- 20	
-30	BIDg		BIDg: Beddeo	d Iron Deposit - goeth	iite dominai	nt		8-	8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture
40	CHT		CHT: Chert	Iron Formation			-	-40	
			bii . Danueu	non i onnation					
20								- 20	- Collapsed Native
								-00	_ Material
99								- ق	-
02								0-	-
									-
8-								8-	-
06								6-	-
100								100	
© Co	pyright Worl	eyParsons	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

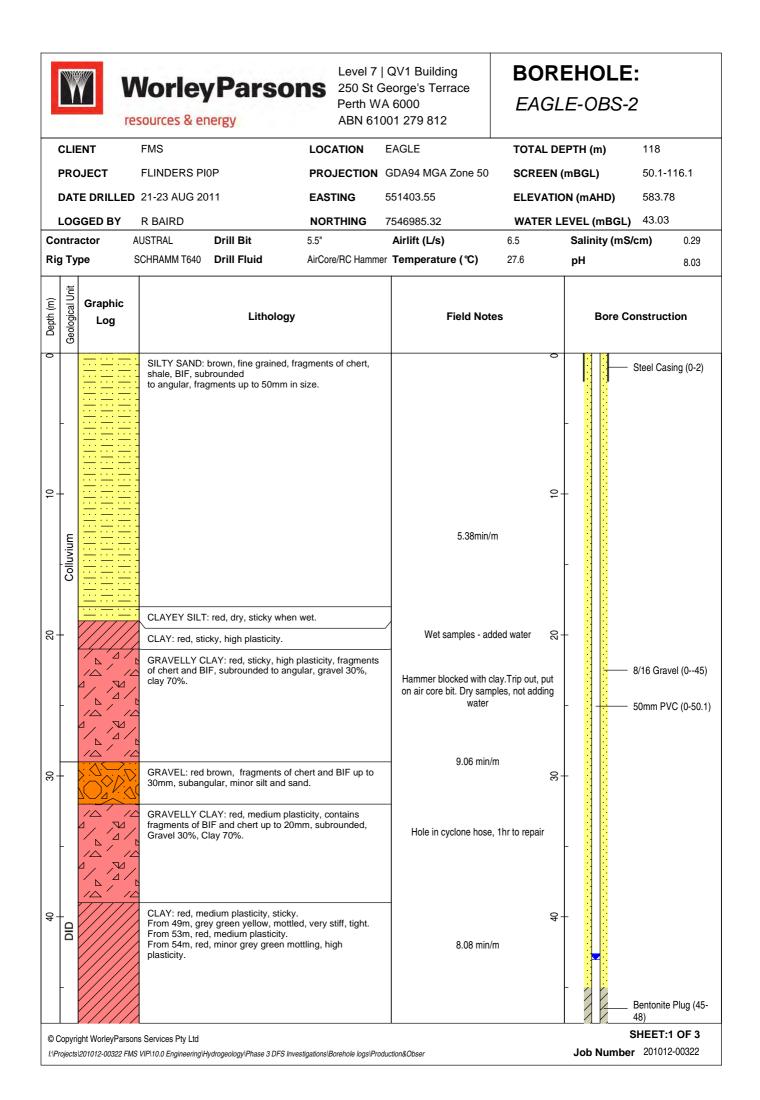

	Y		lorley		250 St Perth V	7 QV1 Building George's Terrace VA 6000 1001 279 812	BORI HPRC	EHOLE: 20004
-	CLII	ENT	FMS		LOCATION	EAGLE	DRILLED	DEPTH (m) 76
	PRC	DJECT	PIOP		PROJECTION	4	SCREEN ((mBGL) 43.85-74.00
	DAT	E DRILLED	16AUG2011		EASTING	550929.499		DN (mAHD) 589.115
	LOG	GED BY			NORTHING	7547398.306		EVEL (mBGL) 48.4
Co	ontra	actor		Drill Bit	5.5"	Airlift (L/s)	0.1	Salinity (mS/cm)
Ri	gТy	r pe A	IR CORE RC	Drill Fluid	A/W	Temperature (℃)		рН
Depth (m)	Geological Unit	Graphic Log		Litholog	V	Field No		Bore Construction
10	COL		COL: Recent (Colluvium		"Development Duratic 172.0pp		-
	F		ALL: Recent A	Alluvium				
50	ł						-0	8/16 Graded Gravel
	<u>н</u>							50mm dia. PVC Class 12
30	ALL						е- 2	
40	DiDh		DIDh: Detrital	Iron Deposit - hemat	ite dominant		- 40	- Bentonite Plug
50	-		BIDa: Bedded	Iron Deposit - goeth	ite dominant		- 20	
	g		Diby. Dedded	non Deposit - goeth				
60	BIDg						- 09	8/16 Graded Gravel
	CHBIE		BIF: Banded I	ron Formation				Class 12 1mm
			CHT: Chert			_/		
20	ᇤ		BIF: Banded I	ron Formation			20	
	<u> </u>							Bentonite Plug
80	+						8-	Collapsed Native Material
	╞							
06	+						0-	-
6	-						~	-
100			0 1 5 11				100	SHEET:1 OF 1
	Copyri	ght WorleyParsons	s Services Pty Ltd					Job Number 201012-00322


Y		lorley	/Parso	ns	250 St G Perth W	QV1 Building George's Terrace A 6000 001 279 812		EHOL .E-PRC		
CLIE	ENT	FMS		LOC	ATION	EAGLE DEPOSIT	TOTAL DE	EPTH (m)	119.5	
PRC	DJECT	PIOP		PRO	JECTION	GDA94 MGA Zone 50	SCREEN ((mBGL)	57-114	1.3
DAT	TE DRILLED	10-18 SEP 20	11	EAS	TING	551396.24	ELEVATIO	ON (mAHD)	584.08	3
LOG		R BAIRD		NOF	RTHING	7547002.15		EVEL (mBG	6L) 43.28	
Contra		JSTRAL	Drill Bit		' Tricone	Airlift (L/s)	15	Salinity (n	nS/cm)	0.36
Rig Ty	in the second se	CHRAMM T64	Drill Fluid	Mud F	lotary	Temperature (℃)	29.2	рН		8.25
Depth (m) Geological Unit	Graphic Log		Lithology			Field Note	es	Bore	Construct	ion
0			matrix with gravels of vn, gravels subrounde			Mud usage volume: 11/ 13/9 12kL; 14/9 36kL; 48kL; 17/9 36kL;	15/9 54kL; 16/9		— Steel Casi	ing (0-1.9)
10 Colluvium						4.17min/r	₽. m			
50			with gravels of BIF, ch nded to angular, grav			— 5.83min/r	20			
30 		GRAVELLY CI	_AY: with gravels of E	IF. chert	t. shale.	4.17min/i	.90		— 8/16 Grav — 8" Blank P	. ,
_			angular, pisoliths.			Pulled out of hole. Block 8m into bottom	ed bit. Collapsed			
DID 400						viscosity 60 secs	욱 - 14.7min/m			
	ight WorleyParsons	-	ydrogeology\Phase 3 DFS Inv	estigations\E	Borehole logs\Proc	luction&Obser		Job Num	SHEET:1 ber 201012	

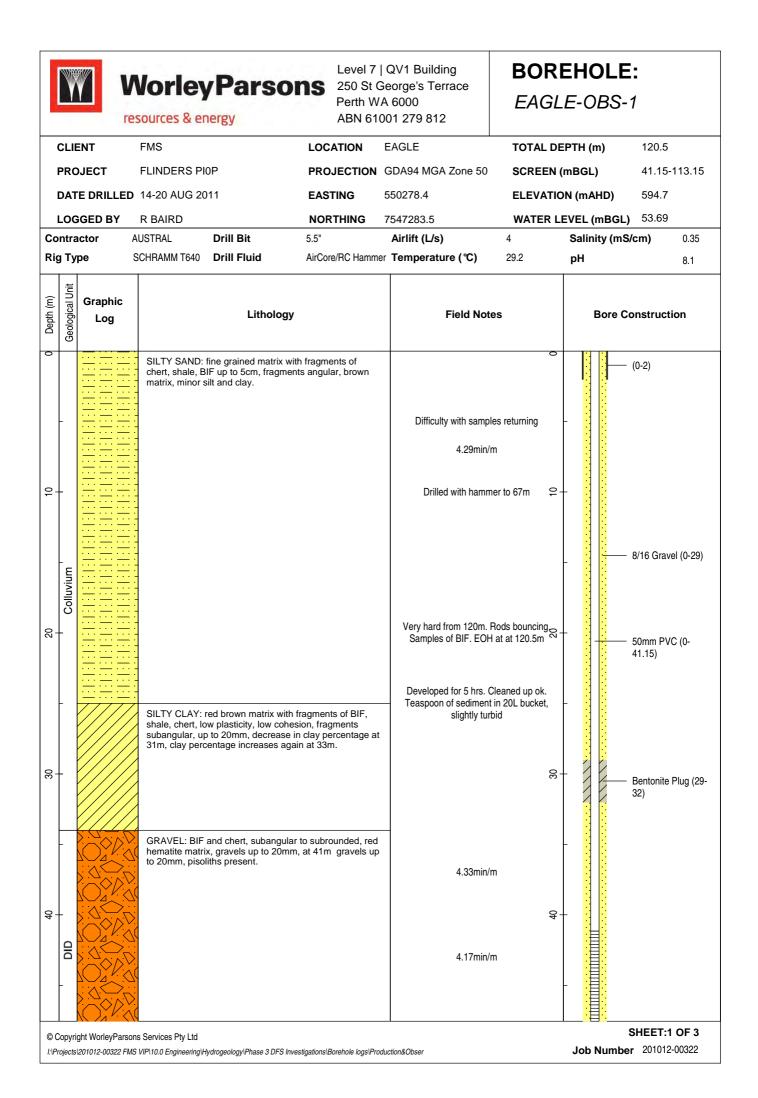
	W		Vorley		ons	250 St G Perth W	QV1 Building eorge's Terrace A 6000 001 279 812		EHOL	
(CLIE	ENT	FMS		LOC	ATION	EAGLE DEPOSIT	TOTAL D	DEPTH (m)	119.5
F	PRO	JECT	PIOP		PRO	JECTION	GDA94 MGA Zone	50 SCREEN	l (mBGL)	57-114.3
I	DAT	E DRILLED	10-18 SEP 207	11	EAS	TING	551396.24	ELEVATI	ION (mAHD)	584.08
		GED BY	R BAIRD			THING	7547002.15		LEVEL (mBG	-
	ntra I Tyj		USTRAL CHRAMM T64	Drill Bit Drill Fluid	12.25" Mud R	Tricone	Airlift (L/s) Temperature (℃)	15 29.2	Salinity (n pH	
		, , , , , , , , , , , , , , , , , , , 		Diminud				20.2		8.25
Depth (m)	Geological Unit	Graphic Log		Litholog	y		Field N	lotes	Bore	Construction
50	_						4.0m	in/m ភ្ល	3-	
	Clay		plasticity, sticky	or gravels, mottled g y, minor gravels of E on due to different u	SIF, chert,	shale, may				- Bentonite (51-55)
							very slow p	enetration		
60	-		(40%), with gra subangular. GRAVEL: with	VEL: alternating ban ivels of BIF, chert, s BIF, chert, shale, re Ilar up to 20mm, mir ids.	hale (50%) d brown si), ilty matrix,	Pulled rod out. End morning at 54. 7n	of clay. Tagged in n collapse 14.17	3	
70	-		CLAYEY GRAV	VEL: beige-grey, gra	avels of BII	F, chert,	15m	n/m	2-	
			shale, poor san GRAVEL: yello grained gravel, matrix, minor cl	w brown, partially co BIF and chert, suba	emented, r angular, re	medium d brown	 Mud loss start	ed 8.3min/m		
80	-		From 90m incre	ease in clay content	to 10%		End of day. Mud 11.67r		3 + :	— 8/16 Gravel (55-
90	CID		shale, yellow-b	rtially cemented gra rown, ooids and pel 8mm, minor lenses	oids, suba	ngular		G		114.3) 8" PVC Screen (57- 114.3)
	_			ght increase in clay						SHEET:2 OF 3
		ght WorleyParsons 201012-00322 FMS	-	vdrogeology\Phase 3 DFS In	vestigations\B	Borehole logs\Proc	luction&Obser		Job Num	ber 201012-00322

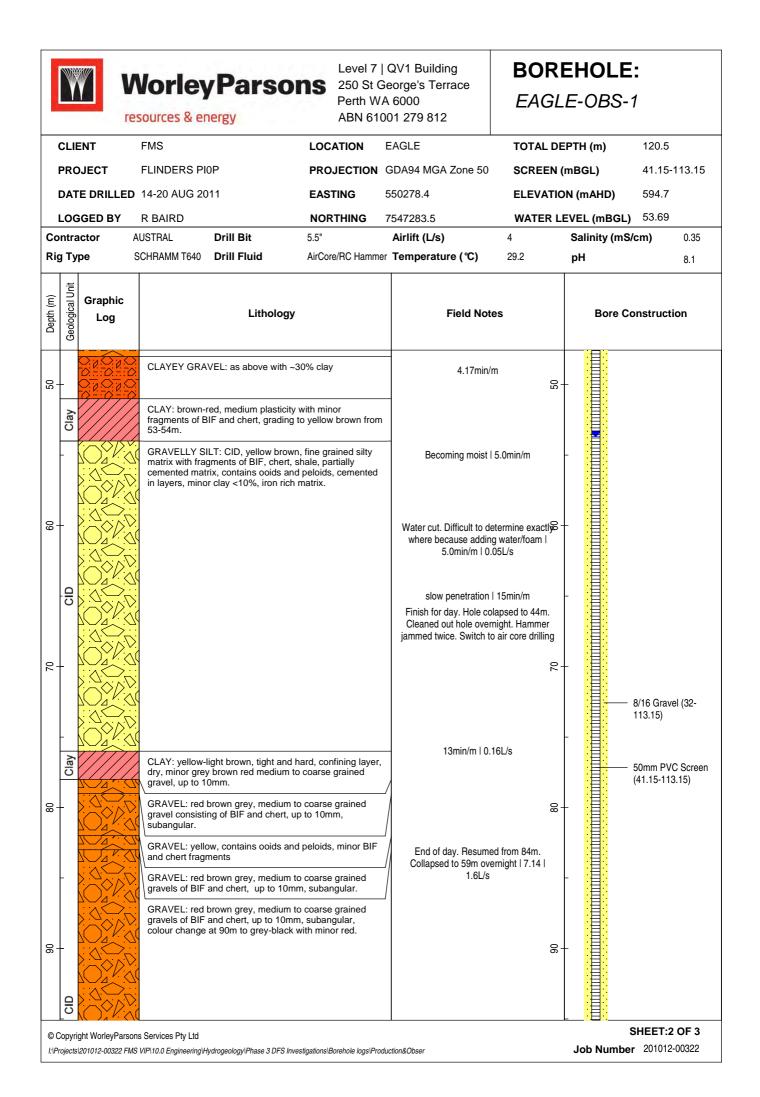


I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Phase 3 DFS Investigations\Borehole logs\Production&Obser

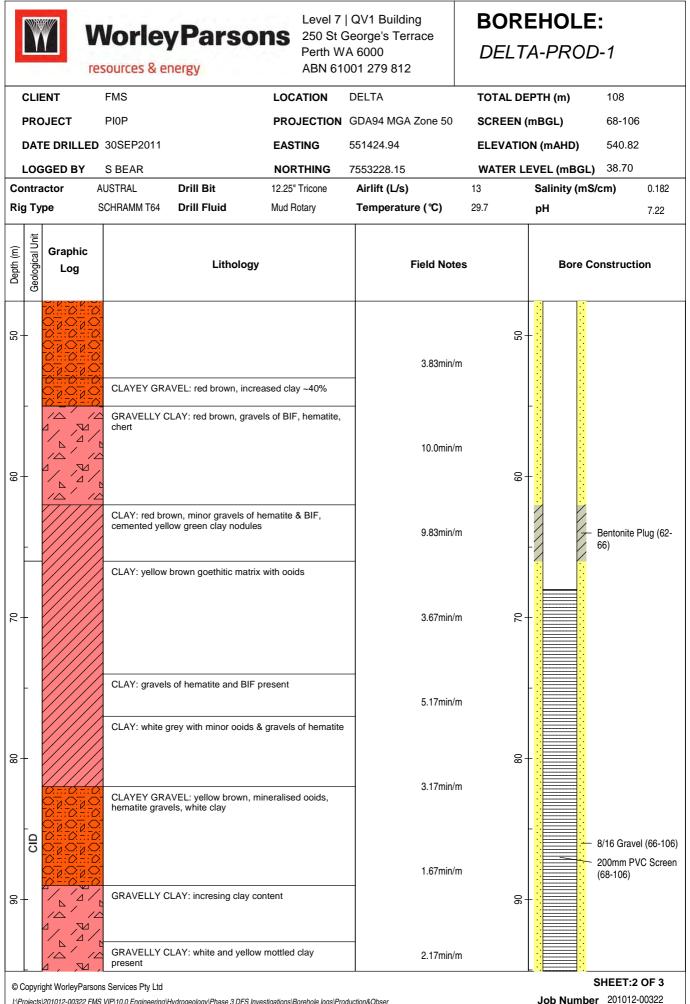


DAT LOG Contra		FMS		001 279 812		DBS-4-NESTED
DAT LOG Contra	JECT		LOCATION	EAGLE	TOTAL DEPTH	(m) 120
LOG Contra		FLINDERS PI0P	PROJECTION	GDA94 MGA Zone 50	SCREEN (mBG	L) see field notes
Contra	E DRILLED	23-26SEP2011	EASTING	551406.96	ELEVATION (m	AHD) 584.1
	GED BY	S BEAR	NORTHING	7547011.00	WATER LEVEL	(mBGL) see field notes
Rig Typ		USTRAL Drill Bit CHRAMM T640 Drill Fluid	8.5" Mud Rotary	Airlift (L/s) Temperature (℃)	see field notes Salin see field notes pH	nity (mS/cm) see field no see field no
Depth (m) Geological Unit	Graphic Log	Lithology		Field Note	25	Bore Construction
100		GRAVELLY CLAY: yellow brown with altered goethite matrix	cemented ooids,	3.75min/n 3.33min/n	рана 100 1110 1110 1110 1110 1110 1110 11	50mm PVC Screen (88.5-114.5)
BIDg		BID: grey yellow, goethitic clay altered present, gravels are more angular, no		Lost circulation 113-120		
-		Lost circulation and returns		0.38min/n	n	
я						Collapse (118-122)

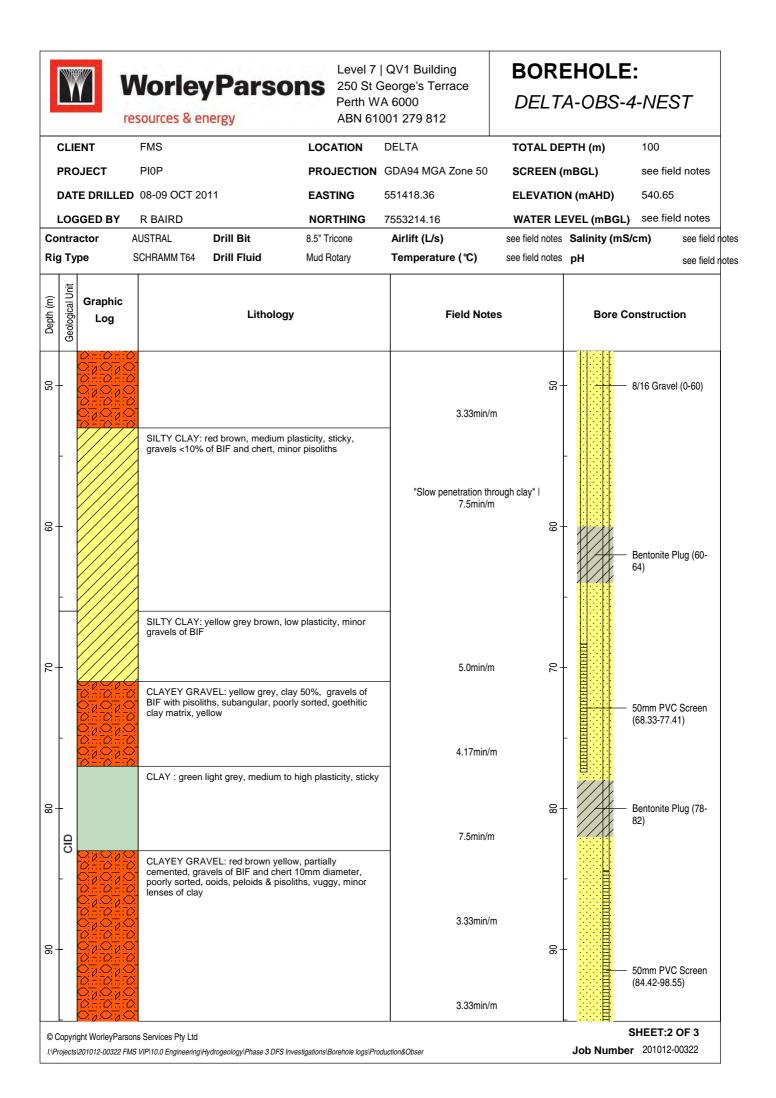


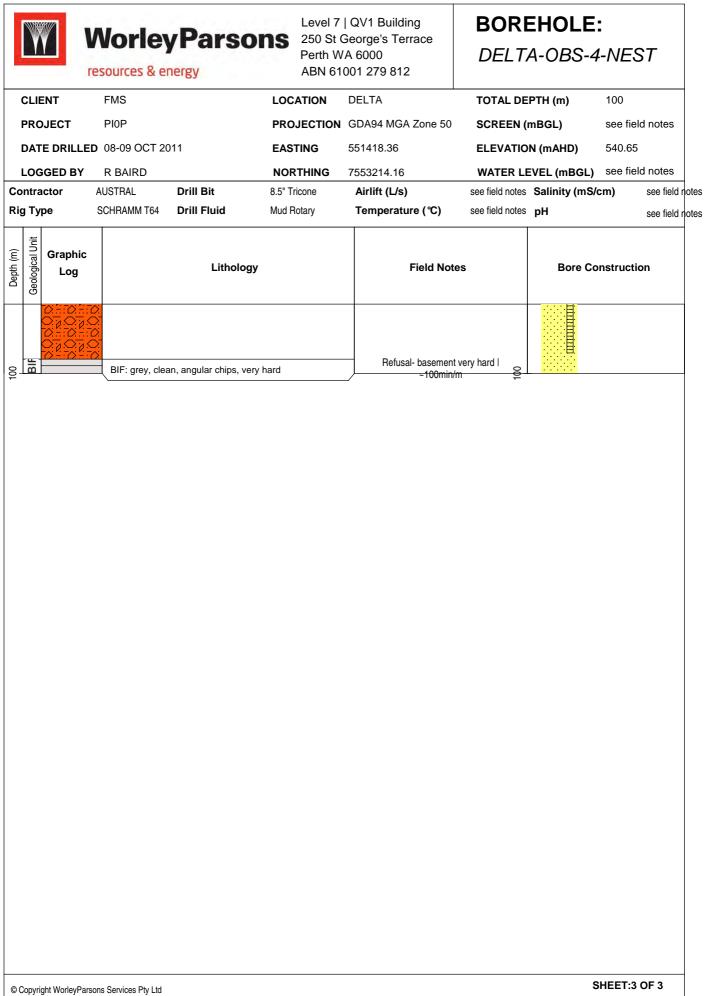

	RILLED 24-25 D BY R BAI r AUSTRA	IRD	PROJECTION C EASTING 5 NORTHING 7 5.5"	EAGLE GDA94 MGA Zone 50 551373.0 7547809.75 Airlift (L/s) Temperature (℃)			S/cm) 0.24
DATE DR LOGGED Contractor Rig Type	RILLED 24-25 D BY R BAI r AUSTRA SCHRAM	AUG 2011 IRD IL Drill Bit	EASTING 5 NORTHING 7 5.5"	551373.0 7547809.75 Airlift (L/s)	ELEVATIO WATER L 1.5	DN (mAHD) EVEL (mBGL Salinity (mS	584.75) 43.78 S/cm) 0.24
LOGGED Contractor Rig Type	D BY R BA r AUSTRA SCHRAM	IRD L Drill Bit	NORTHING 7	7547809.75 Airlift (L/s)	WATER L 1.5	EVEL (mBGL Salinity (mS) 43.78 S/cm) 0.24
Contractor Rig Type	r AUSTRA SCHRAM aphic	L Drill Bit	5.5"	Airlift (L/s)	1.5	Salinity (ms	%/cm) 0.24
Rig Type	SCHRAM						
Geological Unit				1			8.23
		Litholo	ду	Field Note	25	Bore C	Construction
oakover Fo	CLA ¹ GRA suba yello	RETE: biege, very hard, che onates and silica. Y: mottled grey green, stiff, ti VEL: yellow grey, gravels of ngular. From 58m fine to cos w silty clay, hite, gravel up to 20mm.	ight, high plasticity.	water cut 0.14mS 0.07 28.6°C 12min/m			
		VELLY CLAY: tan to yellow, icity. VEL: cemented CID	sticky, medium/	0.26mS 0.13ppt pH7 5min/m 0.11 0.19mS 0.09ppt pH7 5min/m 0.74	1L/s		50mm PVC Scree (40-82) Collapse (44-82.5
	BIF:	VELLY CLAY: light brown, g y, medium plasticity. grey, weathered, overturned n 75m, weathered with white n 80m, grey fresh BIF & cher	/ clay lenses.	0.19mS 0.09ppt pH7 4.17min/m 0.		- X	
BIF				0.22mS 0.11ppt pH7 10min/m 1.3			
3+ =					œ		

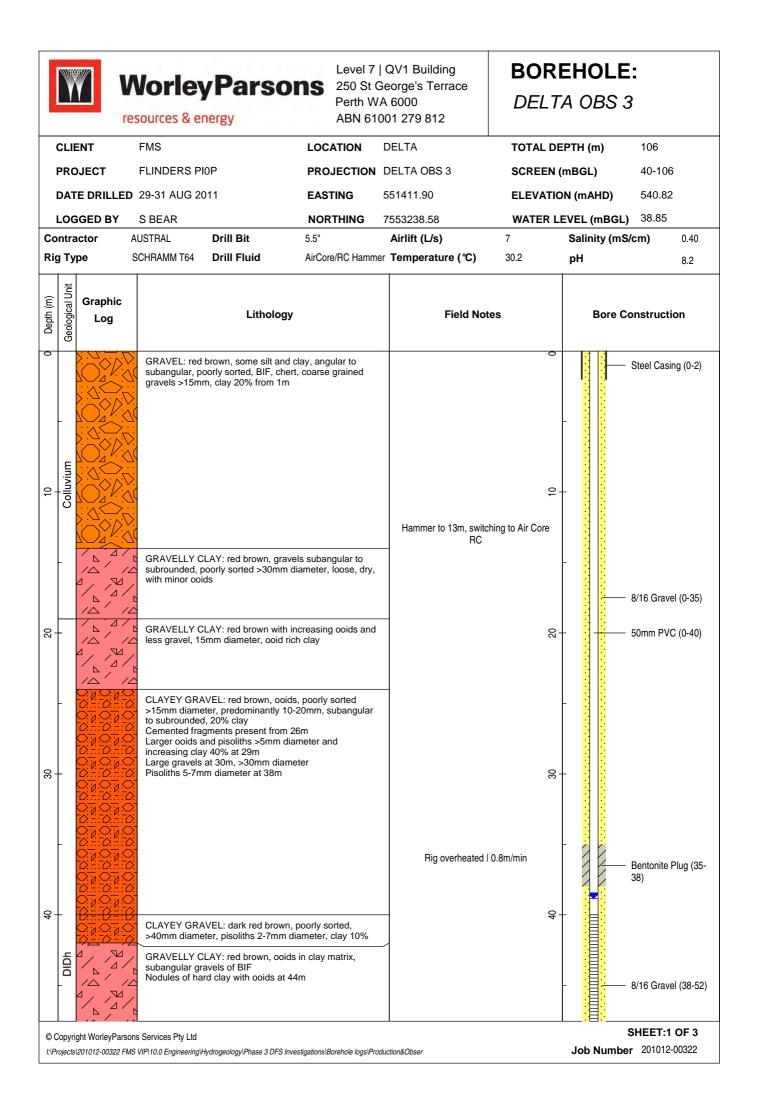
	Y		Vorley Parso	ons	250 St Ge Perth WA	QV1 Building eorge's Terrace 6000 01 279 812	BOREHOLE: EAGLE-OBS-2		
(CLIE	ENT	FMS	LOCA	TION E	AGLE	TOTAL DE	EPTH (m)	118
F	PRC	DJECT	FLINDERS PIOP	PROJ	ECTION G	GDA94 MGA Zone 50	SCREEN	(mBGL)	50.1-116.1
[DAT	E DRILLED	21-23 AUG 2011	EASTI	ING 5	51403.55	ELEVATIO	ON (mAHD)	583.78
			R BAIRD	NORT	-	546985.32		EVEL (mBGL	
	ntra J Ty		USTRAL Drill Bit CHRAMM T640 Drill Fluid	5.5" AirCore/		Airlift (L/s) Temperature (℃)	6.5 27.6	Salinity (m pH	
Depth (m)	Geological Unit	Graphic Log	Litholog			Field Not			8.03
20	Clay		CLAY: yellow red, alternating band	ds of madium	a to	3.75 min/ Colour change from			
- 60	CIA CID CII CIDH		CLAY: red, minor grey yellow mott CLAY: red, minor grey yellow mott CLAYEY GRAVEL: yellow red, alt medium to coarse grained gravel highly cemented in layers with goe matrix, minor yellow clay, gravels of angular, some ooids and pisoliths.	clay lenses, h and hematite tling, stiff, tigl remating ban with minor cla ethite and he of chert and	highly matrix. ht. ds of ay lenses, matite	Drillers noted w 0.28mS pH8.16 2.9;			- 8/16 Gravel (48-81)
0/-	_		CLAY: beige, tight, very stiff, hard, GRAVELLY CLAY: beige, gravel 1 medium plasticity.	10%, clay 90	%, sticky,	0.28mS 0.14ppt pH 1.33L/s			
80	_		GRAVEL: red brown grey, partially grained gravels of BIF and chert, s <5%. From 80m, cemented fine to medii and peloids, grey red brown, mino GRAVEL: yellow, cemented, geoth ooids and peloids.	subangular, r um gravel wi or vugs and c	minor clay ith ooids avities.	0.28mS 0.14ppt pH 5.42min/m 2			
	CID		GRAVEL: red, cemented, hematite and peloids. Wood fragments at 90m. From 95m higher cementation, fin ooids and peloids, red-yellow, vug	er grained, c	emented	0.29mS 0.14ppt pH 3.33L/s	1		- 50mm PVC Screen (50.1-116.1)
		ght WorleyParsons	s Services Pty Ltd VIP\10.0 Engineering\Hydrogeology\Phase 3 DFS I	Investigations	rahola loge\Drack.u	0.28mS 0.14ppt pH 3.75min/m 4	مىن 127.5°C 1 ₆ . 4.0L/s		SHEET:2 OF 3 er 201012-00322


	WorleyParso	Perth WA	QV1 Building eorge's Terrace \ 6000 01 279 812		EHOLE: E-OBS-2
CLIENT	FMS	LOCATION	EAGLE	TOTAL DE	EPTH (m) 118
PROJECT	FLINDERS PI0P	PROJECTION	GDA94 MGA Zone 50	SCREEN (mBGL) 50.1-116.1
DATE DRIL	LED 21-23 AUG 2011	EASTING	551403.55	ELEVATIO	N (mAHD) 583.78
LOGGED B	Y R BAIRD	NORTHING	7546985.32	WATER LI	EVEL (mBGL) 43.03
Contractor	AUSTRAL Drill Bit	5.5"	Airlift (L/s)	6.5	Salinity (mS/cm) 0.29
Rig Type	SCHRAMM T640 Drill Fluid	AirCore/RC Hammer	Temperature (°C)	27.6	pH 8.03
Geological Unit Geological Unit	l ith a lase	V	Field Not	es	Bore Construction
	GRAVEL: brown yellow tan, cemer medium grained gravel, cemented vuggy, minor clay, tight, stiff, high p CLAY: tan, tight, stiff, high plasticity GRAVEL: brown yellow tan, cemer medium grained gravel cemented i vuggy, minor clay, tight, stiff, high p CLAY: tan, stiff, tight, high plasticity GRAVEL: brown yellow tan, cemer medium grained gravel cemented i vuggy, minor clay, tight, stiff, high p CLAY: tan, stiff, tight, high plasticity CLAY: brown red yellow, cemented mineralised, minor clay coating, ve shale, BIF, moderately weathered, From 114m, cemented CID, brown	in goethite matrix, plasticity. 	0.28mS 0.14ppt pH 5.26L/s 0.29mS 0.14ppt pH 5.00min/m 5 0.29mS 0.14ppt pH 3.33min/m 5 Colour change from yelk 0.29mS 0.14ppt pH 4.17min/m 6 0.30mS 0.15ppt pH	 8.25 27.8° C 71L/s 8.13 27.8° C 71L/s 8.13 27.8° C 71L/s 9 - 0 to grey brown 7.95 28.8° C 67L/s 	- Collapse (81-116.1)
B	yellow clay matrix. CLAY: tan grey, stiff, tight, high pla BIF: grey, fresh, angular.		11.25min/m 0		Collapse (116.1-11)

	WorleyParso resources & energy	DNS 250 St G Perth W	QV1 Building George's Terrace A 6000 001 279 812		EHOLE: E-OBS-1
CLIENT	FMS	LOCATION	EAGLE	TOTAL DE	EPTH (m) 120.5
PROJECT	FLINDERS PIOP	PROJECTION	GDA94 MGA Zone 50	SCREEN ((mBGL) 41.15-113.15
DATE DRILL	ED 14-20 AUG 2011	EASTING	550278.4	ELEVATIO	DN (mAHD) 594.7
LOGGED BY	R BAIRD	NORTHING	7547283.5	WATER LI	EVEL (mBGL) 53.69
contractor Rig Type	AUSTRAL Drill Bit SCHRAMM T640 Drill Fluid	5.5" AirCore/RC Hamme	Airlift (L/s) er Temperature (℃)	4 29.2	Salinity (mS/cm) 0.35 pH 8.1
Geological Unit Ceological Unit Log	c Litholog	ЭУ	Field Note	95	Bore Construction
			0.33mS 20 0.34mS 2.8	-00	
BIF	BIF: grey, weathered 112m cemented ooids and peltiod 116m with pisoliths 118m BIF, slightly weathered to fi		0.33mS 3.3 0.45mS 6.67min	1	
			Colour change from re yellowish/gec	d/hemalite to thite	Collapse (113.15- 120.5)
2+			0.32mS 4	_/s 01-	


		lorley		ons	250 St G Perth W	QV1 Building George's Terrace A 6000 D01 279 812		REHOL TA-PRO	
CLIEN	т	FMS		LOC	ATION	DELTA	TOTAL I	DEPTH (m)	108
PROJE	ECT	PIOP		PRO	JECTION	GDA94 MGA Zone 50	SCREEM	N (mBGL)	68-106
DATE	DRILLED	30SEP2011		EAS	TING	551424.94	ELEVAT	TION (mAHD)	540.82
LOGG		S BEAR			THING	7553228.15		LEVEL (mB	-
			Drill Bit		Tricone	Airlift (L/s)	13	Salinity (
Rig Type		CHRAMM T64	Drill Fluid	Mud R	lotary	Temperature (℃)	29.7	рН	7.22
Geological Unit	Braphic Log		Litholog	у		Field Not	es	Bore	e Construction
			EL: red brown, subar poorly sorted, clay in			1.75min/		5	- Steel Casing (0-1.7)
Colluvium						3.5min/r	n Ş	2+	
		GRAVELLY C BIF, shale & c	LAY: red brown, sub thert	prounded g	ıravels of	3.0min/r		07	
		CLAYEY GRA BIF, shale , ch	VEL: red brown, sub hert & ooids	bangular g	ravels of	4.83min/	m	-	
						2.83min/			— 8/16 Gravel (0-62)
		CLAYEY GRA	AVEL: red brown, pis	oliths pres	ent	— 3.17min/	m		200mm PVC (0-68)
						3.0min/r	n s	4 −	
		CLAYEY GRA more ooids	AVEL: red brown, inc	reased cla	y ~30%,		m	-	
	WorlevPareone	Services Pty Ltd]	SHEET:1 OF 3
	-	-	Hydrogeology\Phase 3 DFS I	nvestigations\E	Borehole logs\Proc	duction&Obser		Job Num	1ber 201012-00322

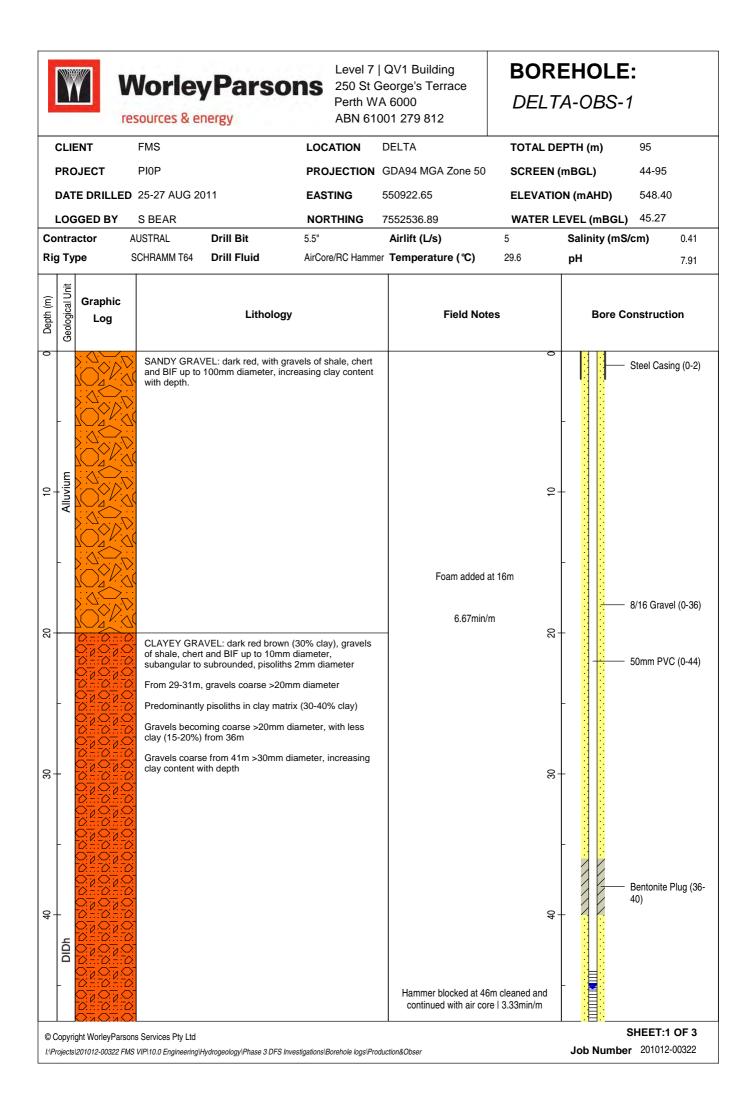



I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Phase 3 DFS Investigations\Borehole logs\Production&Obser

ig Type SCHRAMM T64 Drill Fluid Mud Rotary Temperature (°C) 29.7 pH 7.22 Image: Comparison of the second		Worle resources & e	y Parso	ns 250 St G Perth W/	QV1 Building George's Terrace A 6000 001 279 812		EHOLE A-PROD		
DATE DRILLED 30SEP2011 EASTING 551424.94 ELEVATION (mAHD) 540.82 LOGGED BY S BEAR NORTHING 7553228.15 WATER LEVEL (mBGL) 38.70 contractor AUSTRAL Drill Bit 12.25° Tricone Airlift (L/s) 13 Salinity (mS/cm) 0.182 ig Type SCHRAMM T64 Drill Fluid Mud Rotary Temperature (°C) 29.7 pH 7.22 ig Type Graphic Log Lithology Field Notes Bore Construction ig Type CLAY: yellow brown, weathered shale and gravels 1.33min/m Collapse (106-108)	CLIENT	FMS		LOCATION	DELTA	TOTAL DE	EPTH (m)	108	
LOGGED BY S BEAR NORTHING 7553228.15 WATER LEVEL (mBGL) 38.70 ontractor AUSTRAL Drill Bit 12.25° Tricone Airlift (L/s) 13 Salinity (mS/cm) 0.182 ig Type SCHRAMM T64 Drill Fluid Mud Rotary Temperature (°C) 29.7 pH 7.22 ig Type Graphic Log Lithology Field Notes Bore Construction Image: CLAY: yellow brown, weathered shale and gravels 1.33min/m Clapse (106-108)	PROJECT	PIOP		PROJECTION	GDA94 MGA Zone 50	SCREEN ((mBGL)	68-106	
Ontractor AUSTRAL Drill Bit 12.25" Tricone Airlift (L/s) 13 Salinity (mS/cm) 0.182 ig Type SCHRAMM T64 Drill Fluid Mud Rotary Temperature (°C) 29.7 pH 7.22 ig Type Graphic Log Lithology Field Notes Bore Construction ig Type CLAY: yellow brown, weathered shale and gravels 1.33min/m Clapse (106-108)	DATE DRILLE	D 30SEP2011		EASTING	551424.94	ELEVATIO	ON (mAHD)	540.82	
ig Type SCHRAMM T64 Drill Fluid Mud Rotary Temperature (°C) 29.7 pH 7.22 ig Type Graphic Log Lithology Field Notes Bore Construction Image: Schrading of the state and gravels	LOGGED BY	S BEAR		NORTHING	7553228.15	WATER L	EVEL (mBGL)	38.70	
Image: Straphic Log Lithology Field Notes Bore Construction Image: Straphic Log Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Log Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Log Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Log Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Log Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Straphic Lithology Image: Strap	ontractor						Salinity (mS/	cm)	0.182
2.5min/m 2 2.5min/m 2 CLAY: yellow brown, weathered shale and gravels CLAY: yellow brown, weathered shale and gravels	ід Туре	SCHRAMM T64	Drill Fluid	Mud Rotary	Temperature (°C)	29.7	рН		7.22
La CLAY: yellow brown, weathered shale and gravels	Geological Unit Log		Lithology		Field Note	?S	Bore Co	onstructio	on
BIF: fresh, angular, with shale		\		le and gravels		n		Collapse (1)	06-108

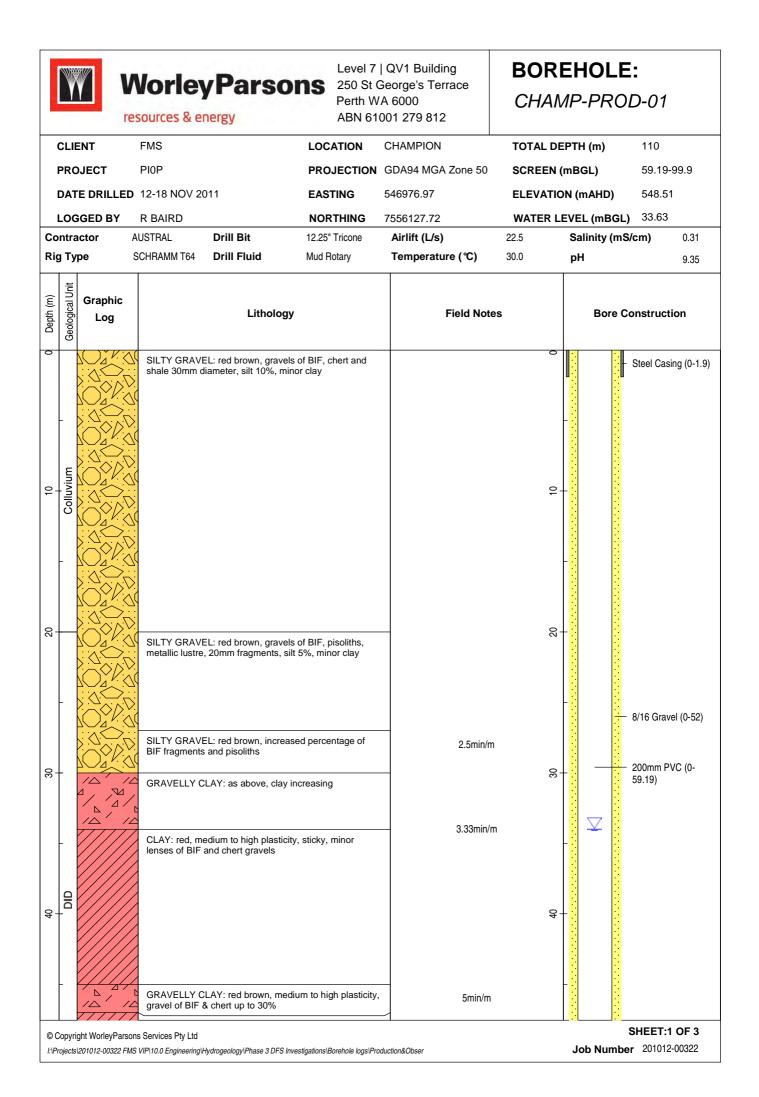
	Ŵ		Vorley sources & e	y Parso	Perth W	QV1 Building George's Terrace A 6000 001 279 812		E HOLI A-OBS	E: -4-NEST
(CLIE	ENT	FMS		LOCATION	DELTA	TOTAL DE	PTH (m)	100
	PRC	JECT	PI0P		PROJECTION	GDA94 MGA Zone 50	SCREEN (mBGL)	see field notes
I	DAT	E DRILLED	08-09 OCT 20	011	EASTING	551418.36	ELEVATIO	N (mAHD)	540.65
		GED BY	R BAIRD		NORTHING	7553214.16		EVEL (mBG	-
	ntra g Ty		AUSTRAL SCHRAMM T64	Drill Bit Drill Fluid	8.5" Tricone Mud Rotary	Airlift (L/s) Temperature (℃)	see field notes see field notes		
		PC			indu riolary			pi	see field n
nepm (m)	Geological Unit	Graphic Log		Litholog	у	Field Not	es	Bore	Construction
5			shale up to 30	AVEL: red brown, gra Dmm diameter, subro clay in matrix ~20%	ounded to subangular,	Bore A: Screened 68.33 mAHD, 0.18 mS/cm, 33 pH 8.80	2 mg/L, 30.4 oC,		- Steel Casing (0-0.9)
	_					Bore B: Screened 84.42 mAHD, 0.20 mS/cm, 36 pH 9.16	3 mg/L, 30.1 oC,		
-	Colluvium					2.5min/r	n 6-		
	-		CLAYEY GRA	AVEL: increased clay	v content to ~40%	3.33min/	m		
-	-		CLAYEY GR/ gravels of BIF	AVEL: red brown, po 5 & chert 50% with pi	orly sorted subrounded soliths, 50% clay	4.17min/	n 82 -		
-	-		SILTY GRAVI shale 30mm c	EL: red brown, grave dia, subrounded, min	els of BIF, chert & or pisoliths, silt 10%		m ⊗-	- 1 (1) (1) (1) (1) (1) (1) (1) (1)	
	_					2.5min/r	n		- 50mm PVC (0- 68.33)
2 -	-					3.33min/	m 6-		- 50mm P\/C /0
	DID		2	EL: as above, abund			m		- 50mm PVC (0- 84.42)
		0.0.0.0		nded, minor pisoliths					

	WorleyParsons resources & energy				250 St Ge Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOLE A OBS	
С	LIE	NT	FMS	LOC	ATION [DELTA	TOTAL DE	EPTH (m)	106
P	RO	JECT	FLINDERS PI0P	PRO	JECTION [DELTA OBS 3	SCREEN	(mBGL)	40-106
D	ATI	E DRILLED	29-31 AUG 2011	EAS	TING 5	551411.90	ELEVATIO	ON (mAHD)	540.82
L	OG	GED BY	S BEAR	NOR	THING 7	7553238.58	WATER L	EVEL (mBGL) 38.85
			USTRAL Drill Bit	5.5"		Airlift (L/s)	7	Salinity (m	5/cm) 0.40
Rig	Тур	be S	SCHRAMM T64 Drill Fluid	AirCor	e/RC Hammer	Temperature (℃)	30.2	рН	8.2
Depth (m)	Geological Unit	Graphic Log	Lit	hology		Field No	tes	Bore C	construction
<u>0</u> 2-	2					Water added	at 42m යු -		
			CLAY: red brown, minor oo Nodules of cemented yellov (opaline silica)		63m	- 0.42mS 0.21ppt pH8.	.18 30.7°C 0L/s		
8-						1.5min/m	0L/s 응·		
			CLAYEY GRAVEL: red brov matrix	wn, 30% clay ooid	ds in clay	0.32mS 0.16ppt pl 1.2min/m (
2-	2		GRAVELLY CLAY: red brow hard nodules of green clay	vn mottled yellow from 69m	r, ooid rich	3.8min/m	₽ 0L/s		50mm PVC Screer (40-106)
	7		GRAVELLY CLAY: yellow v			0.40mS 0.20ppt pH 3.8min/m (
3-			GRAVEL: red brown, grave sorted, coarse grained CLAY: green white	ы он онг, angular	, poony/		80		Collapse (52-106)
4.0			CLAYEY GRAVEL: white re cemented ooids and wood, becoming gravelly sand at & brown with cemented ooids from 85-87m, red brown (he from 89-90m, dark red brow gravels of BIF >10mm, ang	vuggy 33m, coarse grain /wood goethite ematite) /n and coarser gra	ned	0.40mS 0.20ppt pl 4.5min/m	H8.25 30.1°C 3L/s		
- ⁰⁶					n to 10mm	0.40mS 0.20ppt pł >7L/s	H8.26 30.2°C _⊜		
	F	11/1/	CLAY: yellow brown white, diameter gravels, angular	coarse graineu u				<u>X</u>	

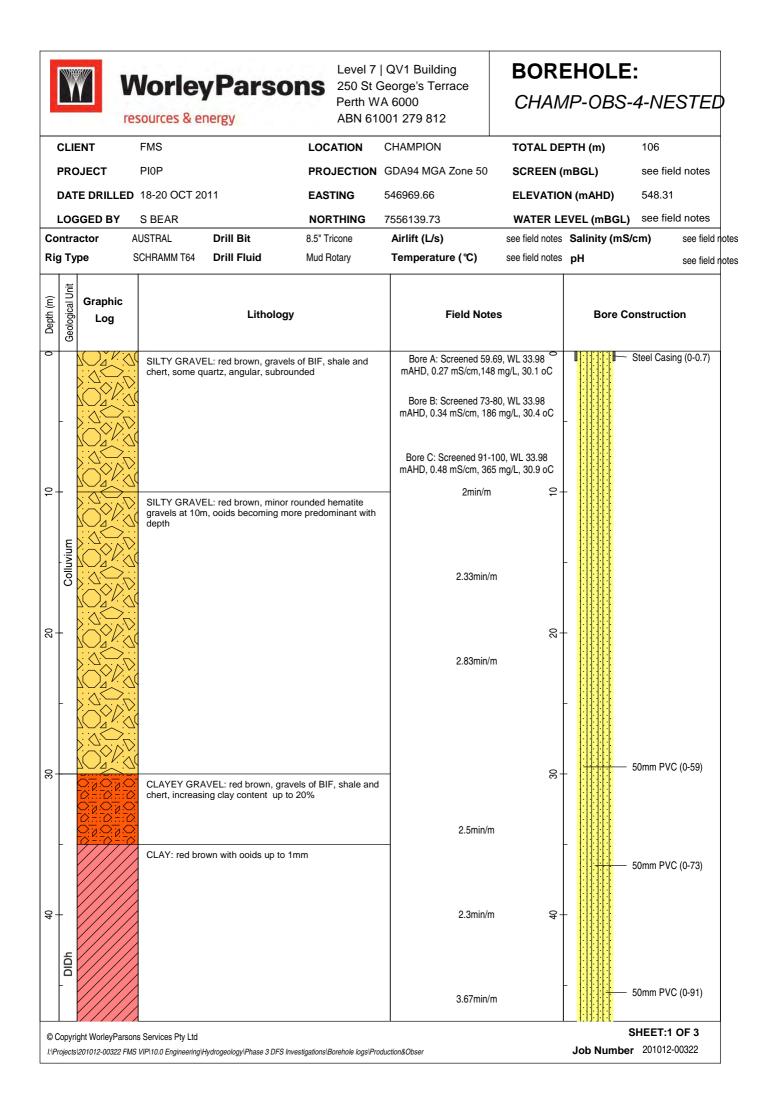

	W		Norle esources & e	y Parso	ns	250 St G Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOLE A OBS 3		
0	CLI	ENT	FMS		LOCA	TION	DELTA	TOTAL DE	EPTH (m)	106	
F	PRO	DJECT	FLINDERS P	210P	PROJ	ECTION	DELTA OBS 3	SCREEN ((mBGL)	40-106	6
0	DAT) 29-31 AUG 2	011	EASTI	NG S	551411.90	ELEVATIO	ON (mAHD)	540.82	2
L	LOC	GED BY	S BEAR		NORT	HING	7553238.58	WATER L	EVEL (mBGL)	38.85	
Co	ntra	actor	AUSTRAL	Drill Bit	5.5"		Airlift (L/s)	7	Salinity (mS/	cm)	0.40
Rig	ј Ту	/pe	SCHRAMM T64	Drill Fluid	AirCore/	RC Hammer	Temperature (℃)	30.2	рН		8.2
nepin (m)	Geological Unit	Graphic Log		Lithology	1		Field No	tes	Bore Co	nstructi	on
			CLAY: sandy mottling	, cemented nodules of	f clay with g	reen	0.41mS 0.20ppt pl >7L/s				
2-			CLAY: yellow	brown and green gre 	y mottling w	rith		0			
	-		GRAVEL: ligh	low brown, fine graine nt red brown, minor cla poorly to moderately so	ay 5%, roun	ded to	0.41mS 0.20ppt pl >7L/s	н8.32 29.5°С			
			<u>Y</u>	own, sandy, fragments		mm					
ļ	BIF		CID and BIF Becoming ye chert at 104m	SAND: brown, medium >10mm, subangular to llow brown with cemer n bttled white with angula	o subrounde nted clay, B	ed IF and	0.41mS 0.20ppt pl >7L/s				
			BIF: BIF								

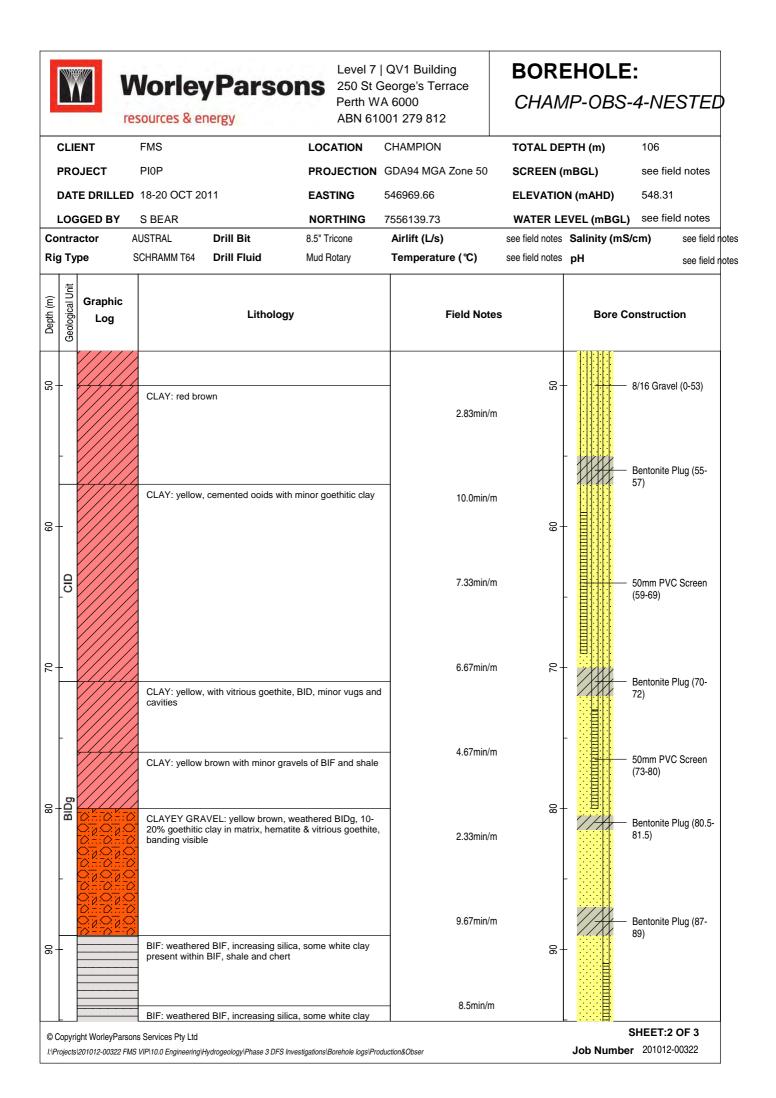
	Vorley Parso	Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOLE: A OBS 2
CLIENT	FMS	LOCATION	DELTA	TOTAL DE	PTH (m) 101
PROJECT	FLINDERS PI0P	PROJECTION (GDA94 MGA Zone 50	SCREEN (mBGL) 41-101
DATE DRILLED	27-29 AUG 2011	EASTING	551237.26	ELEVATIO	N (mAHD) 543.24
LOGGED BY	S BEAR		7552861.77		EVEL (mBGL) 40.61
	AUSTRAL Drill Bit SCHRAMM T64 Drill Fluid	5.5" AirCore/RC Hammer	Airlift (L/s) Temperature (℃)	7 30.4	Salinity (mS/cm) 0.44 pH 8.25
Geological Unit Geological Unit Fog	Litholog		Field Note	95	Bore Construction
	GRAVEL: red brown, fine to coars sorted, angular to subangular, clay CLAYEY GRAVEL: red brown, fine poorly sorted, angular to subround 20% Becomes gravelly clay/silt at 12m Gravels finer at 14m, 1-2mm diam subrounded Larger gravels up to 25mm from 1 Becomes clayey/silty gravel at 18r diameter in clay matrix 30-40%, su subrounded	y matrix 5%, dry, loose e to coarse grained, led, clay approximately eter and subangular to 5m n, gravels 2-20mm	RC hamm		Steel Casing (0-2)
20 + Alluvium (2000000000000000000000000000000000000			6.15min/r changed to air core at 1		- 8/16 Gravel (0-22) - 50mm PVC (0-41)
	GRAVELLY CLAY: red brown, sub fine grained 1-5mm, pisoliths at 26 GRAVELLY CLAY: red brown, sub	orounded to rounded,	- 8.33min/r	n	•] •]
	fine grained 1-5mm, pisoliths at 26 From 29m dark red brown, fine gra pisoliths, rounded, some larger gra 10mm diameter Pisoliths become larger and more >5mm diameter	ained gravels, 1-2mm avels of BIF up to	11.67min/i	m 8-	
9+	GRAVELLY CLAY: dark red brown subangular to subrounded, coarse diameter CLAYEY SILT: red brown, moist, o pisoliths	grained up to 50mm	water added a 3.33min/r	-	
© Copyright WorleyParso	GRAVELLY CLAY: red brown, pise hard nodules of clay at 50m	oliths present	-		SHEET:1 OF 3

	Y		Vorley Par sources & energy	sons	250 St Ge Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOLE A OBS 2		
(CLIE	ENT	FMS	LOC	ATION [DELTA	TOTAL DE	EPTH (m)	101	
I	PRO	JECT	FLINDERS PI0P	PRO	JECTION	GDA94 MGA Zone 50	SCREEN ((mBGL)	41-101	
I	DAT	E DRILLED	27-29 AUG 2011	EAST	FING 5	551237.26	ELEVATIO	ON (mAHD)	543.24	
I	LOG	GED BY	S BEAR	NOR	THING 7	7552861.77	WATER L	EVEL (mBGL)	40.61	
Co	ntra	ictor	AUSTRAL Drill Bit	5.5"		Airlift (L/s)	7	Salinity (mS	/cm)	0.44
Riç	ј Ту	pe	SCHRAMM T64 Drill Fluid	AirCore	e/RC Hammer	Temperature (℃)	30.4	рН		8.25
Depth (m)	Geological Unit	Graphic Log	Lit	thology		Field Note	es	Bore C	onstructi	on
09	_					tried airlift at 48m - no y	20			
00	CIa		CLAY: red brown, minor pis From 60m yellow brown wit gravels >50mm diameter, c SANDY CLAY: yellow brow weathered From 63m fine to coarse gr	th pisoliths, stiff, m consolidated in place n, cemented in zo ained, yellow brow	ninor ces ones, vuggy,	0.46mS 0.22ppt pHł 2.5min/m 1	3.09 28.7°C _		Collapse (2	22-101
	-		consolidated in places, clay SANDY GRAVEL: dark bro cemented fragments, vitrec fine grained	wn grey, porous, v		0.45mS 0.22ppt pHa 9.0min/m 2.				
			CLAYEY SAND: yellow bro cemented zones, vuggy	wn, coarse graine	ed, /					
0/	-	000	CLAY: grey with yellow mo with pisoliths 5-10mm diam			0.46mS 0.23ppt pH 3.33min/m	3.43 30.4°C ^{Q -} 4L/s		50mm PVC (41-103)	Scree
80	-		CLAYEY GRAVEL: yellow lenses between 74 and 75r 75m with ooids and peloids Dark yellow brown clayey s consolidated fragments Increased clay content betw	n, consolidated fra and, coarse graine	agments at	0.46mS 0.23ppt pH8.3	l6 30.3°C 5L/s ⊗ -		. 7	
3	CID		SANDY GRAVEL: dark red consolidated fragments with ooids, hematite rich				ω -			
	_		CLAYEY GRAVEL: brown	white, gravels up t	o 10mm	0.46mS 0.23ppt pHt 5.77min/m				
			SANDY GRAVEL: grey red grained, 2-10mm consolida From 86m light red brown,	ted fragments						
90	-		GRAVELLY SAND: dark re	d brown, coarse g	rained, clay	0.43mS 0.23ppt pH 4.17min/m 6	3.22│31.4°C│ _S - 5.7L/s			
			SANDY GRAVEL: yellow b minor clay 5% From 91m red brown, fine g		um grained,					
			GRAVELLY SAND: dark br ooids, coarse grained, clay		I zones,					


I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Phase 3 DFS Investigations\Borehole logs\Production&Obser

	Y		Worle resources & e	y Parso	ons	250 St C Perth W	QV1 Building George's Terrace A 6000 001 279 812		E HOLE A OBS 2		
-	CLI	ENT	FMS		LOC	ATION	DELTA	TOTAL DE	PTH (m)	101	
		DJECT	FLINDERS P				GDA94 MGA Zone 50			41-101	
	DAT		D 27-29 AUG 2	011	EAS	TING	551237.26	ELEVATIC	ON (mAHD)	543.24	
-		GED BY	S BEAR			THING	7552861.77		EVEL (mBGL)		
		actor	AUSTRAL	Drill Bit	5.5"	(D. 0. 1. 1.	Airlift (L/s)	7	Salinity (mS	/cm)	0.44
Ri	g Ty	pe	SCHRAMM T64	Drill Fluid	AirCor	e/RC Hamme	er Temperature (℃)	30.4	рН		8.25
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Field Not		Bore C	onstructic	on
			<u> </u>				0.45mS 0.22ppt pH 2.5min/m 6				
100			some larger fi	VEL: yellow brown, fii ragments >10mm rk red brown, clay 5-1							
-	BIF		BIF: fresh, an	gular			0.47mS 0.23ppt pH 2min/m 6.	l8.35 30.2°C — .7L/s	<u>X</u> EX	Collapse (14	01-103)


CLIENT PROJECT		ABN 610	6000 01 279 812	DELT	A-OBS-	1
PROJECT	FMS		DELTA	TOTAL DE	PTH (m)	95
	PIOP	PROJECTION (GDA94 MGA Zone 50	SCREEN (mBGL)	44-95
DATE DRILLE	D 25-27 AUG 2011	EASTING	550922.65	ELEVATIO	ON (mAHD)	548.40
LOGGED BY	S BEAR	NORTHING	7552536.89	WATER LI	EVEL (mBGL) 45.27
Contractor	AUSTRAL Drill Bit	5.5"	Airlift (L/s)	5	Salinity (mS	S/cm) 0.41
Rig Type	SCHRAMM T64 Drill Fluid	AirCore/RC Hammer	Temperature (℃)	29.6	рН	7.91
Graphic Geological Unit Log	Litholog	ЭУ	Field Not	es	Bore C	Construction
	GRAVELLY CLAY: red brown, pro mm diameter, 40% gravel, 60% c 20% gravels/pisoliths, 80% clay a Clasts of yellow brown clay at 58r Cemented pisoliths within deposit	lay t 54m n	tried airlift at 54m - water/yie	ld		
	CLAYEY SAND: dark grey brown pisoliths	, contains cemented	0.42mS 0.21ppt pH 1.4L/s 0.42mS 0.21ppt pH8.0	09-		
	SANDY GRAVEL: dark grey brow goethite fragments >60mm, some gravel is predominantly fine grain	vuggy/brecciated,	0.42mS 0.21ppt pH 2.86L/s			 8/16 Gravel (40-93 50mm PVC Scree (44-95)
Clay	SANDY CLAY: yellow brown, goe cemented clay and vitreous goeth GRAVELLY CLAY: yellow brown, CLAYEY GRAVEL: yellow brown, becoming a gravelly clay at 77-78	goethite rich , clay 20-30%	0.42mS 0.21ppt pH 3.3L/s	8.04 30.7°C		
	sandy gravel at 78-79m red clayey gravel at 79-80m GRAVELLY CLAY: red yellow bro		0.44mS 0.21ppt pH8.8	- ⊛ 30 30.8° C 4L/s		
	CLAYEY GRAVEL: red brown, 20 cemented clay and cemented ooi fossilised wood. Increasing clay at 85-86m to 50%	0mm diameter. % clay, containing ds, peloids and	0.41mS 0.21ppt pH8.1			
	SANDY GRAVEL: brown, fine to o contains cemented ooids and pelo GRAVELLY CLAY: yellow brown, chert and BIF. BIF: fresh, angular	oids/fossilised wood.	0.42mS 0.21ppt pH8.0	중 - 09 30.7°C 4L/s		- Collapse (93-95)

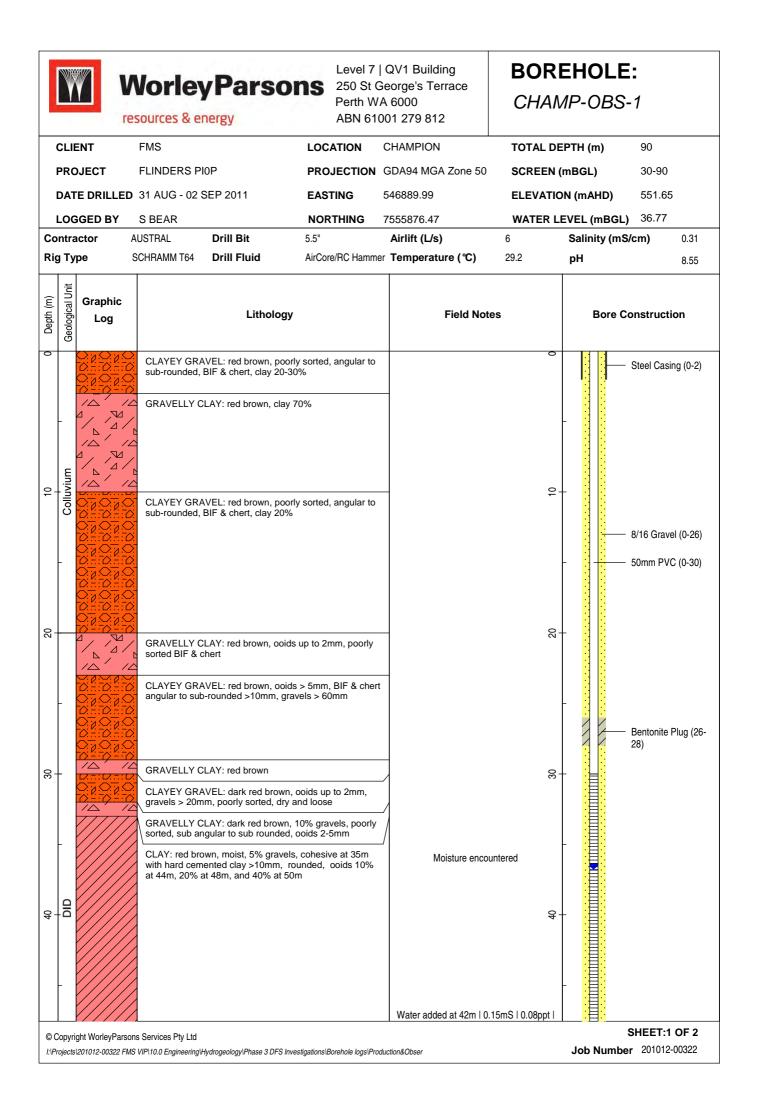

	Worley resources & er	Parson	S 250 St G Perth WA	QV1 Building eorge's Terrace A 6000 01 279 812		EHOLE: TA-OBS-1	
CLIENT	FMS		LOCATION	DELTA	TOTAL D	EPTH (m)	95
PROJECT	PIOP		PROJECTION	GDA94 MGA Zone 50	SCREEN	(mBGL)	44-95
DATE DRILLE	D 25-27 AUG 20)11	EASTING	550922.65	ELEVATI	ON (mAHD)	548.40
LOGGED BY	S BEAR		NORTHING	7552536.89	WATER I	LEVEL (mBGL)	45.27
ontractor	AUSTRAL	Drill Bit	5.5"	Airlift (L/s)	5	Salinity (mS/o	cm) 0.41
ід Туре	SCHRAMM T64	Drill Fluid	AirCore/RC Hammer	Temperature (°C)	29.6	рН	7.91
Geological Unit Geological Unit Fog		Lithology		Field Note	25	Bore Co	nstruction

	Ŵ		Vorley sources & er	/Parso	ons	250 St G Perth W	QV1 Building George's Terra A 6000 001 279 812			EHOL //P-PR		
C	LIE	INT	FMS		LOC	ATION	CHAMPION		TOTAL DI	EPTH (m)	110	
F	RO	JECT	PIOP		PRO	JECTION	GDA94 MGA Z	Zone 50	SCREEN	(mBGL)	59.19-99.9	
0	DAT	E DRILLED	12-18 NOV 20	011	EAS	TING	546976.97		ELEVATIO	ON (mAHD)	548.51	
L	.OG	GED BY	R BAIRD		NOF	RTHING	7556127.72		WATER L	EVEL (mBC	GL) 33.63	
				Drill Bit		' Tricone	Airlift (L/s)	(° C)	22.5	Salinity (r		
кıy	Ту	pe o	CHRAMM T64	Drill Fluid	Mud F	notary	Temperature	*(C)	30.0	рН	9.35	5
Depth (m)	Geological Unit	Graphic Log		Litholog	y		F	ield Note	es	Bore	e Construction	
- 20	-		Clay: red, med of BIF and che	ium to high plasticity rt gravels	ν, sticky, n	ninor lenses		5min/m	20	-	Bentonite Plug (5 54)	52-
- 00	CID		abundant pisol sorted, minor c CLAYEY GRA	VEL: red brown yelk liths, gravels up to 1 cementation VEL: yellow light gre nm diameter, low pla	Omm diam	of BIF &	-	5min/m 5.83min/r	ල . n			
0, -	O							on screen m top of so 5.83min/r				
-	_		CLAYEY GRA	VEL: increase in ooi	ds and pe	loids in						
-	BID		hematite weath	VEL: yellow brown r nering, crystalline BI ids or peloids in stru BID	F, minor v	ugs &		4.17min/r	n			
80	BIDg			on formation altered ers of BIF and yellow porous					8.		 8/16 Gravel (54- 99.9) 200mm PVC Scr (59.19-99.9) 	
		· <u></u> · <u>-</u>						4.17min/r	n			
-	BIDh			matite rich, weakly to ating hematite bands		ely banded	Very hard at 8	34m; BIF s delay	ampling ~30min			
- 6 -	BIDg			matite rich, weakly to ating goethite bands		ely banded		11.67min/	m 6:			
			BIF: light grey, light grey to gro	weathered, chert, s ey clay	hale with t	thin bands of		7.5min/n	1			
			s Services Pty Ltd VIP\10.0 Engineering\H	lydrogeology\Phase 3 DFS Ir	vestigations\E	Borehole logs\Proc	luction&Obser			Job Num	SHEET:2 OF 3 ber 201012-00322	

	W		Norle	Parso	Level 7 250 St (QV1 Building George's Terrace	BOR	EHOLE:	
			esources & e		Perth W	A 6000 001 279 812	CHAN	/P-PROD-01	
	CLII	ENT	FMS		LOCATION	CHAMPION	TOTAL DE	EPTH (m) 110	
	PRC	JECT	PI0P		PROJECTION	GDA94 MGA Zone 50	SCREEN ((mBGL) 59.19-99.9	
	DAT	E DRILLEI) 12-18 NOV 2	011	EASTING	546976.97	ELEVATIO	DN (mAHD) 548.51	
	LOG	GED BY	R BAIRD		NORTHING	7556127.72	WATER L	EVEL (mBGL) 33.63	
Co	ontra	actor	AUSTRAL	Drill Bit	12.25" Tricone	Airlift (L/s)	22.5	Salinity (mS/cm) 0.3	31
Ri	д Ту	ре	SCHRAMM T64	Drill Fluid	Mud Rotary	Temperature (℃)	30.0	pH 9.3	35
Depth (m)	Geological Unit	Graphic Log		Litholog	y	Field Not	es	Bore Construction	
100	BIF					5.83min/	m 00-	Collapse (100.5	5-108)
	-					Collapsed back to 10			·
110			BIF: weakly a	ltered/mineralised to	fresh BIF, chert and	Reamed to 108m ve penetration 1	ory hard, slow 0min/m or contract of the second sec	Collapse (108-1	10)
1			ons Services Pty Ltd IS VIP\10.0 Engineering\	Hydrogeology\Phase 3 DFS Ir	vestigations\Borehole logs\Pro	duction&Obser		SHEET:3 OF Job Number 201012-0032	

		Vorley sources & er	y Parson nergy	ns 250 S Perth	7 QV1 Building St George's Terrace WA 6000 61001 279 812		E HOLE 1P-0BS-	: 4-NESTED
CLIE	NT	FMS		LOCATION	CHAMPION	TOTAL DE	PTH (m)	106
PRO	JECT	PI0P		PROJECTIC	ON GDA94 MGA Zone 50	SCREEN (mBGL)	see field notes
DATE	E DRILLED	18-20 OCT 20	011	EASTING	546969.66	ELEVATIO	N (mAHD)	548.31
LOG	GED BY	S BEAR		NORTHING	7556139.73	WATER LI	EVEL (mBGL)	see field notes
Contrac	ctor /	AUSTRAL	Drill Bit	8.5" Tricone	Airlift (L/s)	see field notes	Salinity (mS/	cm) see field not
Rig Typ	be a	SCHRAMM T64	Drill Fluid	Mud Rotary	Temperature (℃)	see field notes	рН	see field not
Depth (m) Geological Unit	Graphic Log		Lithology		Field No	tes	Bore Co	Instruction
		present within clay 20%	BIF, shale and chert, r	ed/yellow brown				50mm PVC Screen
BF		-						(91-100)
	· · · · · · · · ·	BIF: light grey	, weathered BIF, clay 3	0%		-00		
<u></u>		BIF: light grey	, weathered BIF, clay 2	0%		5-		
		-						Collapse (100-106)
		-						

	W		Vorley esources & er	/Parso	ons	250 St Ge Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOL //P-OB	
	CLII	ENT	FMS		LOC	ATION (CHAMPION	TOTAL DE	EPTH (m)	84.5
	PRC	DJECT	FLINDERS PI	0P	PRO	JECTION	GDA94 MGA Zone 50	SCREEN	(mBGL)	56.5-84.5
	DAT		5 SEP 2011		EAS	FING 5	547145.74	ELEVATIO	ON (mAHD)	543.86
	LOG	GED BY	S BEAR		NOR	THING 7	7556023.68	WATER L	EVEL (mBG	L) 28.95
			AUSTRAL	Drill Bit	5.5"		Airlift (L/s)	5	Salinity (n	
RI	д Ту 	/pe	SCHRAMM T64	Drill Fluid	AirCor	e/RC Hammer	Temperature (°C)	29.3	рН	8.06
Depth (m)	Geological Unit	Graphic Log		Lithology	y		Field Not	es	Bore	Construction
10	-		and Chert, and	EL: red brown, poorly gular to subrounded, e rounded with depth	silt 20 - 30		RC Hammer to 24n	on 7.5min/m		— Steel Casing (0-2)
	Alluvium						1.5min/r 1.17min/			
20			GRAVELLY C	LAY: dark red brown	with grave	als of BIF.	1.67min/	۳.		
			subrounded to	rounded, ooids and noist and cohesive						— 8/16 Gravel (0-54)
			CLAY: dark re	d brown		/ 				- 50mm PVC (0-56.5)
30	╞		GRAVELLY C gravels of BIF,	LAY: red brown, pisc , subrounded to roun	oliths and o ded, clay a	ooids, 80% /	Moisture encountered, s 1.67min,	/m		
				d brown, cohesive, s , subangular to subrc		soliths and				
40	DID		less ooids at 3 subrounded B	d brown, rich in pisol 8m with some grave IF and Chert liths increasing at 40	Is 10% of a	angular to	Wet 0.83m	iin/m 9 -		
			GRAVELLY C	LAY: orange red bro	wn, ooids, bunded. dr	pisoliths,	- Moist 0.66min	/m 0L/s		
	-		CLAY: dark regravels, cohes	d brown, pisoliths, m sive	oist with m	ninor	-			 Collapse (56-85)
61	<u>ا</u>			d opaline silica clay a	ai 48m gre		1			SHEET:1 OF 2
			ns Services Pty Ltd S VIP\10.0 Engineering\H	lydrogeology\Phase 3 DFS In	vestigations\B	orehole logs\Produ	ction&Obser		Job Num	ber 201012-00322


	W		VorleyPars	ons	250 St G	QV1 Building eorge's Terrace			
ľ		res	sources & energy		Perth WA ABN 610	01 279 812	CHAN	/P-OB	5-3
	CLI	ENT	FMS	LOC		CHAMPION	TOTAL DE	EPTH (m)	84.5
	PRC	JECT	FLINDERS PIOP	PRO	JECTION	GDA94 MGA Zone 50	SCREEN (mBGL)	56.5-84.5
	DAT	E DRILLED	5 SEP 2011	EAS	TING	547145.74	ELEVATIO	N (mAHD)	543.86
	LOC	GED BY	S BEAR	NOF	RTHING	7556023.68	WATER L	EVEL (mBG	L) 28.95
Co	ontra	actor A	USTRAL Drill Bit	5.5"		Airlift (L/s)	5	Salinity (m	n S/cm) 0.30
Ri	gТy	r pe S	CHRAMM T64 Drill Fluid	AirCo	re/RC Hammer	Temperature (°C)	29.3	рН	8.06
Depth (m)	Geological Unit	Graphic Log	Litholo			Field Not	es	Bore	Construction
20			hard nodules of red brown clay f diameter nodules of hard yellow brown cla		ômm	Dry to Moist at 45m 1 2.5min/m	- 20		Destesite Dive (54
60			GOETHITE MATRIX: yellow bro in vitreous goethite matrix CLAY: yellow brown, cemented goethite in clay matrix	with ooids &	vitreous	- Foam added at 54m	ı∣8.33min/m &:		 Bentonite Plug (54- 56)
20	CID		CLAY: white yellow, cemented h 5% CLAY: yellow brown, weathered vugs/cavities but still containing clay cemented ooids, hematite, goeth brown vugs/cavities increasing with der very dense and hard, red brown, and woody fragments at 66m	/altered with cemented h hitic clay at 6	some ard white 64m yellow	0.07mS 0.14ppt pH 21.67min/m (8.99 31.1°C 0.06L/s ₽-		
2			CLAY: weathered shale chert, yu becomes white yellow brown at BIF: red gravels yellow brown from 74m weathered BIF in clay matrix from brown.	71m		0.11mS 0.22ppt pH 3.33min/m /	8.09 29.4°C		— 50mm PVC Screen (56.5-84.5)
80	BIF		BIF: grey brown, weathered			0.14mS 0.28ppt pH 1.00min/m :			
						0.15mS 0.24ppt pH 3.33min/m 4			

© Copyright WorleyParsons Services Pty Ltd I:\Projects\201012-00322 FMS VIP\10.0 Engineering\Hydrogeology\Phase 3 DFS Investigations\Borehole logs\Production&Obser

W		Norle esources & e		ons	250 St C Perth W	QV1 Building George's Terrace A 6000 001 279 812		EHOL MP-OB	
CL	IENT	FMS		LOC	ATION	CHAMPION	TOTAL DI	EPTH (m)	96
PR	OJECT	FLINDERS F	PIOP	PRO	JECTION	GDA94 MGA Zone 50	SCREEN	(mBGL)	30-96
DA	TE DRILLEI	3 -5 SEP 201	1	EAS	TING	546965.25	ELEVATIO	ON (mAHD)	548.05
LO	GGED BY	S BEAR		NOR	THING	7556117.32	WATER L	EVEL (mB	GL) 33.32
	actor	AUSTRAL	Drill Bit	5.5"		Airlift (L/s)	7	Salinity (
Rig T	уре	SCHRAMM T64	Drill Fluid	543.24	ł	Temperature (℃)	29.0	рН	8.22
Geological Unit	Graphic Log		Litholog	IJ		Field Not		Bore	e Construction
		gravels of BI	AVEL: red brown, 30 [–] , chert, quartz, shale minor ooids and pelo	e, angular t			0		— Steel Casing (0-2
			CLAY: red brown, gra gular to subrounded	avel up to 2	:0mm				
Colluvium		BIF and cher	AVEL: red brown, cla t, angular to subroun eter, some rounded l	ded, poorly		Air Core RC 4.	17min/m		
-						4.17min/i			— 8/16 Gravel (0-26 — 50mm PVC (0-30
-		gravels angu	AVEL: red brown witi lar to subrounded, po rown at 24m, clay 10 Dh at 29m	orly sorted	l, colour	4.17min/i	m 50	-	
_						5min/m		-	Destesite Dire (0
-		CLAY: red br 20% >50mm friable clay gr becoming mc		gravels ap d semi cerr	proximately nented	— 2.5min/n	n R		— Bentonite Plug (2 28)
DIDh		CLAY: dark r	ed brown, cohesive, er, rounded gravels o		t 38m 1-	✓ Water added at 36n	n 1.2min/m		
+			AVEL: red borwn, oo Il rounded and sorted				40		
		CLAY: dark r	ed brown			Foam added at 41m	1.83min/m		
-		gravels and of becoming mo	CLAY: red brown, 5m clay bre cemented betwee ls and pisoliths			-			
		ons Services Pty Ltd	\Hydrogeology\Phase 3 DFS	Investigations\E	Borehole logs\Prod	duction&Obser		Job Nun	SHEET:1 OF 3 nber 201012-00322

		Vorley Parso	DNS 250 St Ge Perth WA	QV1 Building eorge's Terrace 6000 01 279 812		EHOLE: //P-OBS-2	
CI	IENT	FMS		CHAMPION	TOTAL DE	EPTH (m) 96	
PF	ROJECT	FLINDERS PI0P	PROJECTION (GDA94 MGA Zone 50	SCREEN ((mBGL) 30-96	
D	TE DRILLED	3-5 SEP 2011	EASTING 5	546965.25	ELEVATIO	DN (mAHD) 548.05	
LC	GGED BY	S BEAR	NORTHING 7	7556117.32	WATER L	EVEL (mBGL) 33.32	
		AUSTRAL Drill Bit	5.5"	Airlift (L/s)	7	Salinity (mS/cm)	0.32
Rig	Гуре	SCHRAMM T64 Drill Fluid	543.24	Temperature (°C)	29.0	pH	8.22
	Graphic Log	Litholog	ау	Field Not	es	Bore Constructi	on
е-		fragments of cemented CID		1.83min/i 0.16mS 0.08ppt pH 1min/m 0.0	යි - 8.04 30.2°C		
		CLAY: red brown with hard cemer brown green and grey clay GOETHITE MATRIX: dark grey w brown mottling, cemented ooids, i gothite matrix, very dense, hard a grained minor vugs and pore spaces in fra becoming coarser grained at 62m woody fragments with nodules of	rith red and yellow rounded hematite in ind non porous, fine agments at 60m i, pisoliths >5mm and yellow brown clay	Air core sample at 57 0.11ppt pH8.19 31.0° 0.9L/s	7m 0.23mS	- 8/16 Grave	,
2-		CLAY: white with yellow and red r GOETHITE MATRIX: cemented c and hematite in vitreous goethite cavities present, dark grey mottler gravels of angular hematite in ma conglomerate	poids, woody fragments matrix, vugs and d yellow brown and red	Air core sample at 64 0.12ppt pH8.22 29.5 1.7L/s Air core samples at 66m 0.11ppt pH8.04 29.8	°C 8.33min/m ♀ - & 71m 0.23mS		
		BID: metallic grey with yellow brow vitreous goethite, hard with minor cavities, weathering quartz in matrix at 74m becoming more weathered at 76n CLAY: yellow brown, minor BID g	n	1.7L/s Air core sample at 72	2m 0.32mS		
8-	· · · · · · · · ·	BID: grey brown, weathered with hematite, chert in yellow brown cl	abundant quartz, ayey sand matrix	0.16ppt pH8.07 29.6 5.0L/s	°C 2.67min/m ⊛ -		
	5	BIF: grey, weathered with shale &	¢ cnert	0.30mS 0.15ppt pH 1min/m 4.0			
3-		CLAY: reddish yellow brown, wea of shale and chert weathered BIF to clay with gravel clay	s, can see bedding in	- 0.44mS 0.22ppt pH 0.83min/m 4	8.09 21.4°C _⊜ - 4.0L/s		
		BIF: grey, weathered with some c	lay in matrix ~10%	1min/m 0.31mS 0.15ppt pH			93-96)
	yright WorleyParsor			•		SHEET:2	05.2

	Norley esources & e	Parso	ons	250 St G Perth WA	QV1 Building George's Terrace A 6000 001 279 812		REHOLE	
CLIENT	FMS		LOC	ATION	CHAMPION	TOTAL	DEPTH (m)	96
PROJECT	FLINDERS P	0P	PRO	JECTION	GDA94 MGA Zone 50	SCREE	N (mBGL)	30-96
DATE DRILLE	D 3-5 SEP 2011		EAS ⁻	ΓING	546965.25	ELEVA	TION (mAHD)	548.05
LOGGED BY	S BEAR				7556117.32		R LEVEL (mBGL)	
ontractor	AUSTRAL	Drill Bit	5.5"		Airlift (L/s)	7	Salinity (mS/	
ід Туре	SCHRAMM T64	Drill Fluid	543.24		Temperature (°C)	29.0	рН	8.22
Graphic Log		Litholog	уy		Field Note	es	Bore Co	onstruction
	BIF: grey, bar	ds of hematite and	chert				<u>X</u> X	

		IorleyP		250 St G Perth WA	QV1 Building eorge's Terrace \ 6000 01 279 812		EHOLE MP-OBS	
CLI	ENT	FMS	LC	OCATION	CHAMPION	TOTAL DE	EPTH (m)	90
PRO	OJECT	FLINDERS PI0P	Pi	ROJECTION	GDA94 MGA Zone 50	SCREEN	(mBGL)	30-90
DA	TE DRILLED	31 AUG - 02 SEP 2	2011 EA	ASTING	546889.99	ELEVATIO	ON (mAHD)	551.65
LOC	GGED BY	S BEAR	N	ORTHING	7555876.47	WATER L	EVEL (mBGL)	36.77
Contra	actor A	USTRAL Dri	I I Bit 5.5		Airlift (L/s)	6	Salinity (mS	/cm) 0.31
Rig Ty	/pe S	CHRAMM T64 Dri	Il Fluid Air	Core/RC Hammer	Temperature (°C)	29.2	рН	8.55
Depth (m) Geological Unit	Graphic Log		Lithology		Field Note	es	Bore C	onstruction
0,-					pH8.52 29.4°C 0.83 0.27mS 0.13ppt pH	යි - 7.72 28.3°C		
		ooids 2mm, 5%, sub CLAYEY GRAVEL: 5mm, cemented pise goethite	orown, well sorted, BIF -rounded to rounded dark red brown, clay oliths and ooids at 57r	15%, ooids 2- n with vitrious	0.66min/m 1	.8L/s		8/16 Gravel (29-90
-		mottling, cemented l appearing breciatted	(: dark grey with red y by a matrix of vitrious d with vugs and small 73m with woody fragn ravel at 77m	goethite cavities	0.27mS 0.13ppt pH 4.17min/m 2 0.26mS 0.13ppt pH 3.33min/m 1	7.97 29.5°C		50mm PVC Screer (30-90)
clo CID					Foam added at 67m 0. pH8.20 29.8°C 9.17			
80-		CLAY: yellow, brown	1		0.28mS 0.14ppt pH 1.67min/m			
		and cavities increas dark grey red at 84n	n	_	0.29mS 0.14ppt pH 1.17min/m	7.92 30.0°C		
			n yellow mottling, wea ome vugs and cavities ale chert and quartz					

ſ	W		lorle	Parso	ns 250 S	St Geo	V1 Building orge's Terrace		EHOLE:
			sources & e		Perth	WA 6	6000 279 812	HPRC	25359
		INT	FMS		LOCATION	DE	ELTA	DRILLED	DEPTH (m) 28.3
1	PRC	JECT	PIOP		PROJECTIO	DN		SCREEN ((mBGL) 2.30-28.30
1	DAT	E DRILLED	29OCT2011		EASTING	55	2705.171	ELEVATIC	DN (mAHD) 580.805
1	LOG	GED BY			NORTHING	75	51089.499	WATER L	EVEL (mBGL) 23.03
Co	Contractor Drill Bit				5.5"		Airlift (L/s)		Salinity (mS/cm)
Rig	Rig Type AIR CORE RC Drill Fluid				A/W	т	emperature (°C)		рН
Depth (m)	Geological Unit	Graphic Log		Lithology			Field Not	es	Bore Construction
0	ALL		ALL: Recent A	Alluvium			88	8	8/16 Graded Gravel Bentonite Plug 50mm dia. PVC
10	BIDg		BIDg: Beddec	I Iron Deposit - goethite	e dominant			6-	Class 12
20	СГ		CLY: Clay					-0	50mm dia. PVC Class 12 1mm
	BIF		BIF: Banded I	ron Formation					Apeture
	B								
30	_							-30	-
40	-							40	-
	-								-
								-	
50	-							- 20	-
	-								-
60								-09	_
	-								-
20	-							0-	-
									_
8-	-							8-	+
	-								-
06								6-	
6								<u>مَ</u>	
	-								_
100								100	
©C	opyri	ght WorleyParsons	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

	Y		Vorie		DNS 250 St Perth V	7 QV1 Building George's Terrace VA 6000 1001 279 812	BORI HPRC	EHOLE: 25275
	CLI	ENT	FMS		LOCATION	DELTA	DRILLED	DEPTH (m) 64
	PRC	DJECT	PIOP		PROJECTION	ı	SCREEN (mBGL) 39.50-63.50
	DAT	E DRILLED	300CT2011		EASTING	551040.25	ELEVATIC	DN (mAHD) 546.289
	LOG	GED BY			NORTHING	7552890.839	WATER L	EVEL (mBGL) 43.74
		actor		Drill Bit	5.5"	Airlift (L/s)	0.003	Salinity (mS/cm)
Ri	д Ту	pe	AIR CORE RC	Drill Fluid	A/W	Temperature (℃)		pH
	Depth (m) Graphic Log Lithology			ју	Field No		Bore Construction	
10 0	ALL		ALL: Recent			"Development Duration 255ppn	on 10min; TDS- ^O 기" 은 -	-
30 20	DIDh		DIDh: Detrita	l Iron Deposit - hema	tite dominant		- 20	- 8/16 Graded Gravel 50mm dia. PVC Class 12
40	_		BIDh: Bedde	d Iron Deposit - goetł	nite with hematite		-40	- Bentonite Plug
60 50	BIDh						- 20 - 00	8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture
	BIF		BIF: Banded	Iron Formation				Collapsed Native Material
70	-						-10	-
80	+						&-	-
06	+						6-	-
100							100	SHEET:1 OF 1
©	Copyri	ght WorleyParso	ons Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322

	W		Vorley sources & e	y Parso	DNS 250 St 0 Perth W	QV1 Building George's Terrace A 6000 001 279 812	BORI HPRC	E HOLE: 05210	
	CLI	ENT	FMS		LOCATION	DELTA	DRILLED	DEPTH (m) 52	
	PRC	DJECT	PIOP		PROJECTION		SCREEN (mBGL) 40.00-52.00	
	DAT	E DRILLED	30OCT2011		EASTING	551257.286	ELEVATIO	N (mAHD) 549.785	
	LOG	GED BY			NORTHING	7552281.918	WATER LI	EVEL (mBGL) 45.37	
C	Contractor Drill Bit 5.5"				5.5"	Airlift (L/s)	0.01	Salinity (mS/cm)	
Rig Type AIR CORE RC Drill Fluid A/W					A/W	Temperature (℃)		рН	
Depth (m)	G				у		Field Notes Bore Constructi		
10 0	ALL		ALL: Recent /			"Development Duration 231ppn			
	-		DIDh: Detrital	l Iron Deposit - hema	tite dominant			-	
20							-2	8/16 Graded Gravel 50mm dia. PVC Class 12	
30	DIDh						8-	- Bentonite Plug	
40	+						- 40	8/16 Graded Gravel	
50	BIICII		CIDh: Channe	el Iron Deposit - hem	atite dominant	50mm dia. PVC Class 12 1mm Apeture			
	<u>.</u> 8.		BIDh: Beddeo	d Iron Deposit - goeth	nite with hematite			- . E. Abergie	
60	-						- 80	-	
20	-						0-	-	
80	+						8-	-	
06	+						6-	-	
100							100		
©	Copyri	ght WorleyParsor	ns Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322	

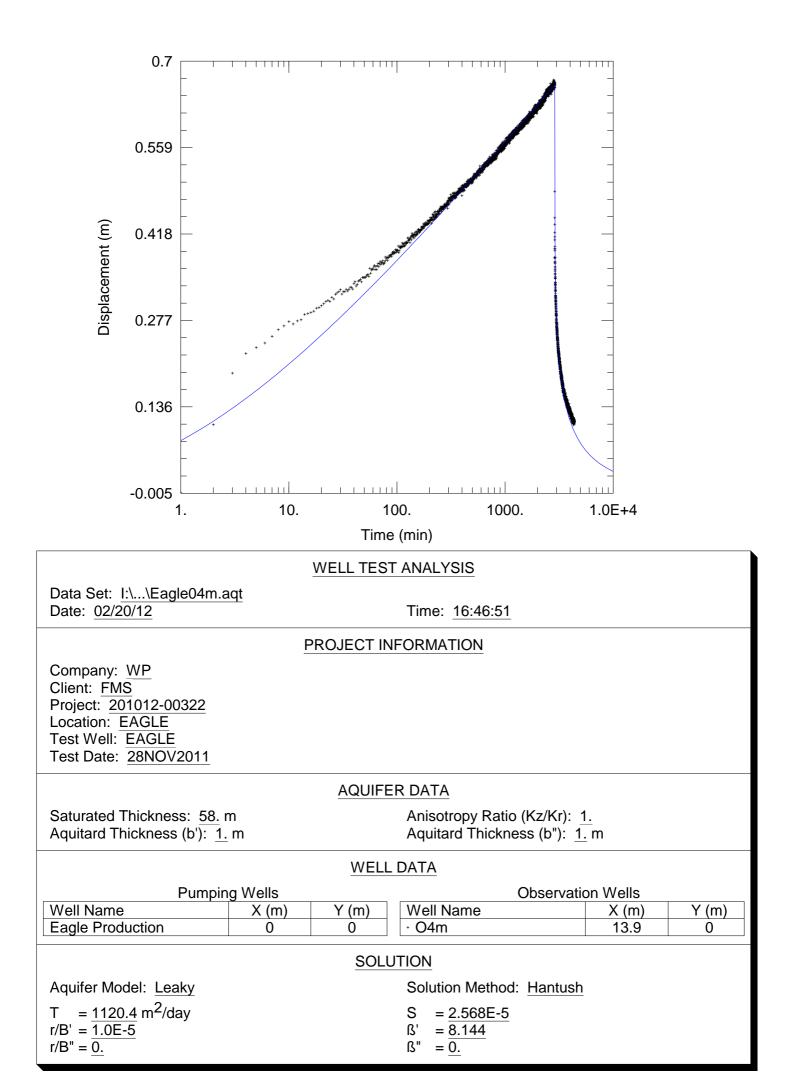
	Worley Dor					Level 7	QV1 Building	BOREHOLE:		
	Worley Parso		115	Perth W	A 6000	HPRC5034				
		re	sources & e	nergy		ABN 61	001 279 812			
	CLII	ENT	FMS		LOC	ATION	DELTA	DRILLED	DEPTH (m) 22	
	PROJECT PIOP			PRO	JECTION		SCREEN ((mBGL) 2.00-21.50		
	DAT	E DRILLED	31OCT2011		EAS	TING	551307.608	ELEVATIO	DN (mAHD) 576.863	
-		GED BY				THING	7550982.172		EVEL (mBGL) 18.68	
	Contractor Drill Bit Rig Type AIR CORE RC Drill Fluid			5.5" A/W		Airlift (L/s) Temperature (℃)	0	Salinity (mS/cm) pH		
_										
Depth (m)	(L) the second s			у		Field No	tes	Bore Construction		
0	DIDh		DIDh: Detrital	Iron Deposit - hemai	tite domina	ant	"Not enough wat	er to airlift"	8/16 Graded Gravel	
	-		BIDg: Bedded	l Iron Deposit - goeth	ite domina	ant			Bentonite Plug 50mm dia. PVC	
₽.	BIDg							6-	Class 12	
	В								8/16 Graded Gravel 50mm dia. PVC	
	BII		BIDh: Bedded	d Iron Deposit - goeth	ite with he	matite	_		Class 12 1mm Apeture	
50	Ш			Iron Formation				- 50	Collapsed Native	
	_								Material	
30	t							90	-	
	-								-	
40								0		
4.								40		
	-								-	
50	Ļ							- 20	-	
	-								-	
09	╞							- 60	-	
	L								_	
70	t							20	F	
	ŀ								-	
6								<u> </u>	_	
80.	T							8-	T	
	╞								-	
06	ļ							6-	-	
	F							-	F	
100	L							100	SHEET:1 OF 1	
©	Copyri	ight WorleyParsor	ns Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322	

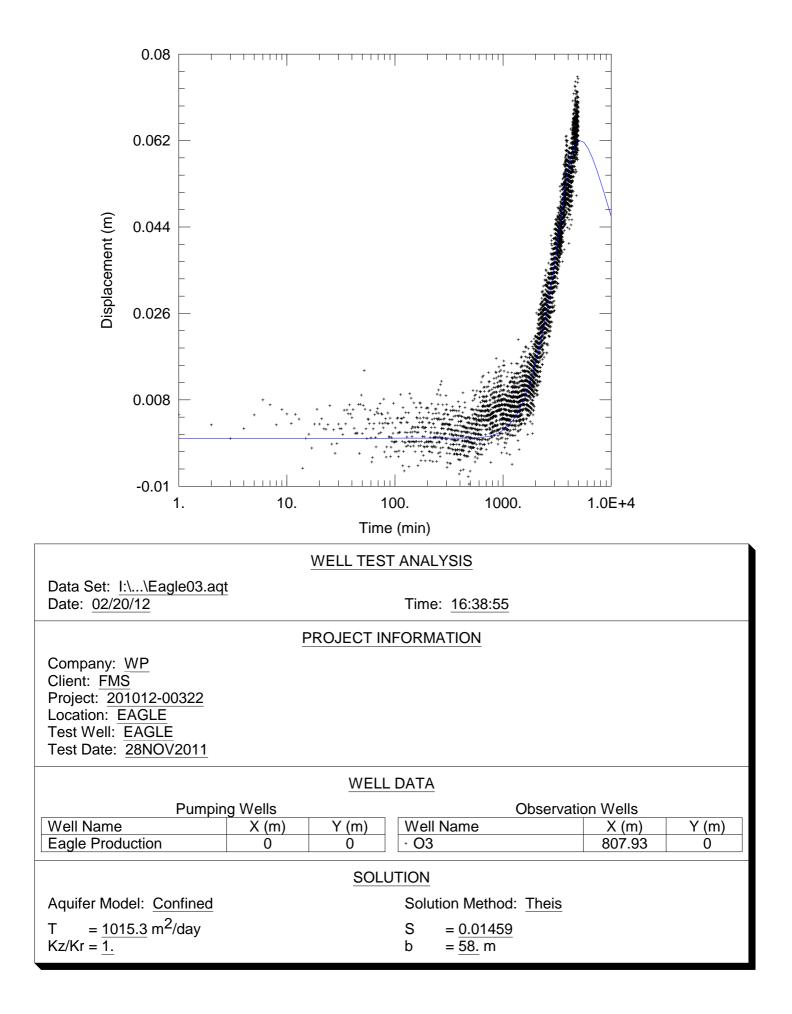
	W		Vorle sources & e		DNS 250 Pert	el 7 QV1 Building St George's Terrace h WA 6000 I 61001 279 812		EHOLE: 04257
	CLI	ENT	FMS		LOCATION	N EAGLE	DRILLED	DEPTH (m) 94
	PRC	DJECT	PIOP		PROJECT	ION	SCREEN	(mBGL) 48.50-93.50
	DAT	E DRILLED	27SEP2011		EASTING	550653.6	ELEVATIO	DN (mAHD) 591.405
	LOC	GED BY			NORTHIN	G 7546813.049	WATER L	EVEL (mBGL) 49.85
Co	Contractor Drill Bit				5.5"	Airlift (L/s)	0.2	Salinity (mS/cm)
Ri	g Ty	′pe /	AIR CORE RC	Drill Fluid	A/W	Temperature (°C)	рН
Depth (m)	Geological Unit	Graphic Log		Litholog	у		Notes	Bore Construction
10	-		ALL: Recent /	Alluvium			ration - 30min; TDS- ^O ppm" ♀ ·	-
20	ALL						20	- - 8/16 Graded Gravel
30	DiDh		DIDh: Detrital	Iron Deposit - hema	tite dominant		е.	- 50mm dia. PVC Class 12
40	_						64.	- 🖌 🗡 Bentonite Plug
20	cibg		CIDg: Channe	el Iron Deposit - goet	hite dominant		50	
09	-		CIDh: Channe	el Iron Deposit - hem	atite dominant		09.	
20	CIDh			•			20	- 8/16 Graded Gravel 50mm dia. PVC Class 12 1mm
80			SHL: Shale BIF: Banded I	Iron Formation			8.	Apeture
06	CH BIF		CHT: Chert				6.	- Collapsed Native
100	-						00	- Conapsed Nauve Material
©	Copyri	ight WorleyParsor	is Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322

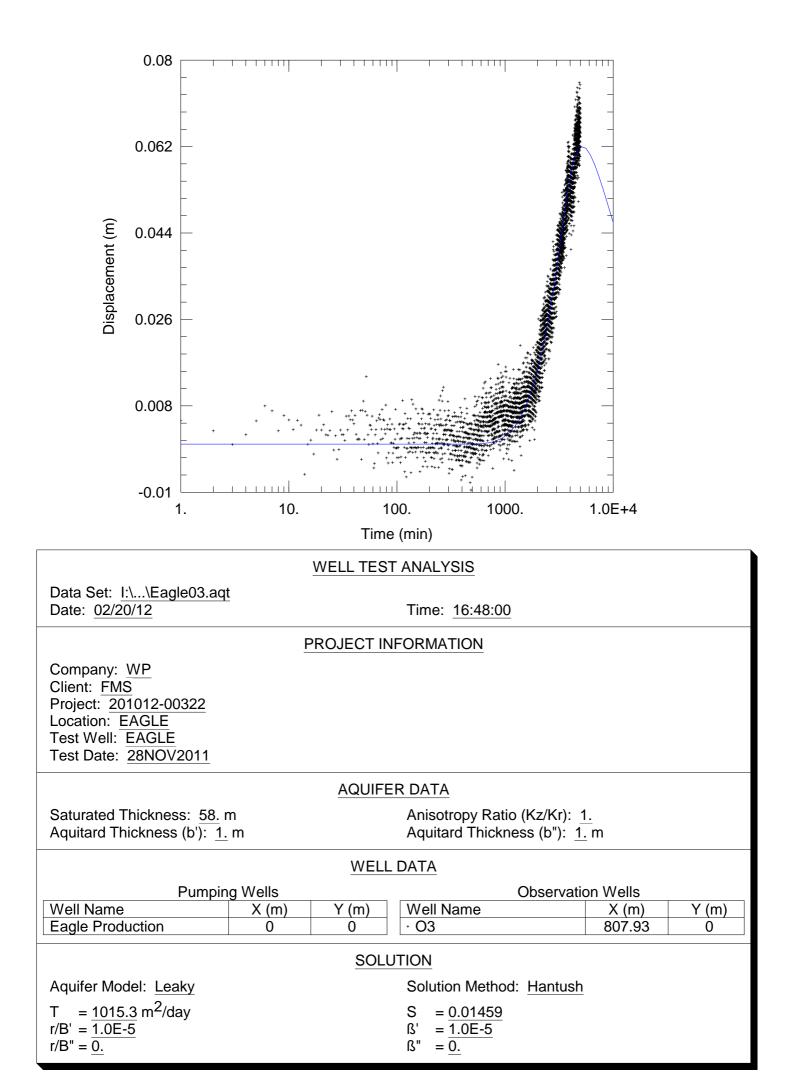
	W		Vorley		Perth W	QV1 Building George's Terrace 'A 6000 001 279 812	BOR HPRC	E HOLE: C4180	
	CLI	ENT	FMS		LOCATION	EAGLE	DRILLED	DEPTH (m) 76	
			PIOP		PROJECTION	-	SCREEN (
					EASTING	549402.006		DN (mAHD) 603.024	
		GED BY			NORTHING	7547290.758		EVEL (mBGL) 59.8	
-		actor		Drill Bit	5.5"	Airlift (L/s)	~0	Salinity (mS/cm)	
Rig	Rig Type AIR CORE RC Drill Fluid A/W			A/W	Temperature (℃)		рН		
Depth (m)	Debth (m) Graphic Log Lithology			/	Field Not	tes	Bore Construction		
20 10 0	ALL		ALL: Recent A	lluvium		"Development Durati airlift; TDS- 14	on - 20min - no ^오 19.0ppm 은 - 운 -	-	
40 30 1	DIDh		DIDh: Detrital	Iron Deposit - hemati	ite dominant		40	- 8/16 Graded Gravel 50mm dia. PVC Class 12	
50	BIDh		BIDh: Bedded	Iron Deposit - goethi	te with hematite	 B−Bentonite Plug			
60	BIRBIC BIF		BIF: Banded I BIDg: Bedded	ron Formation Iron Deposit - goethi	te dominant		09-		
70	BIF CHTB		BIF: Banded I CHT: Chert BIF: Banded I				02	8/16 Graded Gravel 50mm dia. PVC Class 12 1mm Apeture Collapsed Native	
- 80	-						8-	Material	
06	-						6-	-	
100							100		
©C	Copyri	ght WorleyParson	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322	

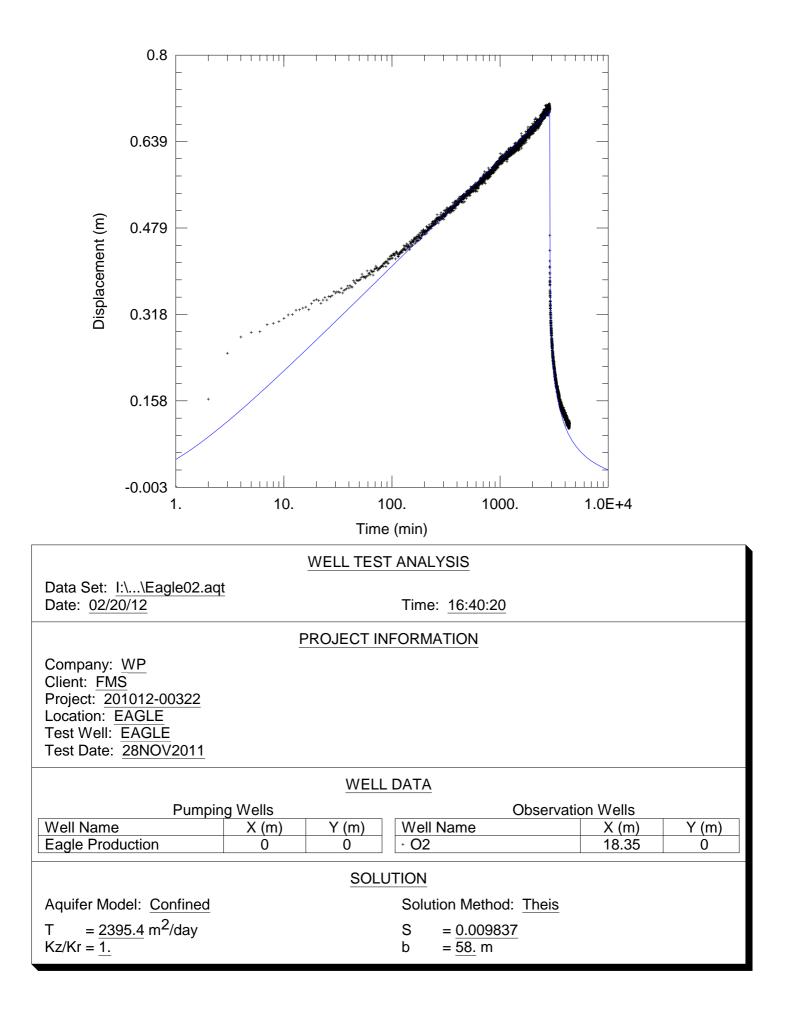
	W		lorlo	yParso	Leve	el 7 C St Ge	V1 Building	BOR	EHOLE:
	<u> </u>	_			Perti	n wa	6000	HPRC	24122
		res	sources & e	nergy	ABN	16100	1 279 812		
'	CLIENT FMS				LOCATION	N E	AGLE	DRILLED	DEPTH (m) 38
	PRC	JECT	PIOP		PROJECTI	ION		SCREEN ((mBGL) 1.00-37.00
	DAT	E DRILLED	01NOV2011		EASTING	54	44946.124	ELEVATIO	DN (mAHD) 673.697
		GED BY			NORTHING		549663.393	WATER L	EVEL (mBGL) 34.3
	Contractor Drill Bit Rig Type AIR CORE RC Drill Fluid			5.5" A/W		Airlift (L/s) Temperature (℃)		Salinity (mS/cm)	
					AVW				pH
Depth (m)	(L) High Graphic Log Lithology			у		Field Not	tes	Bore Construction	
0	DII		DIDh: Detrital	l Iron Deposit - hemat	ite dominant		"Bailed 3	BL" O	8/16 Graded Gravel
	-		BIDg: Beddeo	d Iron Deposit - goeth	ite dominant				50mm dia. PVC Class 12
9-	L							6-	Bentonite Plug
ľ									
	BIDg								
20								-0	8/16 Graded Gravel
									50mm dia. PVC Class 12 1mm
	-								- Apeture
90-	L		SHL: Shale					-30	
	DCBIF SHL								
	DGB	38388888	\	Iron Formation					Collapsed Native
40-	$\frac{1}{2}$		DOL: Dolerite)		/		40	Material
									_
20	F							20	-
	-								-
09-	+							09	+
	$\left - \right $								-
20								0-	
14								Σ.	
	$\left - \right $								-
8-								8-	-
Ĩ								3	
	$\left \right $								-
6-	$\left \right $							06-	-
_								_	+
100								100	SHEET:1 OF 1
00	Copyri	ght WorleyParson	s Services Pty Ltd						SHEET:1 OF 1 Job Number 201012-00322

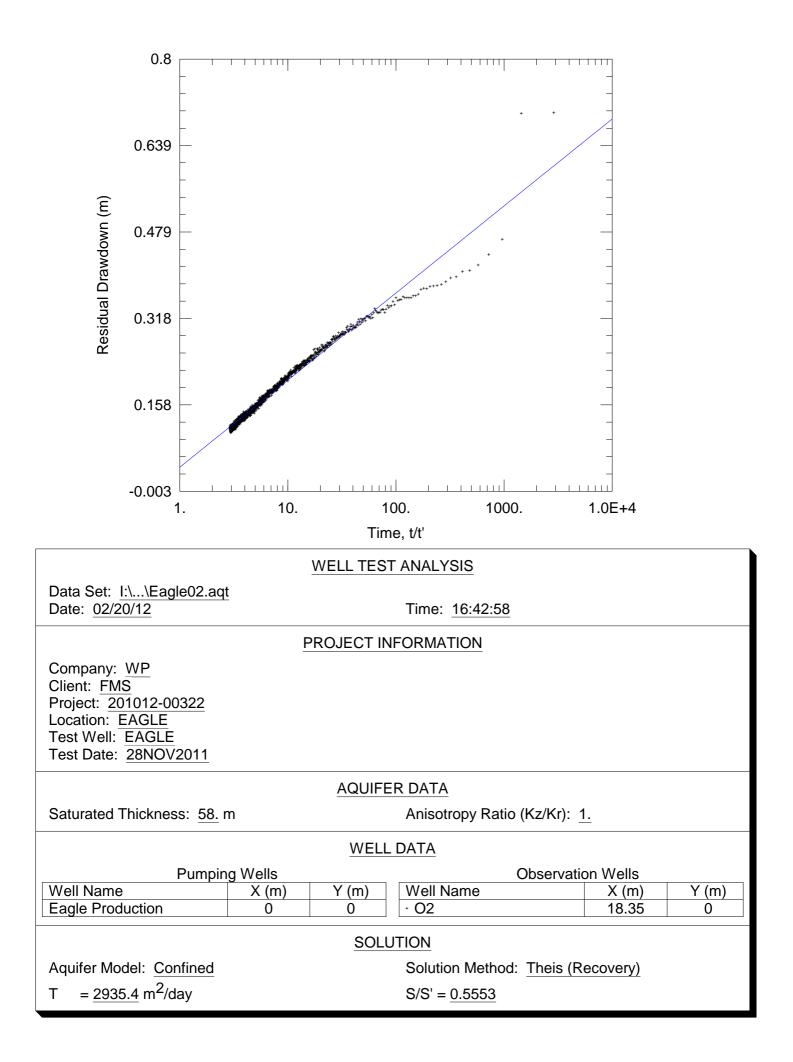
	W		lorlo	Doroc	Level	7 QV1 Building	BOR	OREHOLE:	
			Penn	NS 250 St George's Terrace Perth WA 6000		24118			
		res	sources & e	energy	ABN 6	1001 279 812			
	CLIENT FMS			LOCATION	EAGLE	DRILLED	DEPTH (m) 46		
	PRC	JECT	PIOP		PROJECTIO	N	SCREEN	(mBGL) 3.00-25.50	
	DAT	E DRILLED	01NOV2011		EASTING	545177.968	ELEVATIO	DN (mAHD) 660.885	
	LOG	GED BY			NORTHING	7549533.175	WATER L	EVEL (mBGL) Dry	
		actor		Drill Bit	5.5"	Airlift (L/s)	Dry	Salinity (mS/cm)	
RI	Rig Type AIR CORE RC Drill Fluid				A/W	Temperature (°C)		рН	
Depth (m)	l o l		у	Field N	otes	Bore Construction			
0	8		COL: Recent	Colluvium		"Dry B	ore" O	8/16 Graded Gravel	
	-		DIDh: Detrital	I Iron Deposit - hema	tite dominant			50mm dia. PVC Class 12	
10							6.	Bentonite Plug	
ľ	DIDh							8/16 Graded Gravel	
	ā							50mm dia. PVC	
20	Ļ						50	Class 12 1mm	
	BII		BIDa [,] Bedder	d Iron Deposit - goetł	nite dominant				
30	SHL		SHL: Shale	a non Dopoon goon			30		
	S								
			BIF: Banded	Iron Formation				Collapsed Native	
40	BF						6		
								<u>></u>	
50	F						20	-	
	_							-	
09	t						09	+	
	F							-	
20							0/		
1	ſ						Ň		
	╞							-	
8-	ļ						8	 -	
	F							-	
6	Ļ						06	+	
	f						-		
100	L						100	SHEET:1 OF 1	
00	Copyri	ght WorleyParson	s Services Pty Ltd					SHEET:1 OF 1 Job Number 201012-00322	

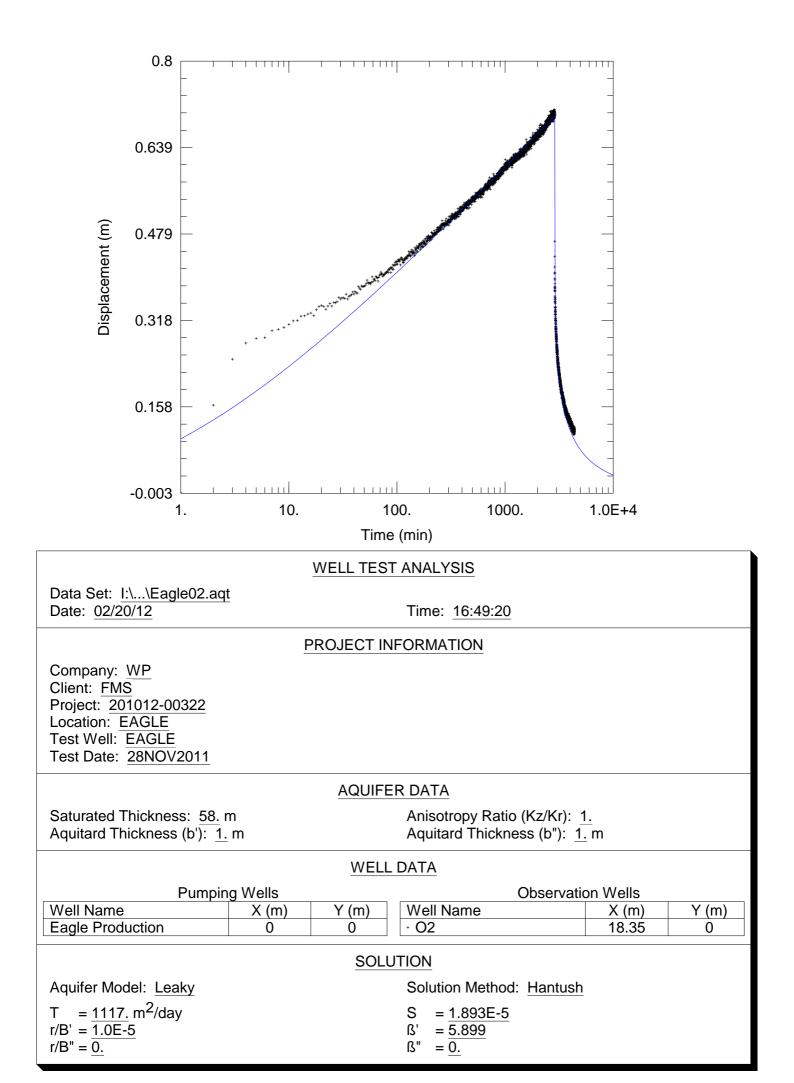


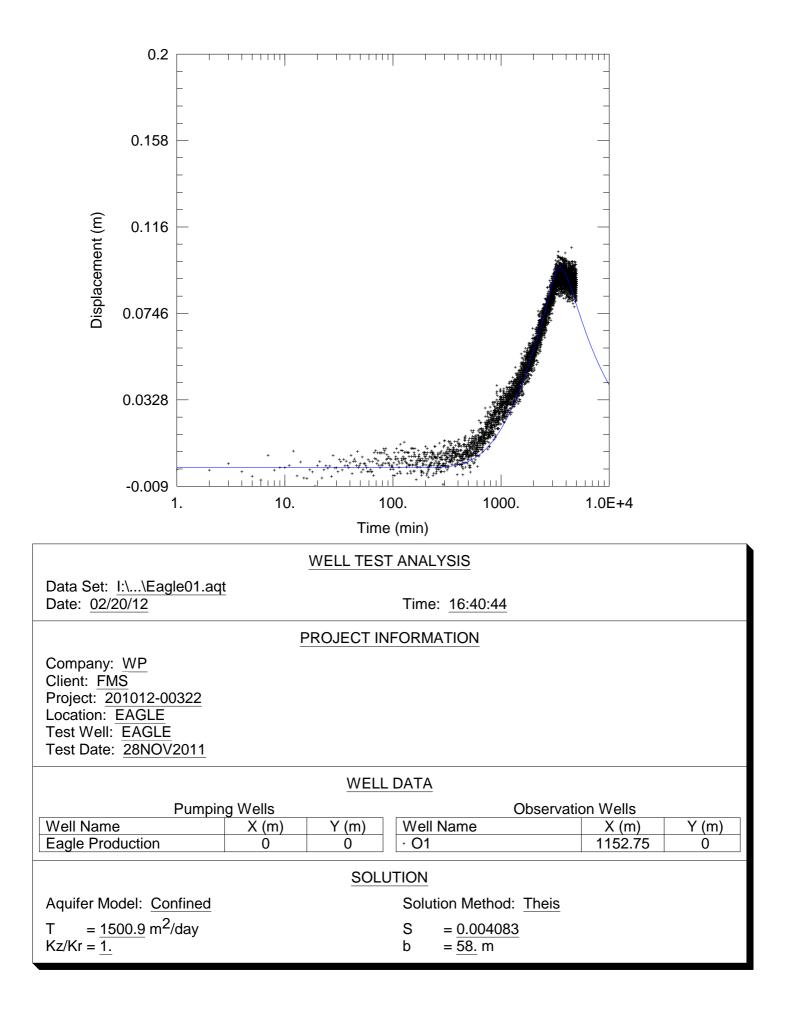

resources & energy

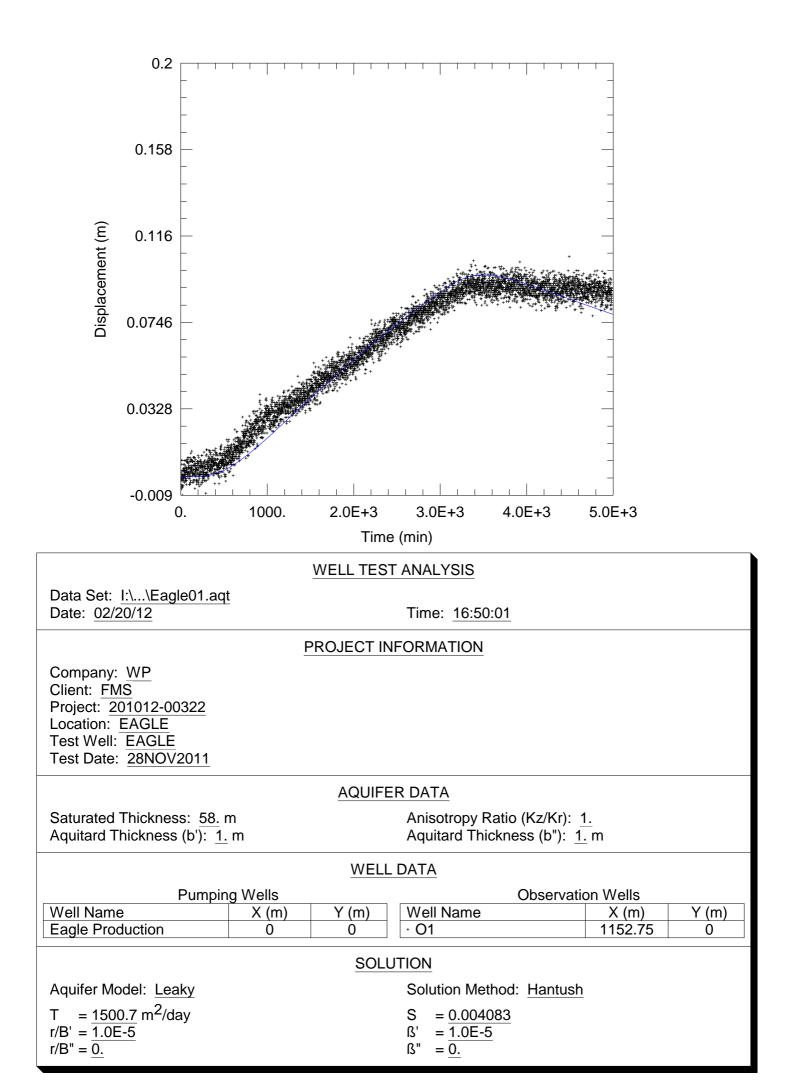

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

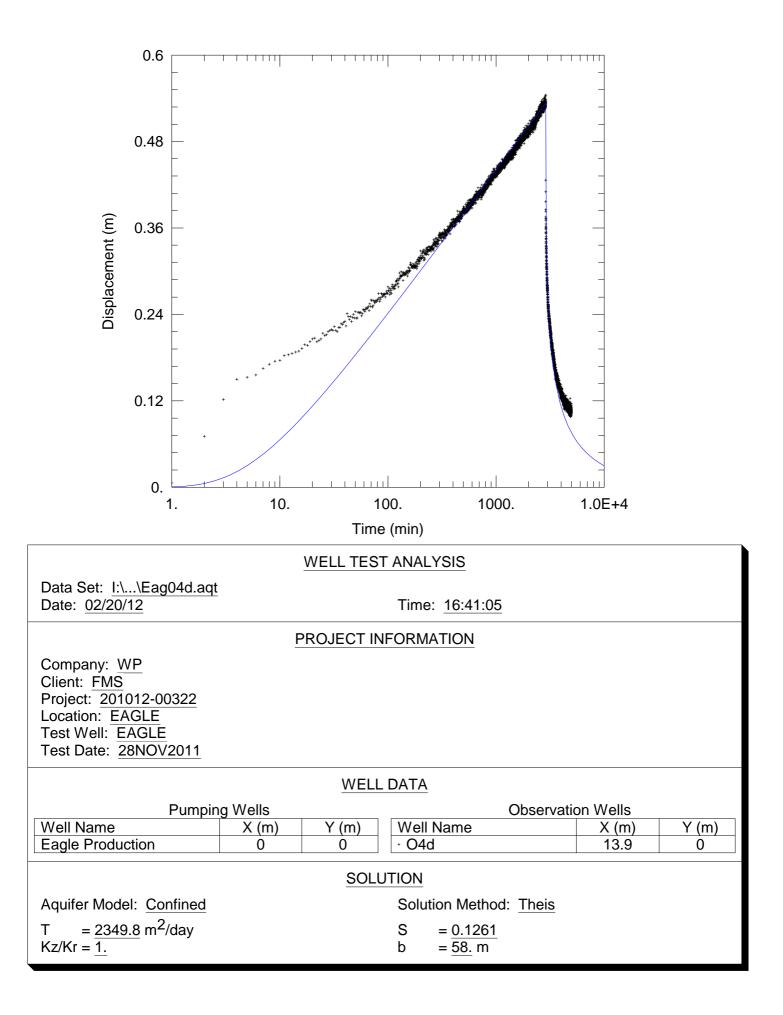

Appendix 4: Pump Test Results

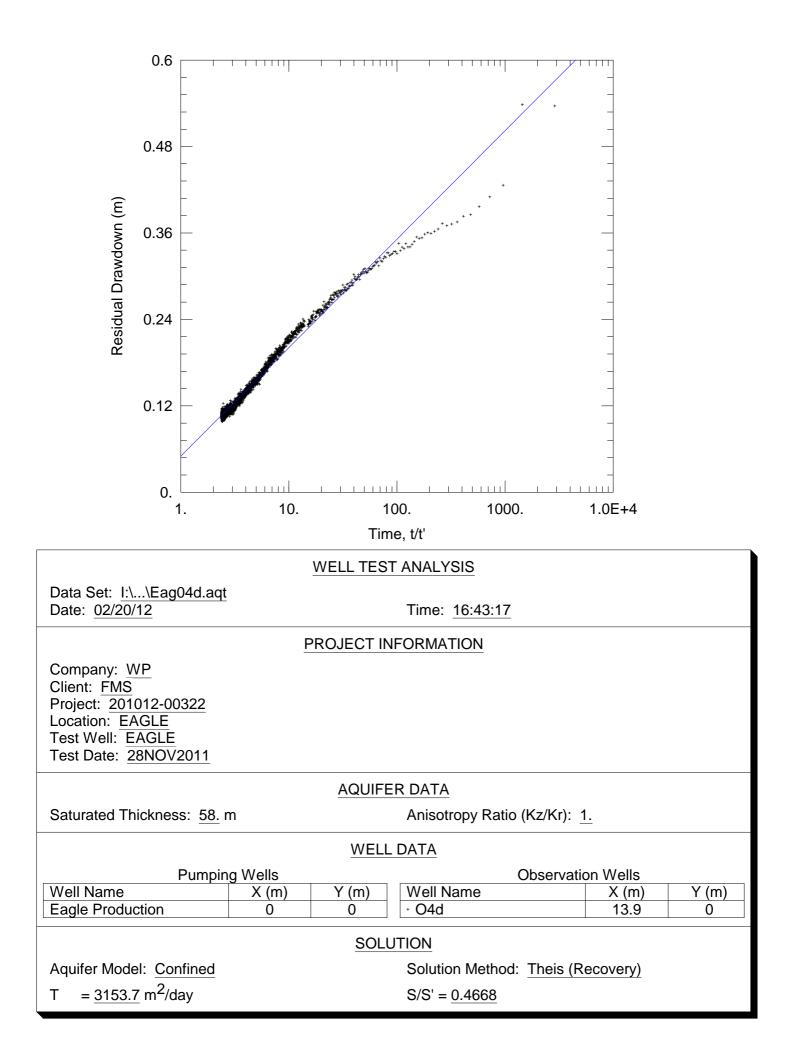

i:\projects\201012-00322 fms vip\10.0 engineering\hydrogeology\phase 3 dfs investigations\reporting\epa submission\201012-00322 piop groundwater impact assessment report_rev0.docx

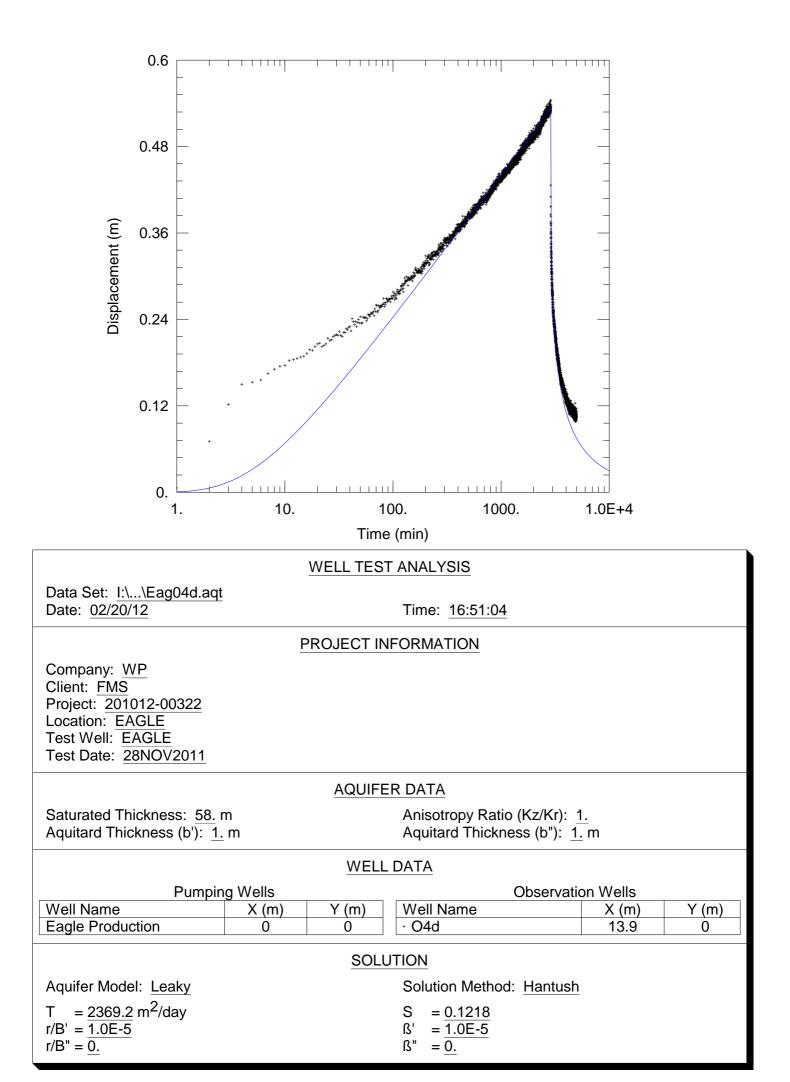


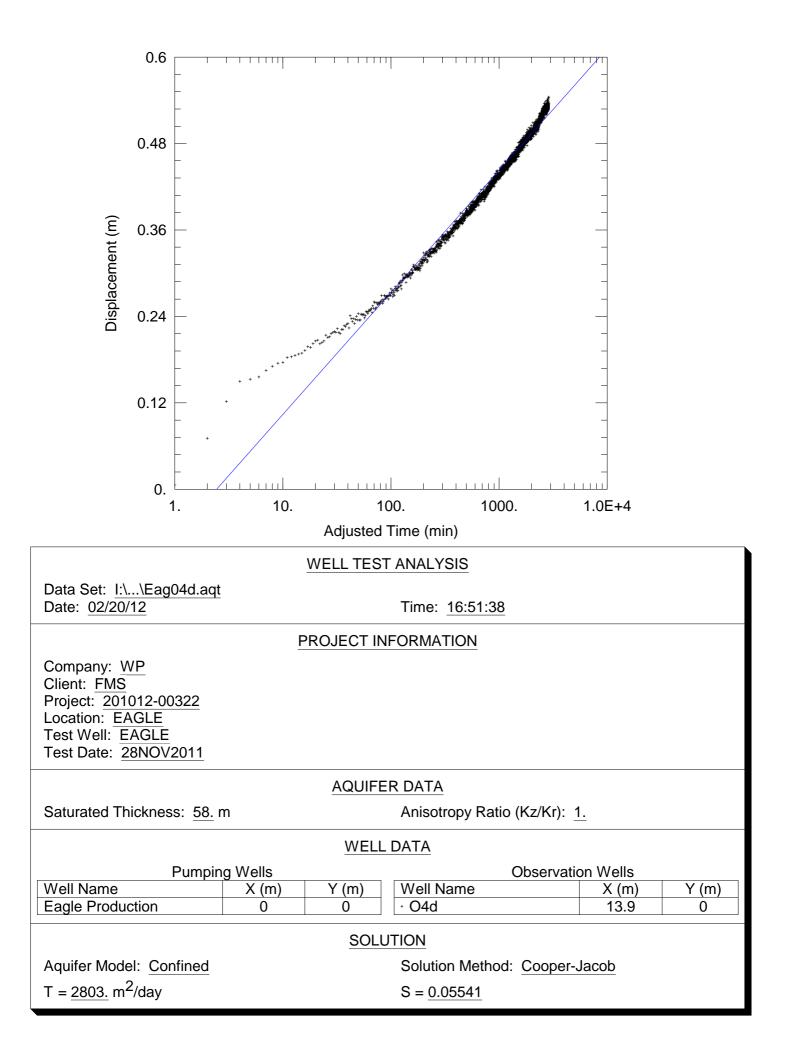


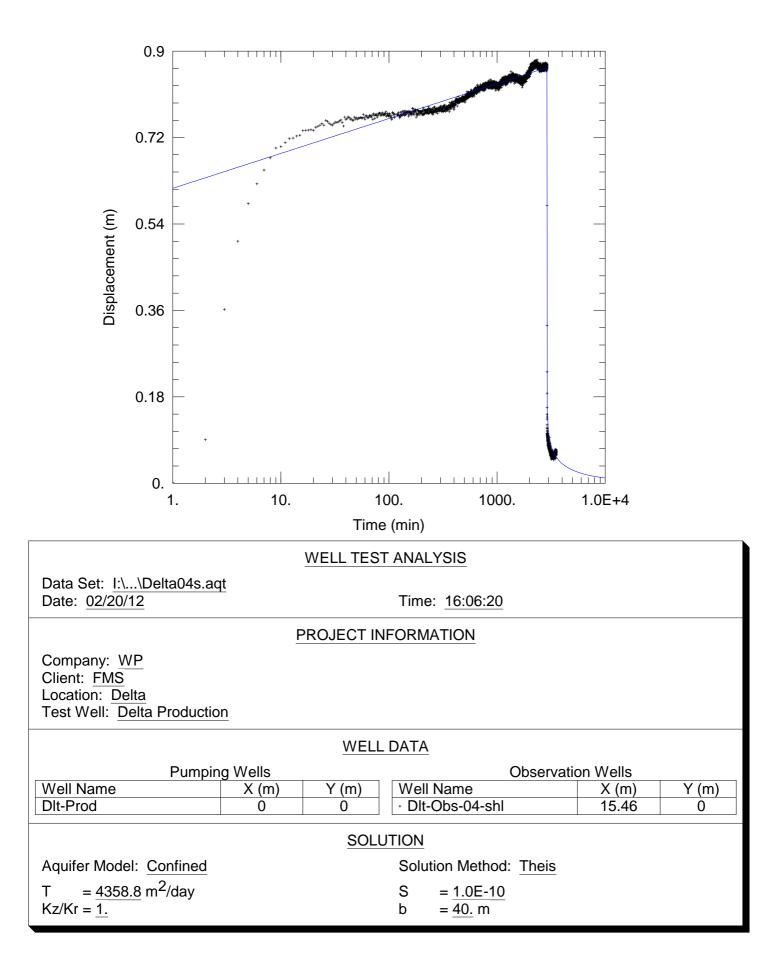


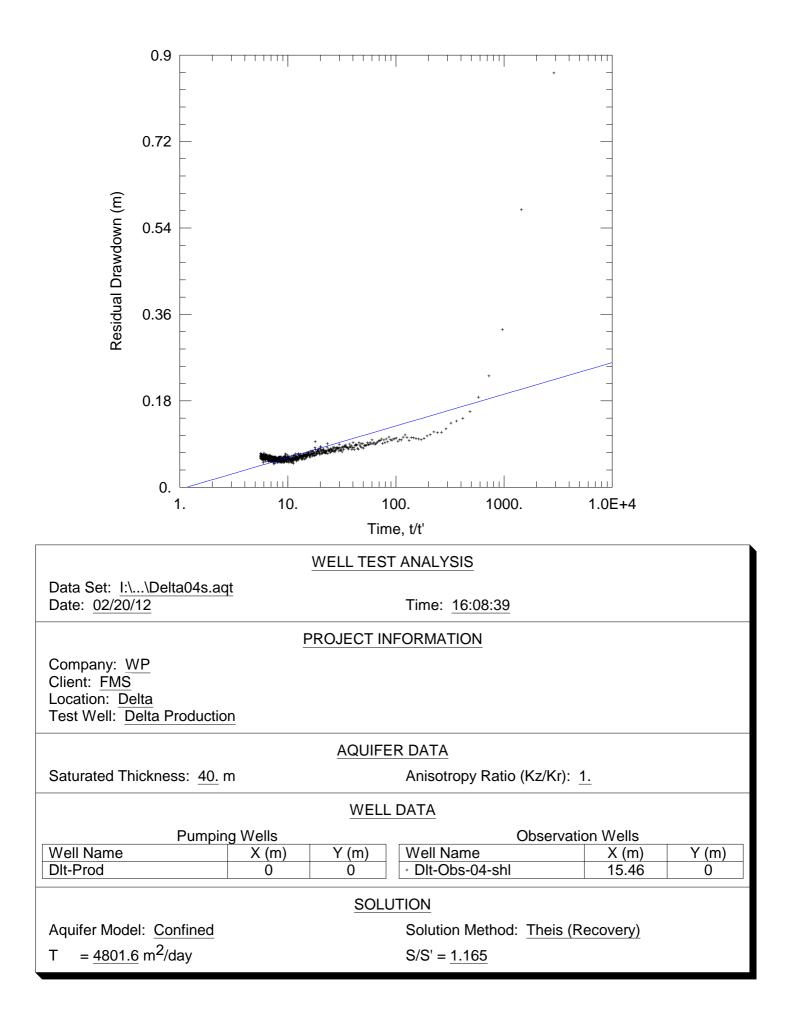


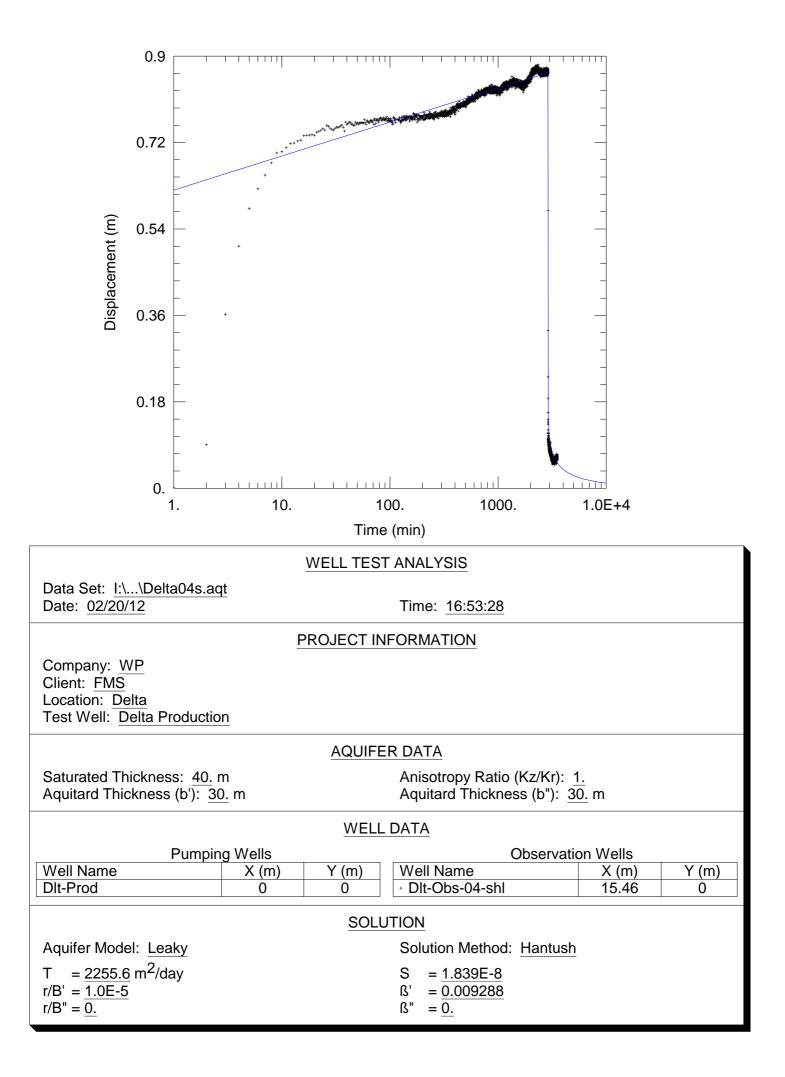


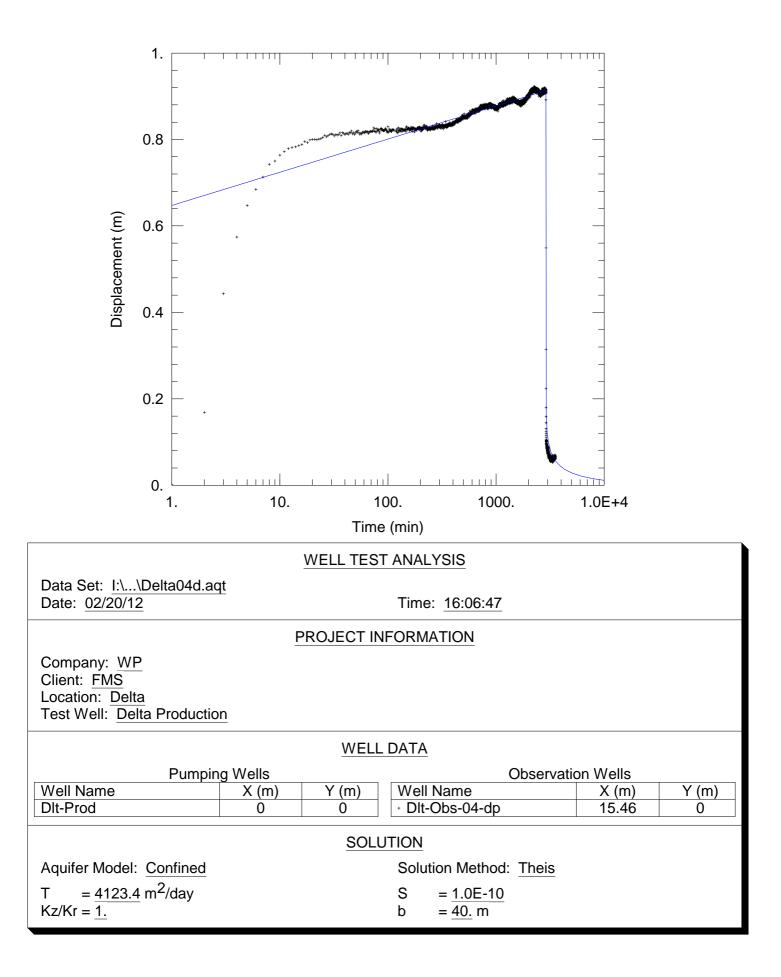


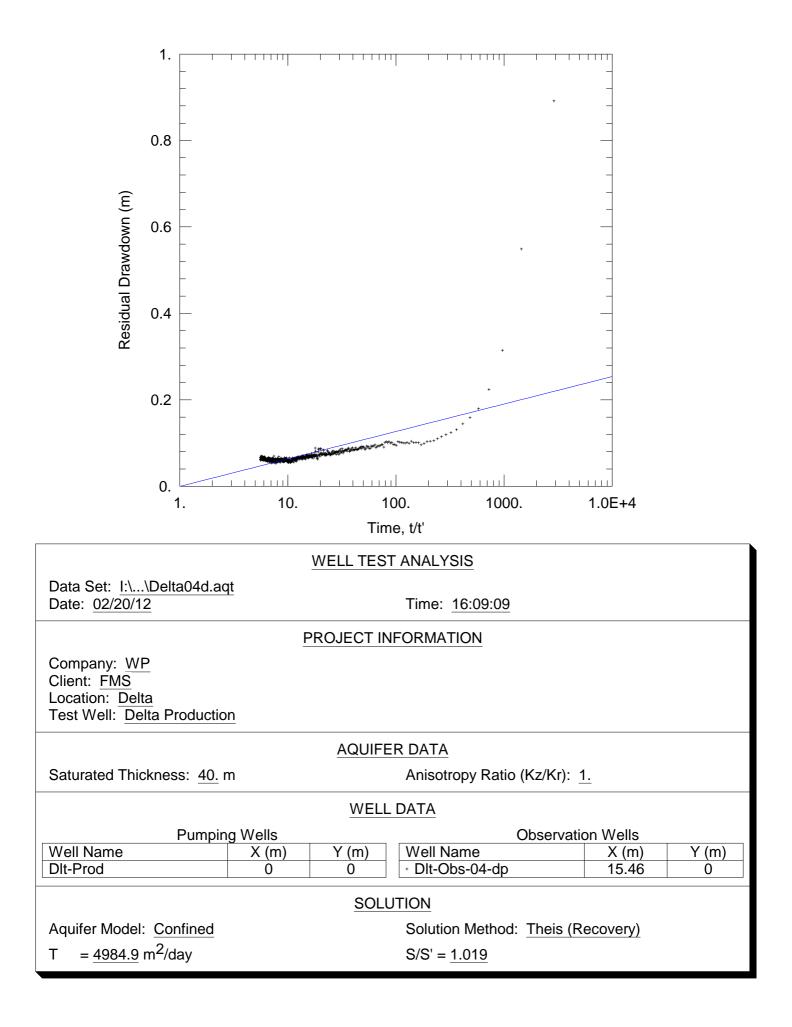


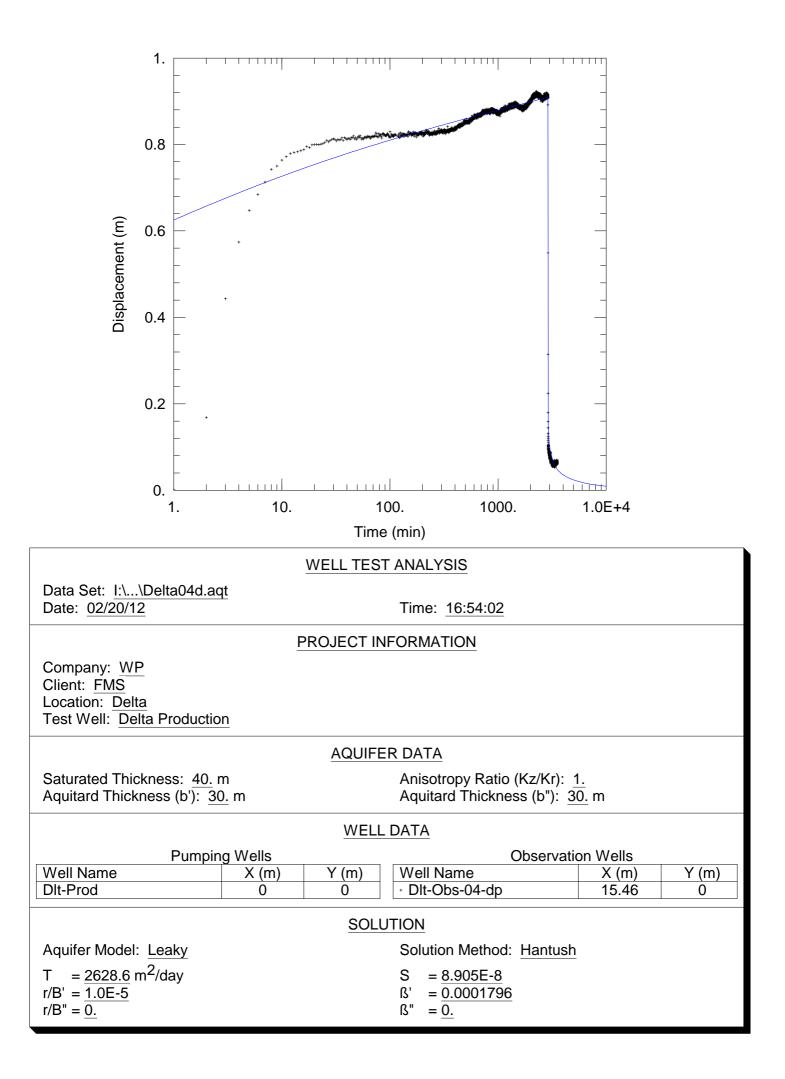


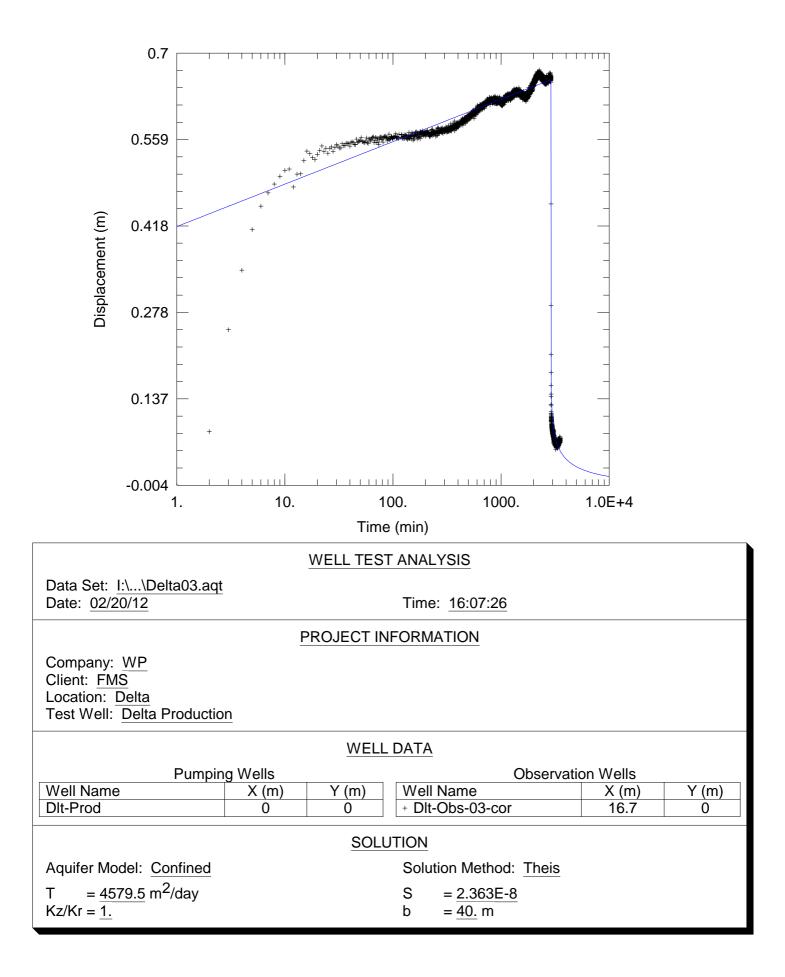


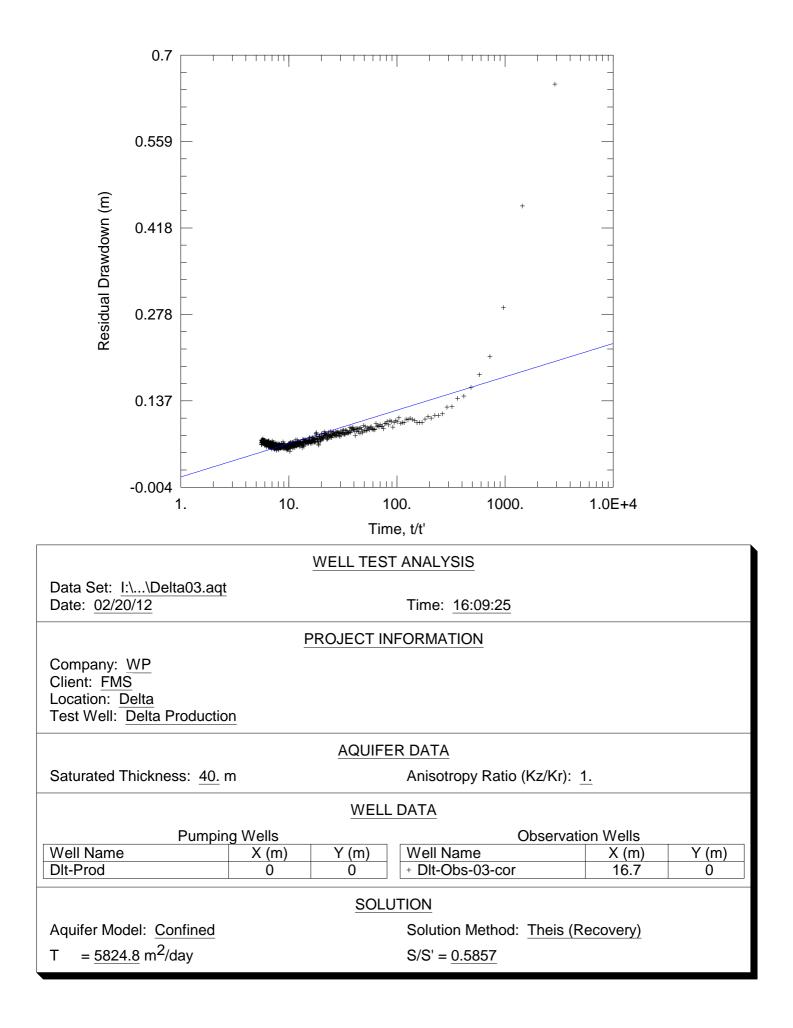


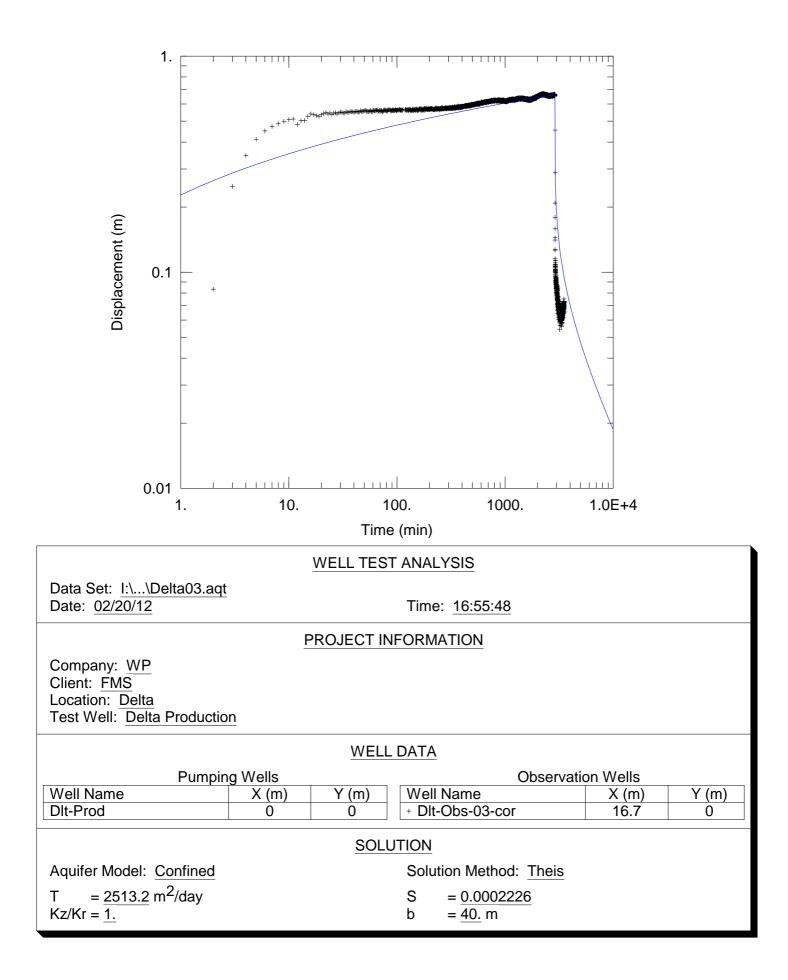


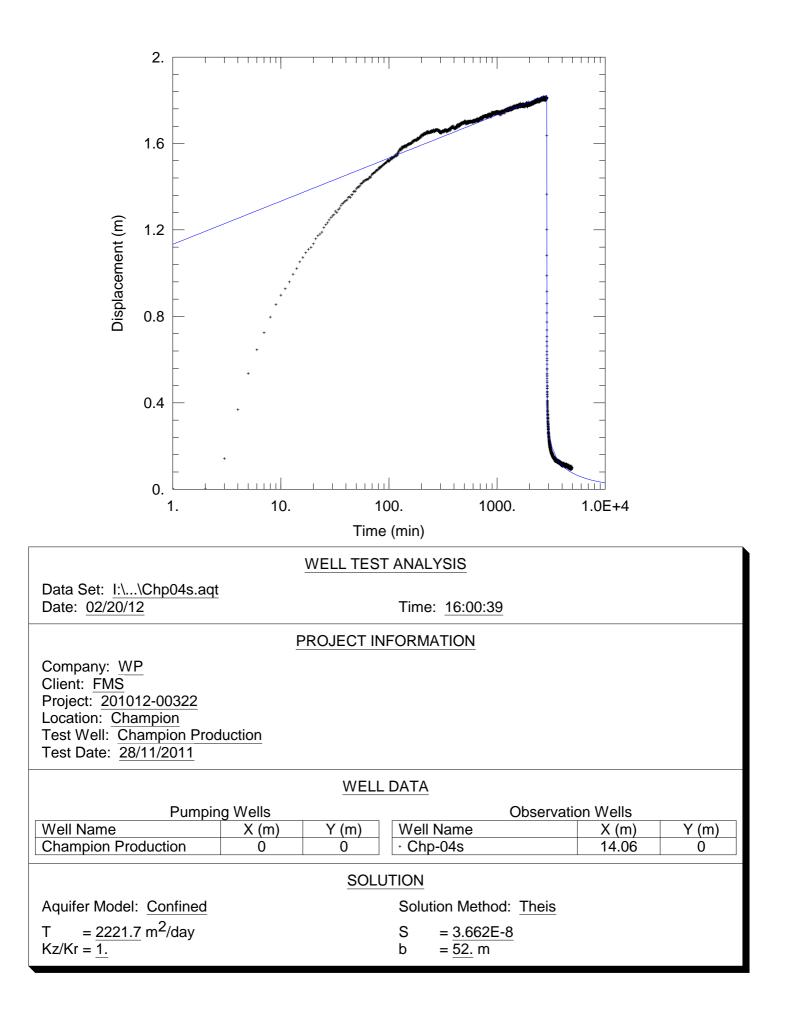


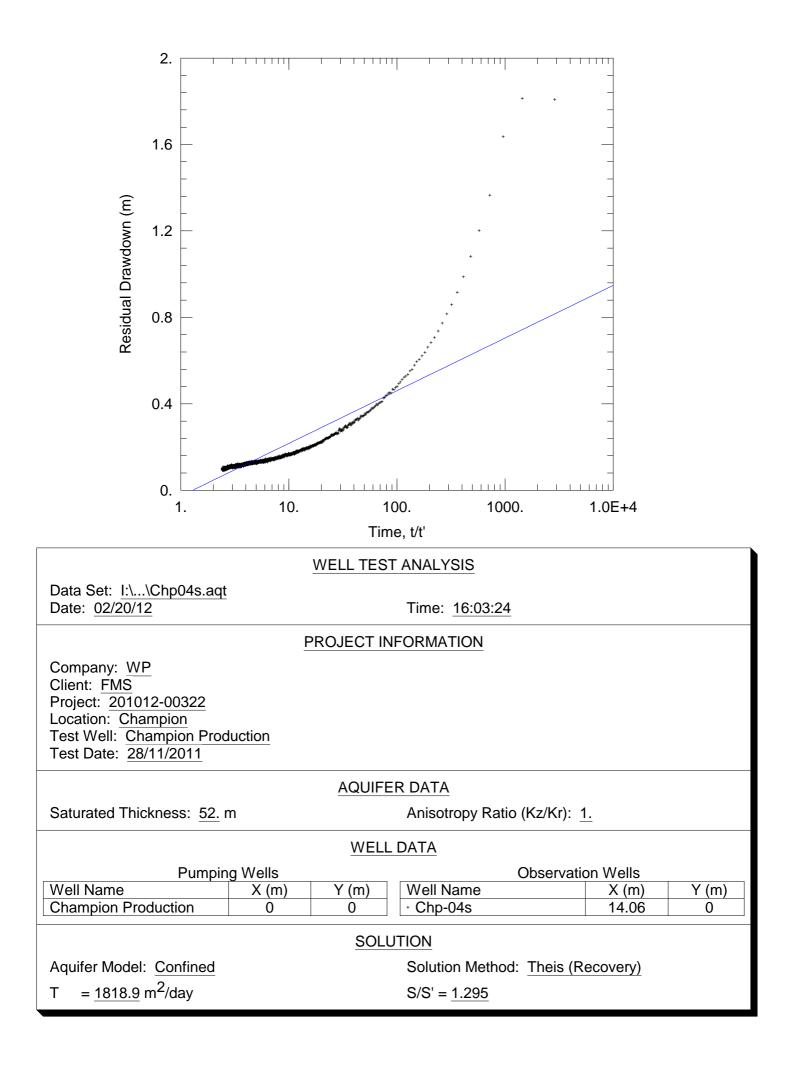


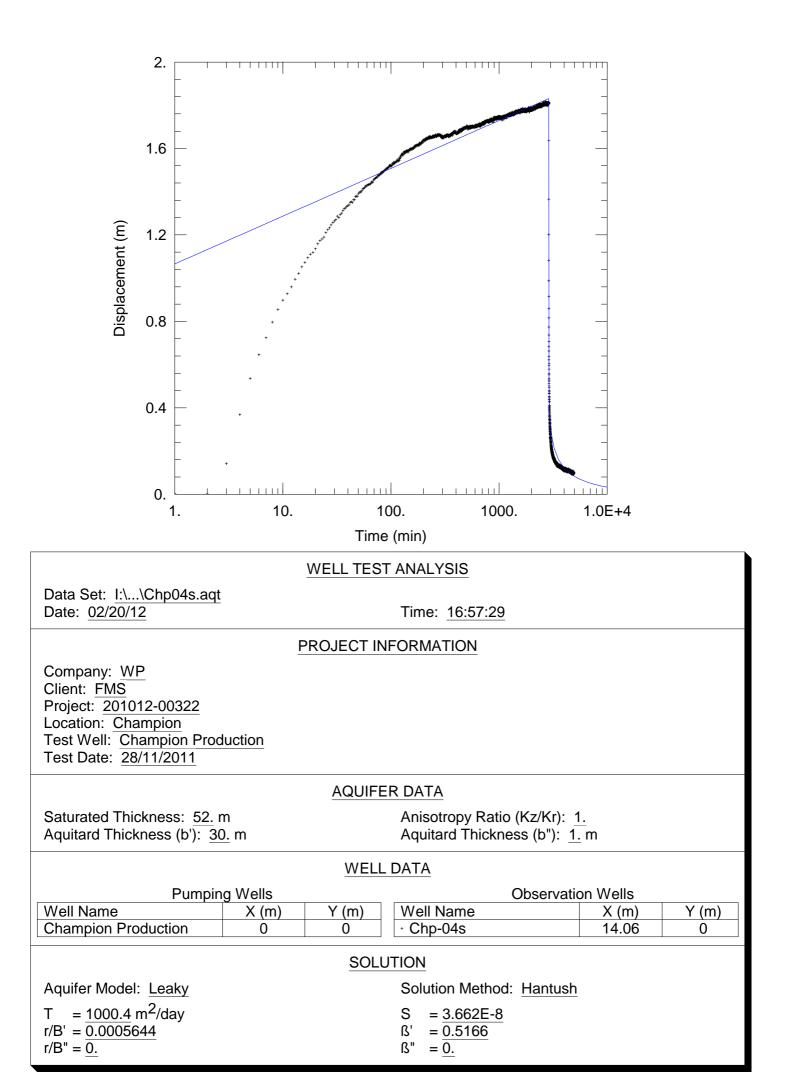


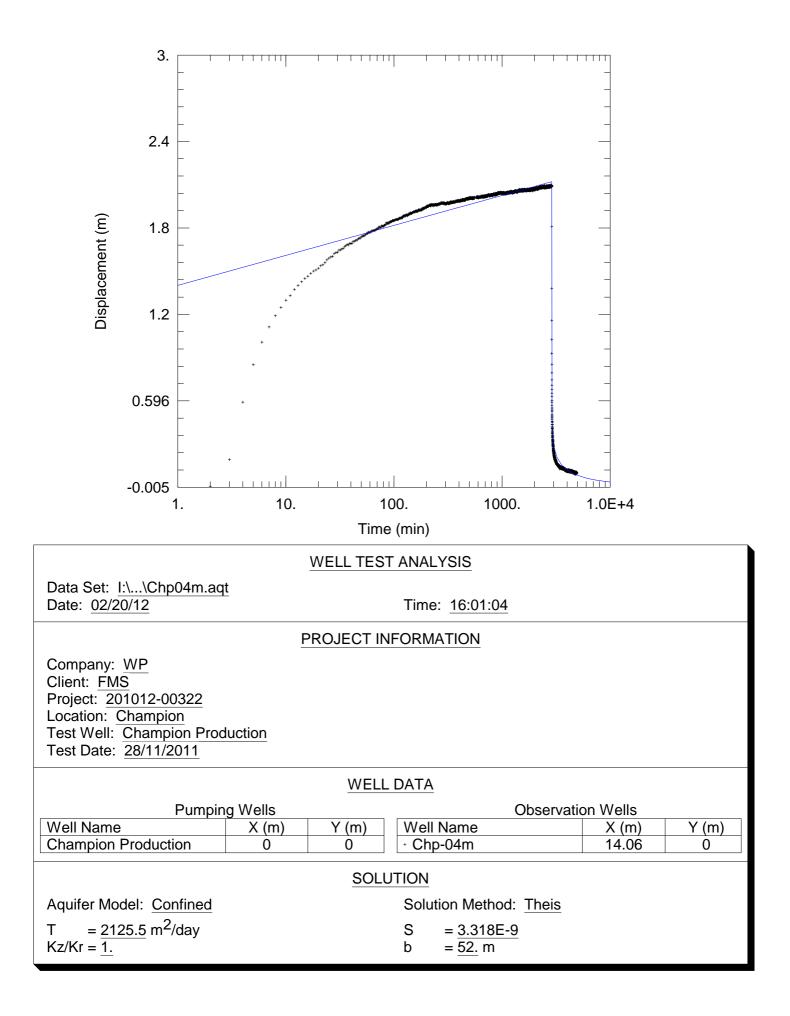


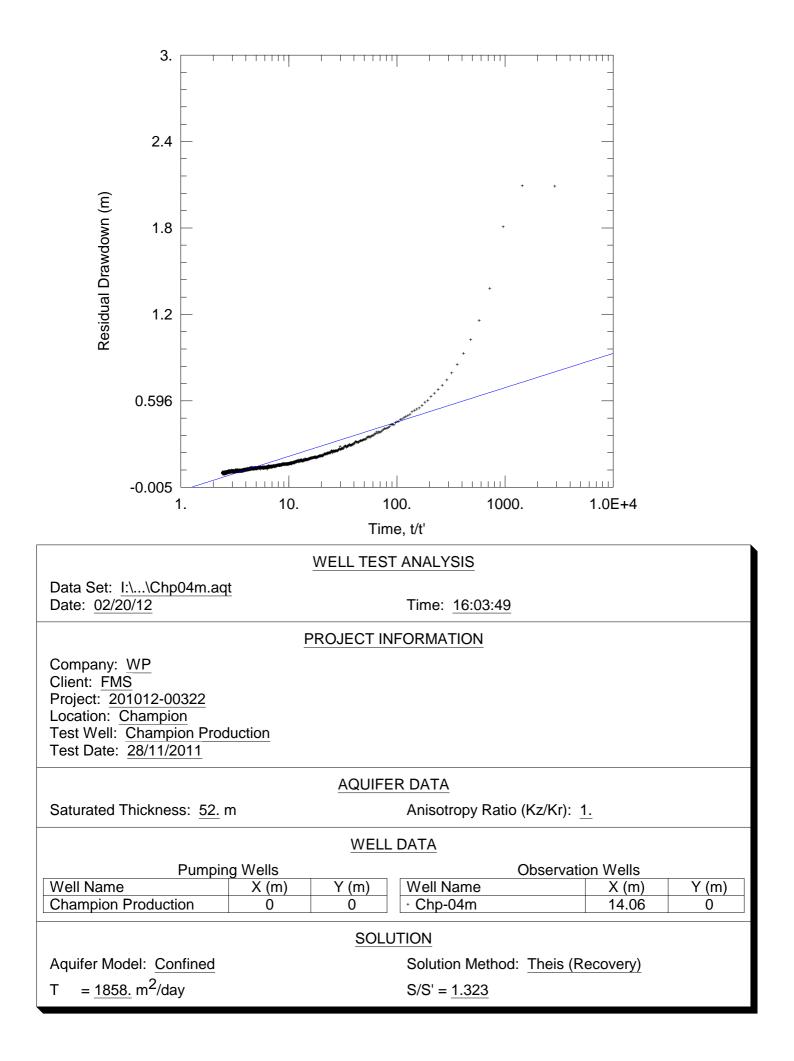


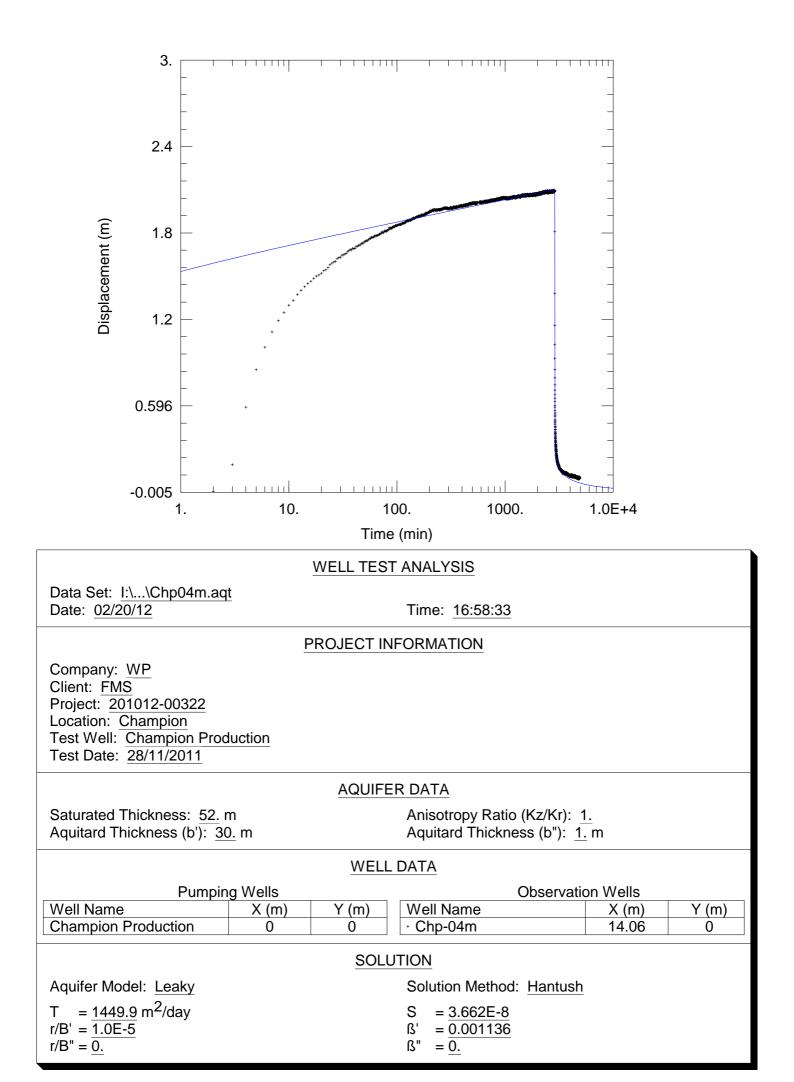


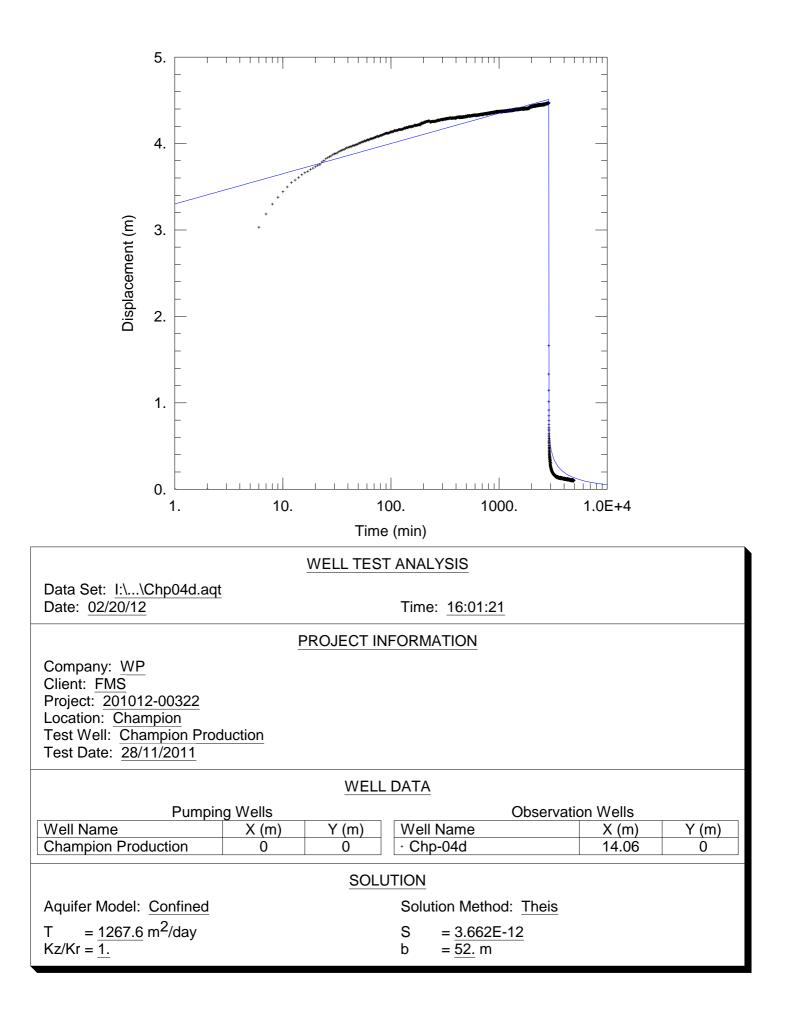


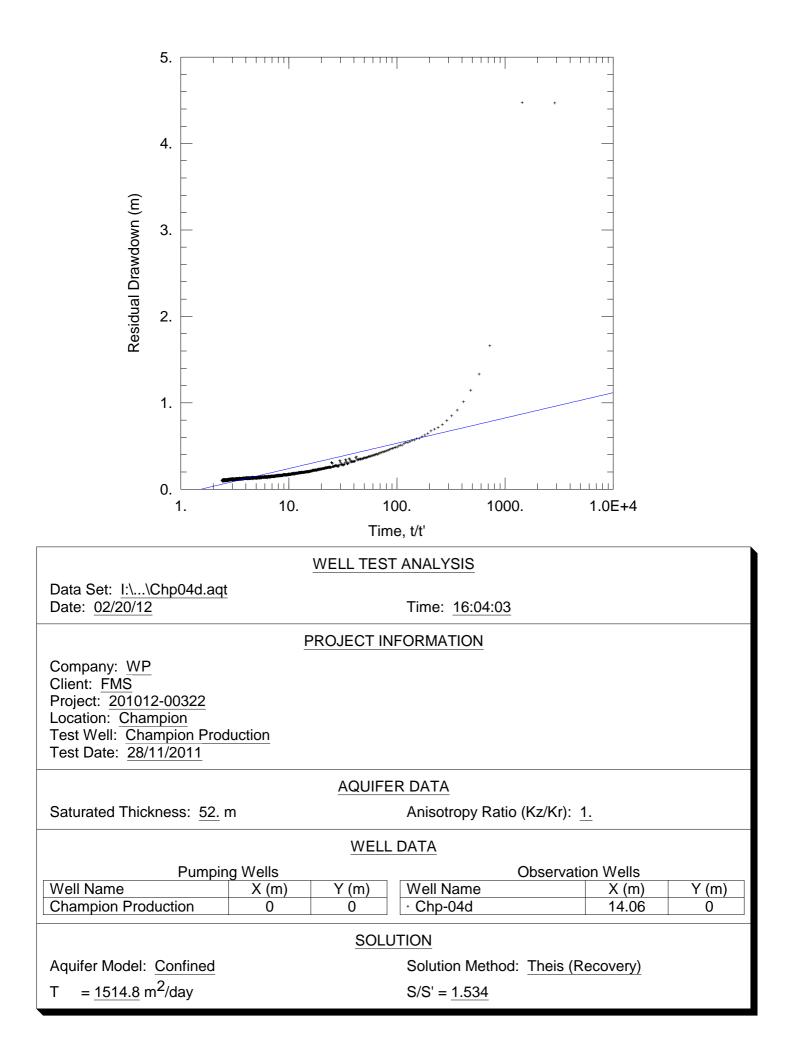


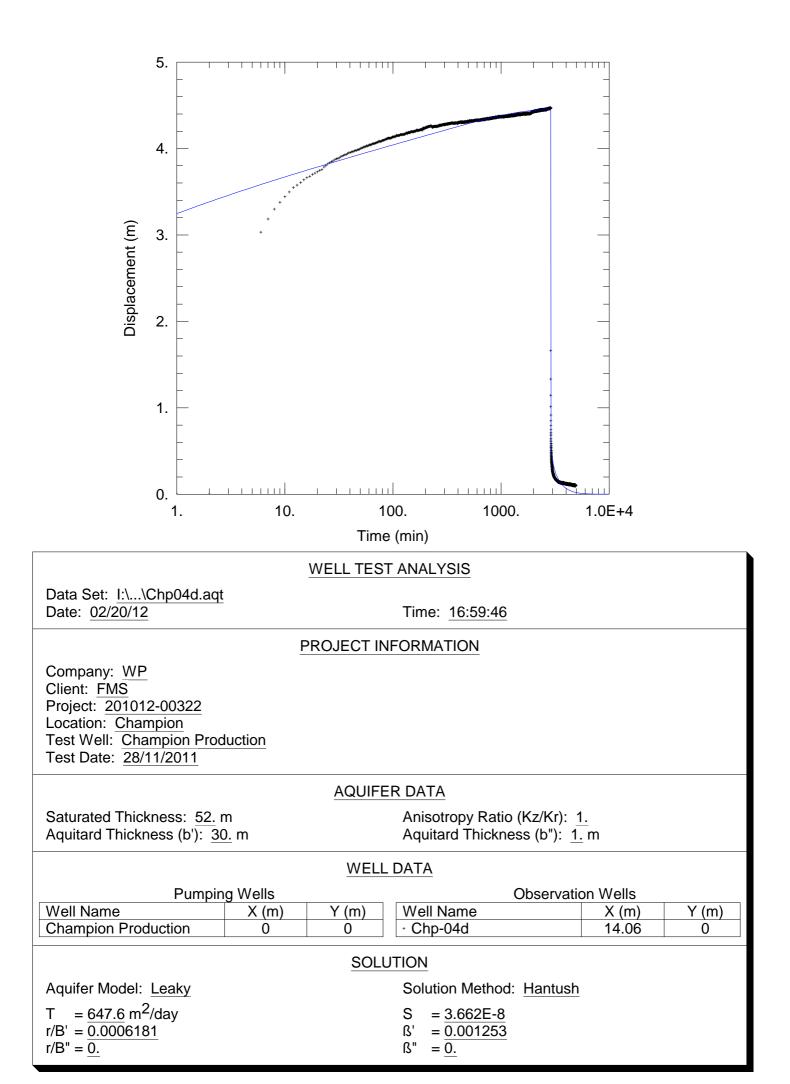


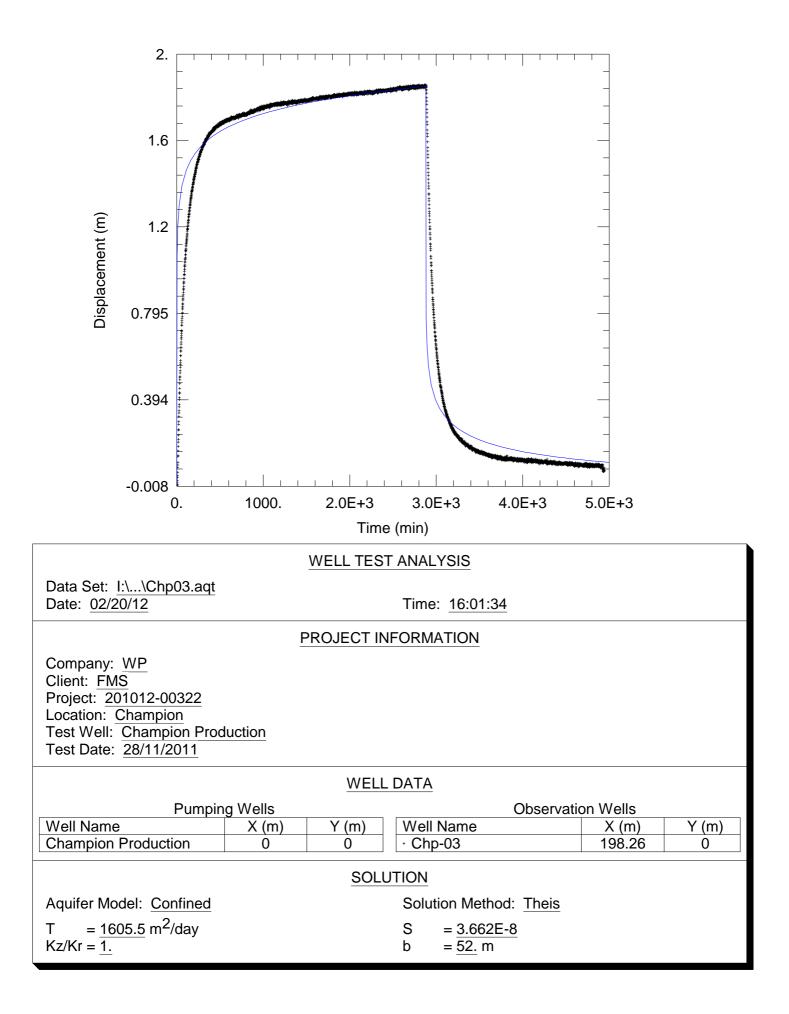


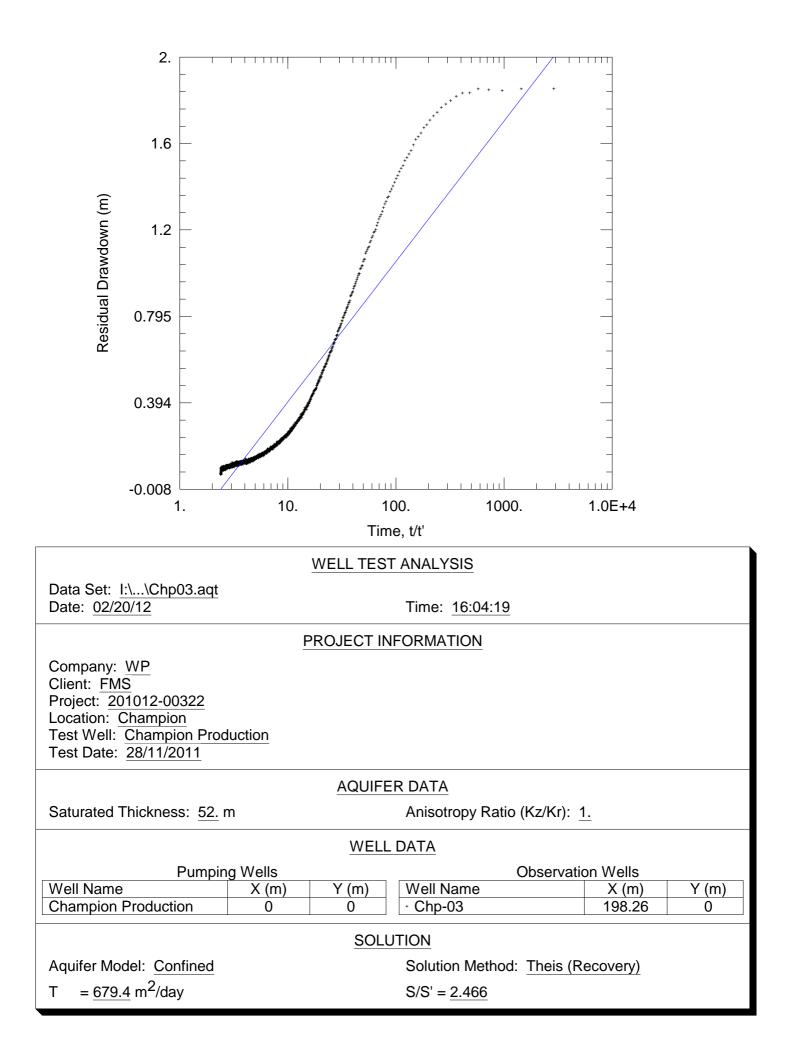


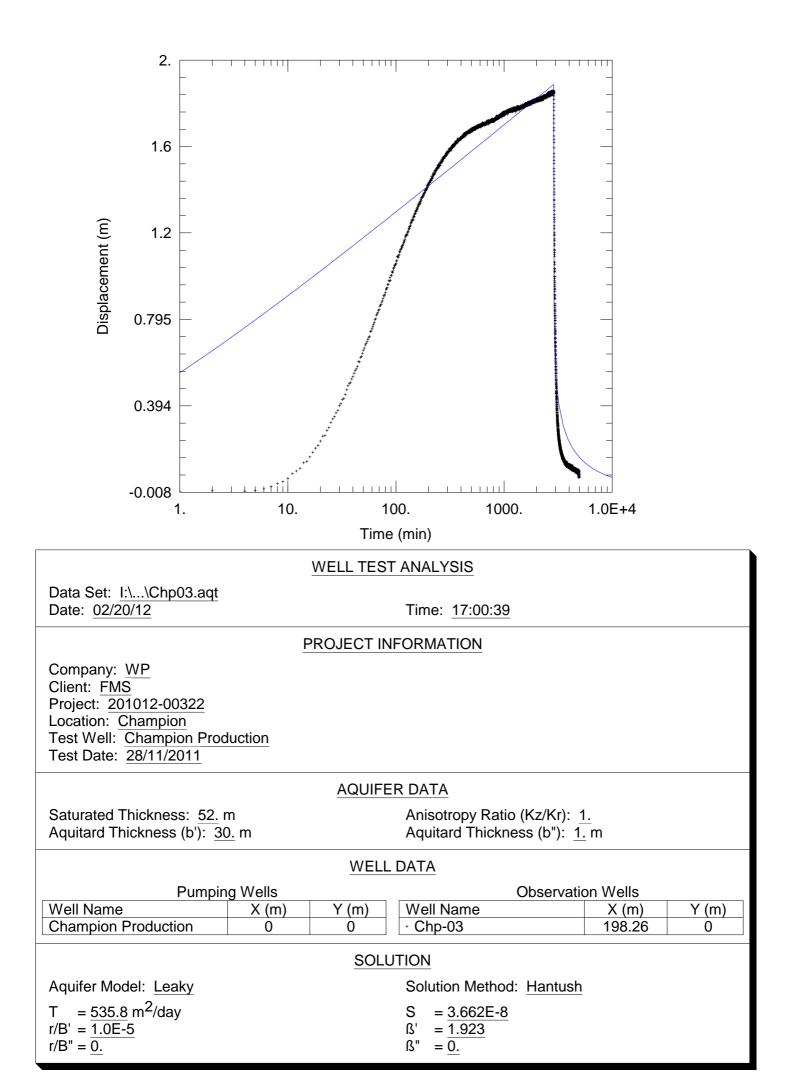


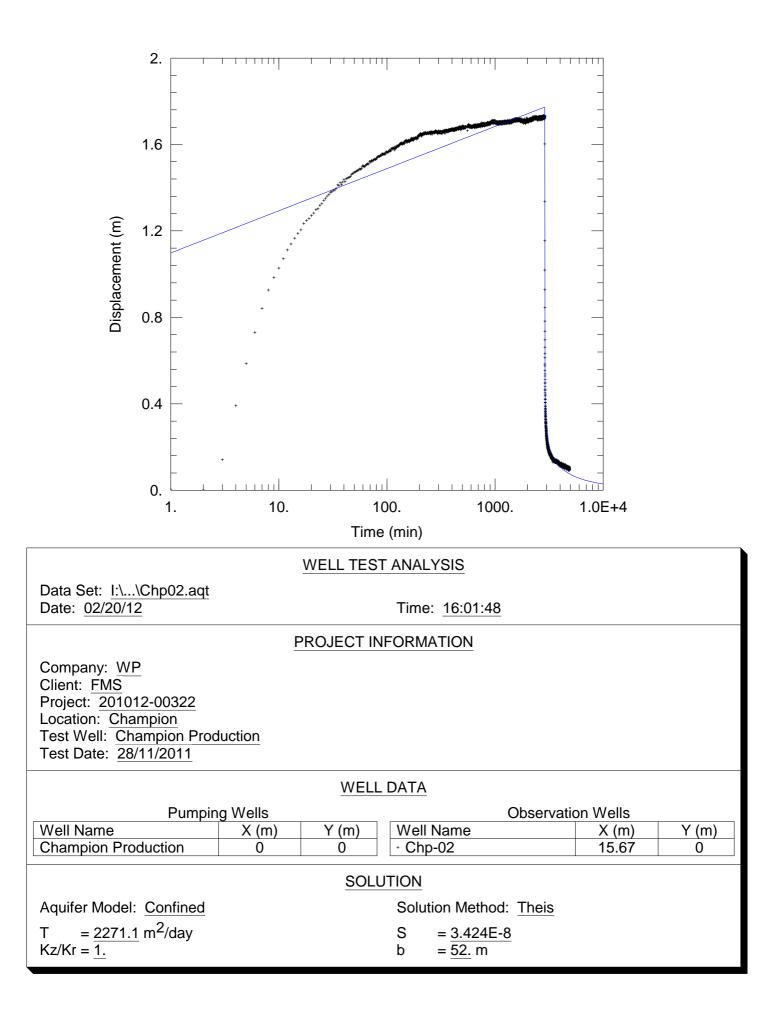


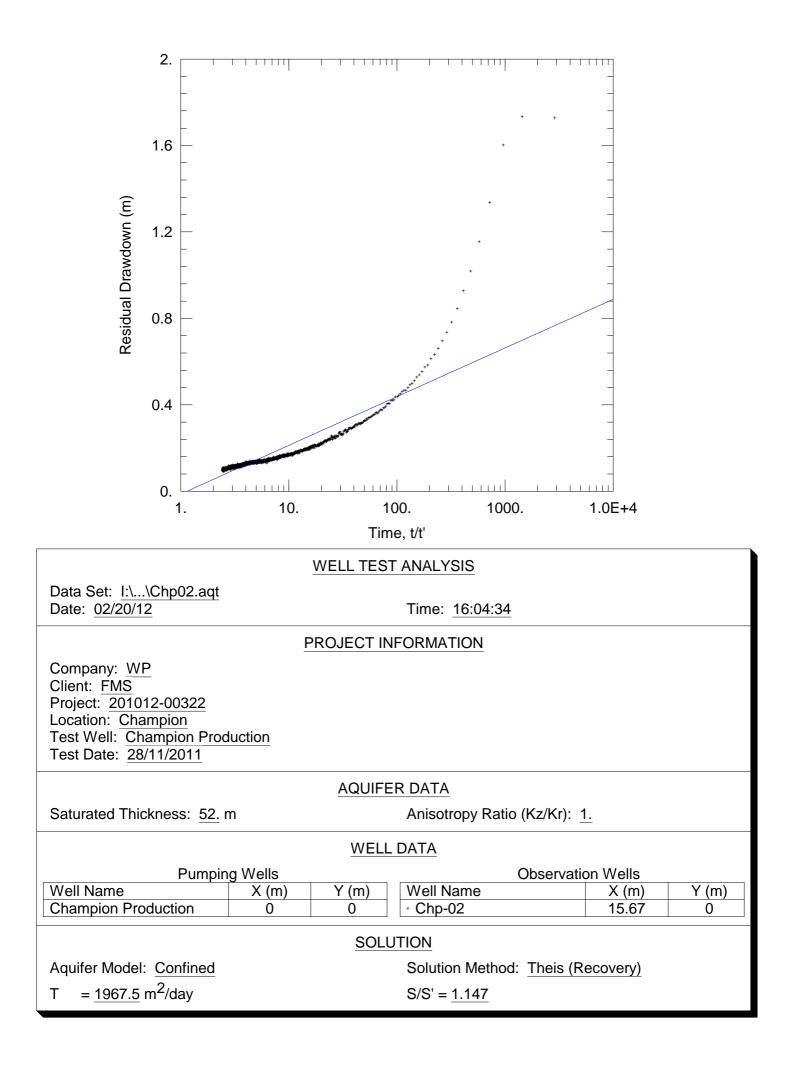


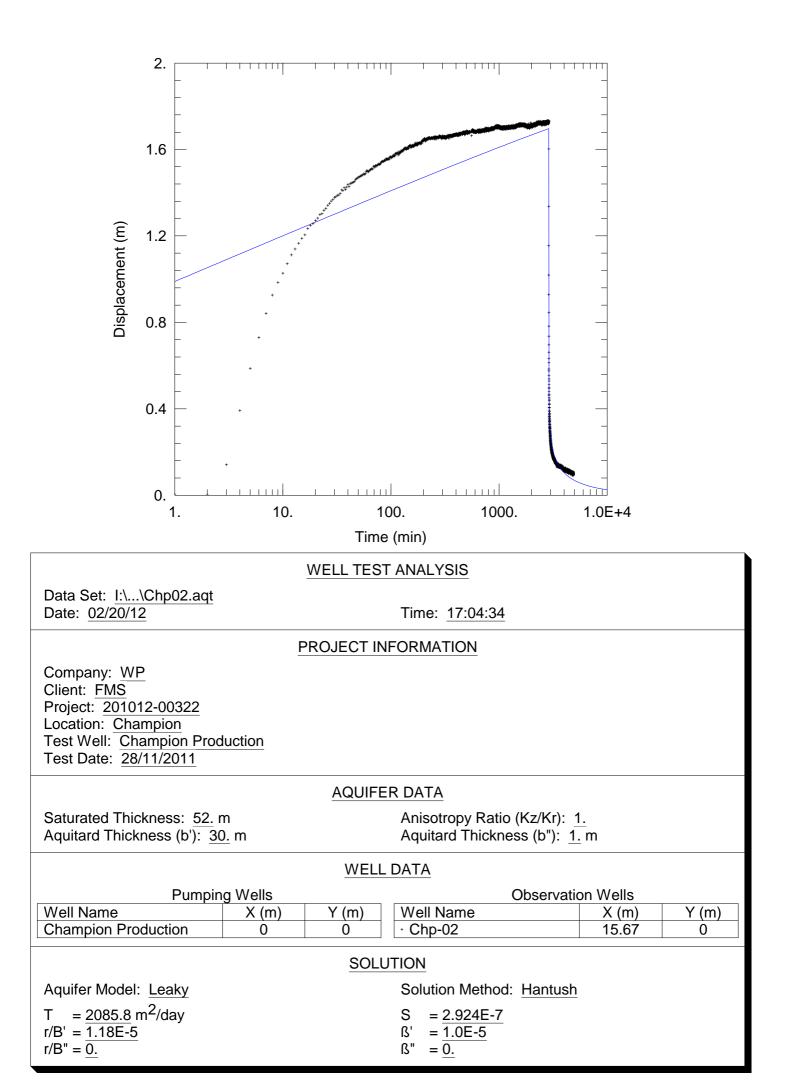


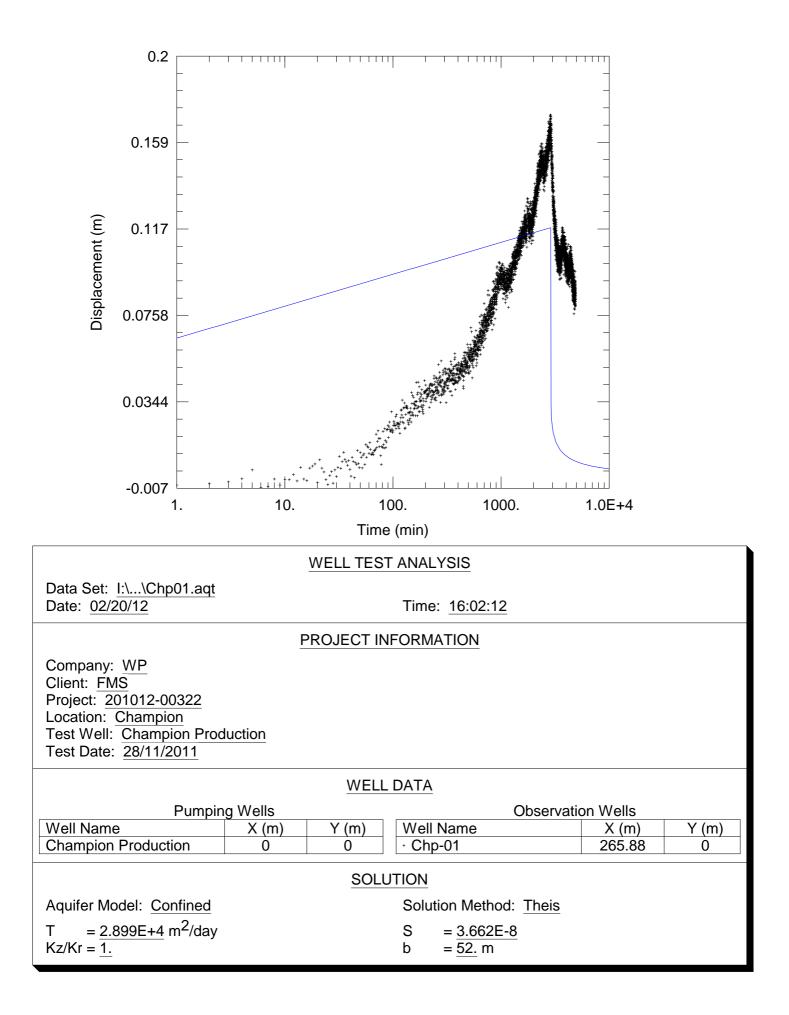


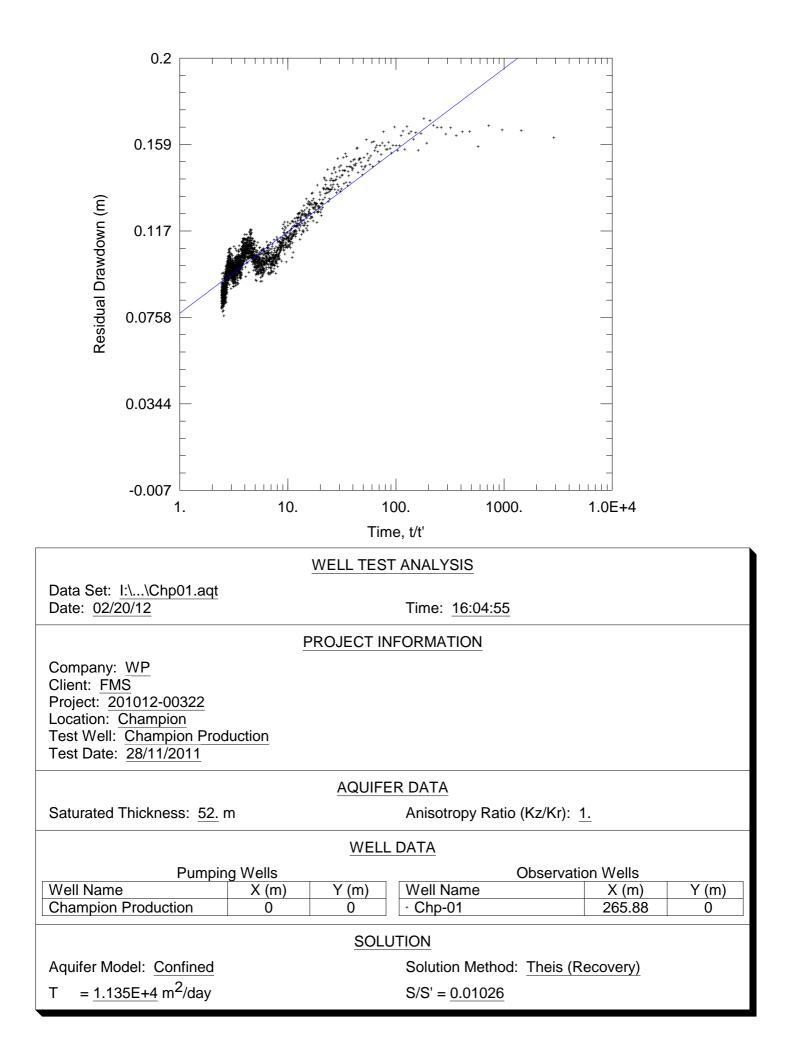


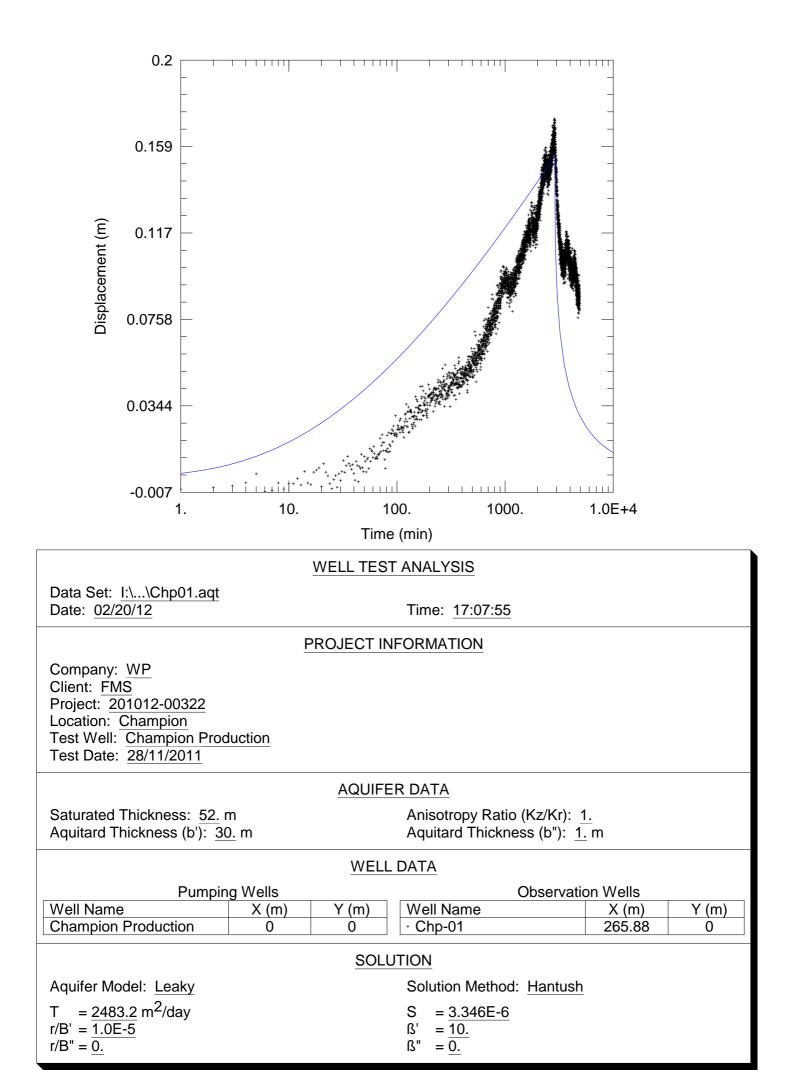


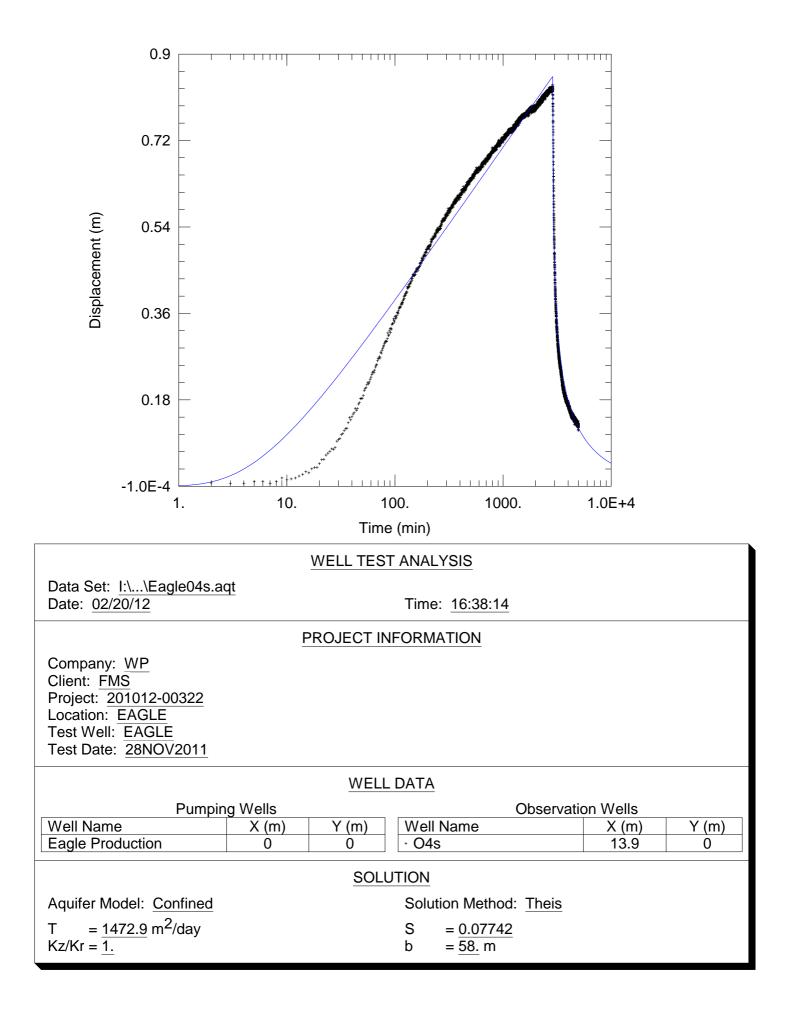


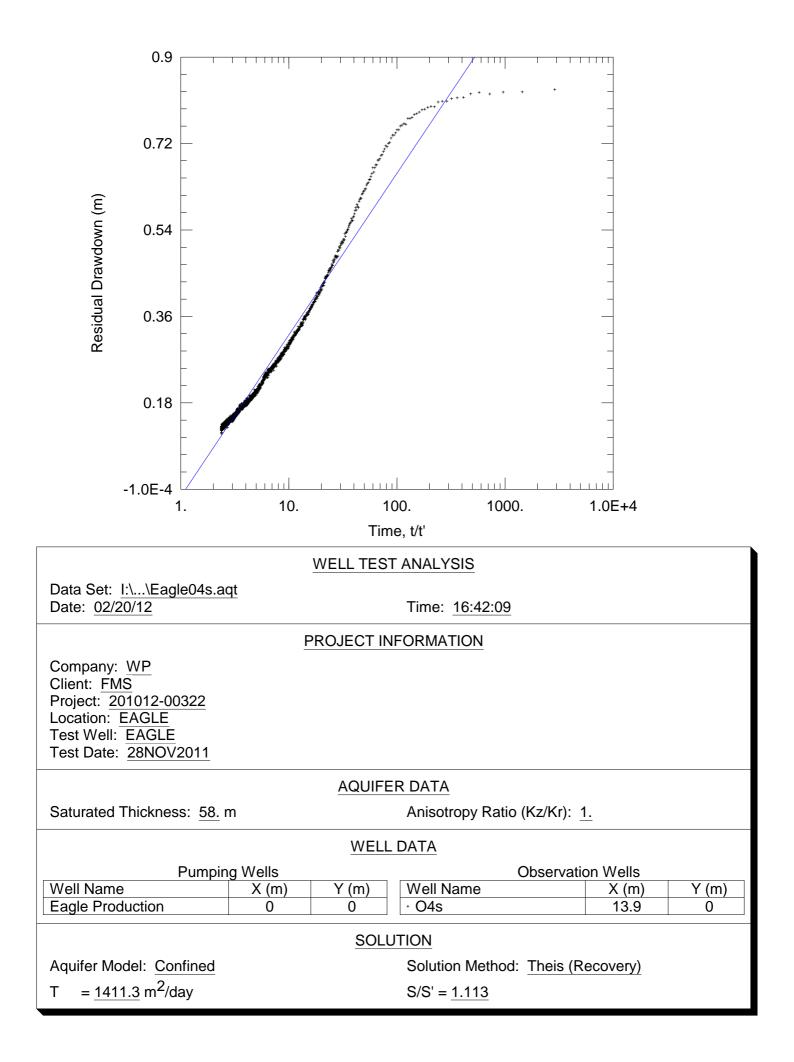




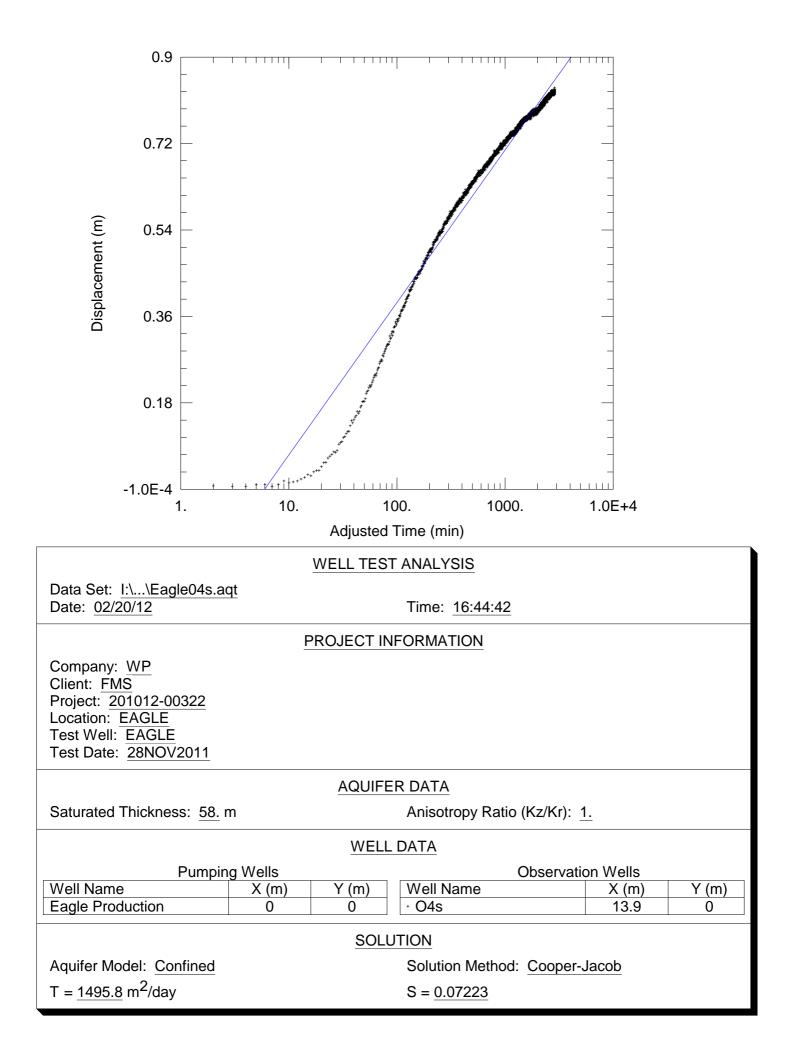


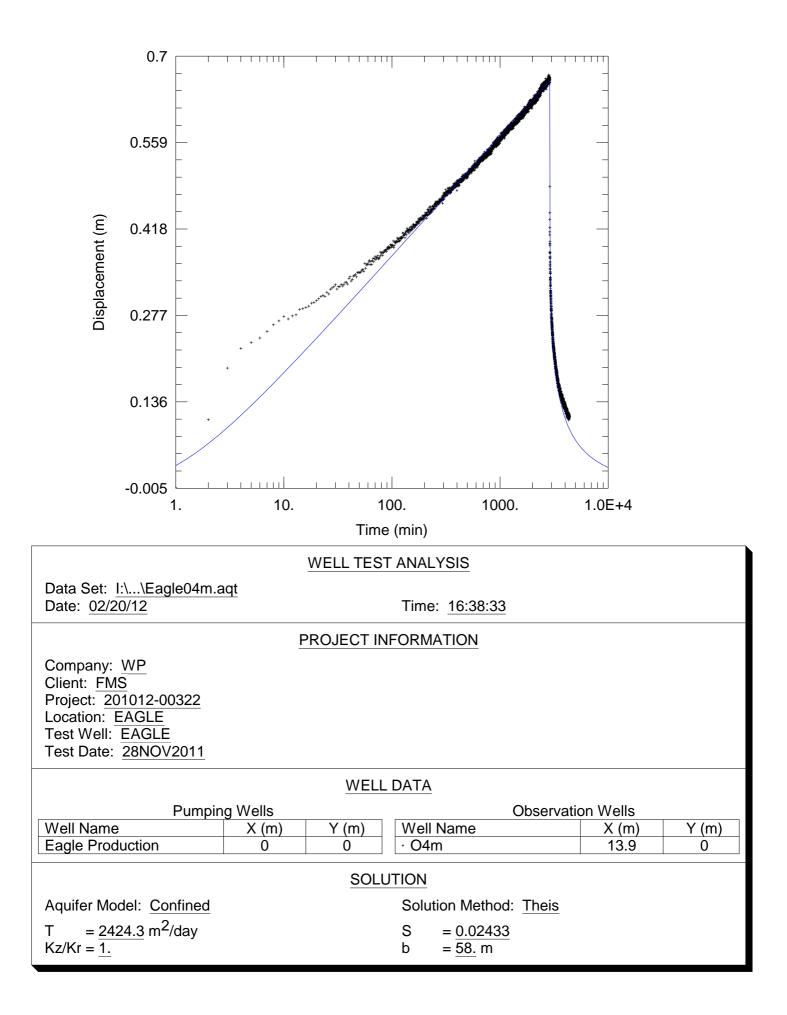


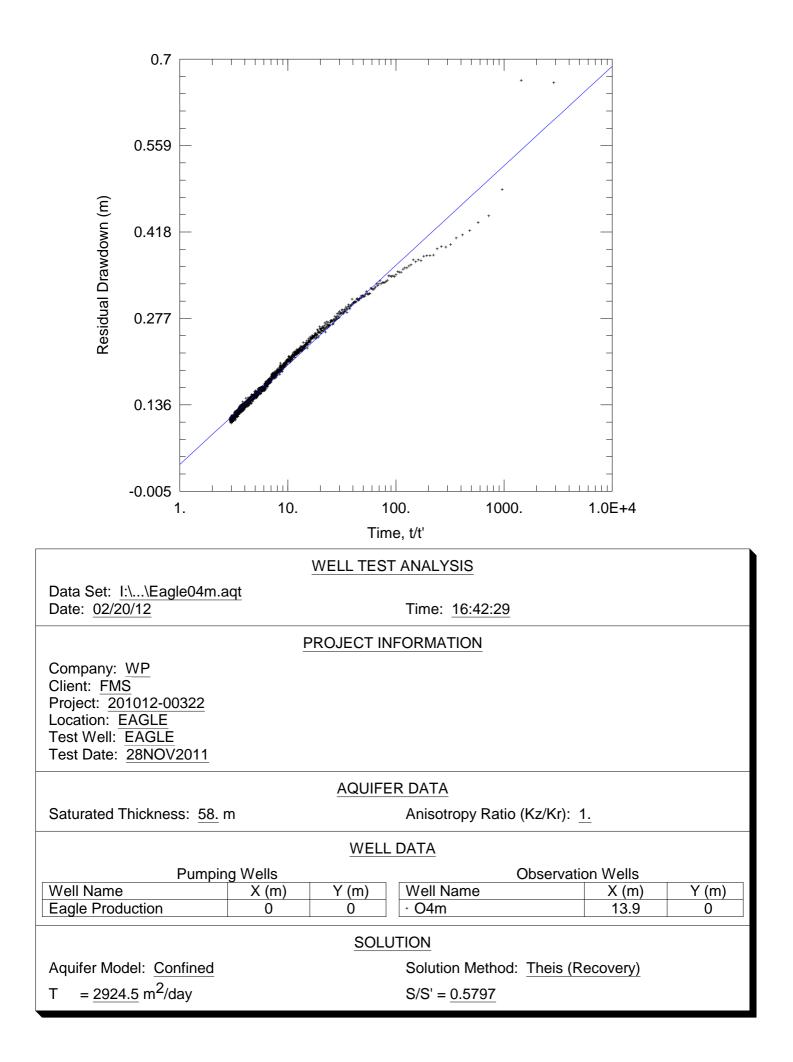












FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 5: Water Levels

Measured Water Levels

			wied3	ured water Levels				
Demosit		No. with Sur. 20	Frating	Dete	RL (Height of	C)4/1 (math m1)	D14/1	5011
Deposit DELTA	Hole-ID	Northing	Easting 551737.1	Date 8/9/2008	GL)/ToC 556.1	SWL (mbgl) 50.00	RWL 506.14	EOH
DELTA	HPRC0203 HPRC0204	7551864.5 7552035.5	551624.2	11/9/2008	554.3	52.00	502.33	
	HPRC0205	7552199.1	551515.2	13/9/2008	551.0	32.00	520.96	
DELTA	HPRC0206	7552360.1	551403.7	13/9/2008	548.3	30.00	520.96 518.26	
	HPRC0208							
DELTA		7552693.1	551184.1	14/9/2008	545.4	40.00	505.41	_
DELTA	HPRC0240	7551476.5	550185.3	10/10/2008	575.3	46.00	529.26	_
DELTA	HPRC0216	7552257.5	550278.3	5/12/2008	557.0	32.00	525.03	_
DELTA	HPRC0209	7552865.5	551070.9	7/12/2008	544.9	48.00	496.85	_
DELTA	HPDD0007	7552862.6	551073.2	7/9/2009	544.8	40.40	504.44	
DELTA	HPDD0008	7553436.7	550669.7	7/9/2009	561.4	52.80	508.64	
DELTA	HPRC0205	7552199.1	551515.2	Jul-09	551.0	44.97	505.99	
DELTA	HPRC0208	7552693.1	551184.1	Jul-09	545.4	38.70	506.71	
DELTA	HPRC0208A	7552695.4	551169.5	Jul-09	545.4	43.70	501.68	
DELTA	HPRC0209	7552865.5	551070.9	Jul-09	544.9	42.00	502.85	
DELTA	HPRC0211	7553184.7	550842.8	Jul-09	557.4	54.94	502.50	
DELTA	HPRC0216	7552257.5	550278.3	Jul-09	557.0	50.24	506.79	
DELTA	HPRC0219	7550656.7	550147.7	Jul-09	581.4	39.51	541.93	
DELTA	HPRC0222	7551856.0	549342.1	Jul-09	572.1	53.64	518.45	
DELTA	HPRC0224	7551534.9	551422.2	Jul-09	565.0	46.91	518.05	
ELTA	HPRC0226	7552191.1	550979.4	Jul-09	554.4	49.58	504.84	
	HPRC0226			Jul-09 Jul-09	551.0	49.58 47.70		
		7552517.5	550746.3				503.33	
DELTA	HPRC0232	7552051.3	549777.7	Jul-09	564.7	51.24	513.43	
DELTA	HPRC0234	7551703.7	548842.3	Jul-09	580.9	40.59	540.36	
DELTA	HPRC0238	7551151.9	550391.8	Jul-09	571.2	38.57	532.61	
DELTA	HPRC0240	7551476.5	550185.3	Jul-09	575.3	44.69	530.57	
DELTA	HPRC0242	7550311.3	549806.0	Jul-09	592.3	17.87	574.41	
DELTA	HPRC0243	7550490.4	549698.6	Jul-09	588.1	21.46	566.66	
DELTA	HPRC0247	7551930.5	551138.7	Jul-09	555.0	49.32	505.73	
ELTA	HPRC0248	7552030.8	551093.6	Jul-09	554.2	49.04	505.19	
ELTA	HPRC0249A	7552089.5	551045.8	Jul-09	554.0	26.57	527.41	
ELTA	HPRC0250	7552322.2	550848.1	Jul-09	551.3	47.12	504.15	
DELTA	HPRC0251	7552667.6	550639.3	Jul-09	551.1	47.94	503.16	
DELTA	HPRC0252							
		7550410.7	549757.8	Jul-09	589.1	22.42	566.73	_
DELTA	HPRC0254	7551085.1	550446.7	Jul-09	571.9	34.09	537.79	
DELTA	HPRC0255	7551249.0	550354.6	Jul-09	570.5	32.94	537.60	_
DELTA	HPRC0256	7551638.9	550738.4	Jul-09	561.9	42.69	519.18	
DELTA	HPRC0258	7551627.6	548913.2	Jul-09	580.9	39.81	541.08	
DELTA	HPRC0264	7551974.9	549831.3	Jul-09	564.3	41.56	522.74	
DELTA	HPRC0266	7552367.7	550244.9	Jul-09	558.9	52.74	506.18	
DELTA	HPRC0267	7552501.9	550120.0	Jul-09	561.4	56.98	504.42	
Delta	HPRC0257	7551785.8	550626.0	14/04/2011	560.9	36.01	524.88	
Delta	HPRC2050	7552578.4	550349.8	14/04/2011	556.6	57.82	498.75	
DELTA	HPRC2054	7553025.0	550651.9	14/04/2011	557.8	14.39	543.43	
Delta	HPRC2151	7552609.4	550795.4	14/04/2011	549.7	47.39	502.32	
Delta	HPRC2174	7553294.2	551060.2	14/04/2011	549.1	47.44	501.68	
DELTA	HPRC2183	7552558.7		14/04/2011	547.5	45.24	502.25	
			551566.5					
	HPRC2184	7552635.0	551533.0	14/04/2011	545.7	43.74	501.99	
Delta	HPRC2186	7552797.8	551419.7	14/04/2011	543.6	34.65	508.95	
DELTA	HPRC2187	7552894.1	551350.9	14/04/2011	542.1	40.00	502.10	
Pelta	HPRC2194	7552884.2	551181.2	14/04/2011		41.09	501.51	
No.lto				i = i	542.6			
	HPRC2238	7552444.6	551053.6	15/04/2011	548.4	46.18	502.26	
	HPRC3039	7552444.6 7551538.1	551053.6 551687.6	15/04/2011 15/04/2011	548.4 565.6	35.45	530.14	
DELTA		7552444.6	551053.6		548.4			
DELTA Delta	HPRC3039	7552444.6 7551538.1	551053.6 551687.6	15/04/2011	548.4 565.6	35.45	530.14	
DELTA Delta Delta	HPRC3039 HPRC0216	7552444.6 7551538.1 550278.2	551053.6 551687.6 7552257.5	15/04/2011 Nov-11	548.4 565.6 557.0	35.45 29.70	530.14 527.34	
DELTA Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269	7552444.6 7551538.1 550278.2 551507.9 550088.9	551053.6 551687.6 7552257.5 7553095.9 7550744.5	15/04/2011 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9	35.45 29.70 Dry 40.22	530.14 527.34 Dry 539.69	
DELTA Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9	15/04/2011 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8	35.45 29.70 Dry 40.22 64.79	530.14 527.34 Dry	39
DELTA Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3	35.45 29.70 Dry 40.22 64.79 Dry	530.14 527.34 Dry 539.69 526.99 Dry	39
ELTA pelta pelta pelta pelta pelta pelta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118	7552444.6 7551538.1 550278.2 551507.9 5550088.9 548542.3 7552214.0 549487.2	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9	35.45 29.70 Dry 40.22 64.79 Dry 51.18	530.14 527.34 Dry 539.69 526.99 Dry 518.67	
ELTA velta velta velta velta velta velta velta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry	39 54
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2144	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55	
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2174	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00	54
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2174 HPRC2240	7552444.6 7551538.1 550278.2 551507.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 550.8	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62	54 48
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2174 HPRC2140 HPRC2242	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 5551059.2 7552278.5 7552217.4	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 75522277.0 7553294.1 551168.8 551280.7	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 550.8 552.4	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry	54
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2174 HPRC2174 HPRC21240 HPRC2242	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5 7552117.4 550720.2	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 550.8 552.4 558.0	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39	54 54 48 45
ELTA elta elta elta elta elta elta elta elta elta elta elta elta elta elta elta elta elta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2174 HPRC2240 HPRC2240 HPRC2242 HPRC2249 HPRC2249	7552444.6 7551538.1 550278.2 551507.9 5548542.3 7552214.0 549487.2 7551888.9 550103.0 5551059.2 7552278.5 7552117.4 550720.2 7551540.5	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 75522277.0 7553294.1 551168.8 551280.7	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.3 569.8 552.4 552.4 552.4 552.4 552.4 554.9	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61 Dry Dry Dry	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39 Dry Dry	54 54 48 45 14
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2174 HPRC2174 HPRC21240 HPRC2242	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5 7552117.4 550720.2	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.4 552.4 558.0 564.9 567.9	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39	54 54 48 45
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2174 HPRC2240 HPRC2240 HPRC2242 HPRC2249 HPRC2249	7552444.6 7551538.1 550278.2 551507.9 5548542.3 7552214.0 549487.2 7551888.9 550103.0 5551059.2 7552278.5 7552117.4 550720.2 7551540.5	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5 550467.9	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.4 552.4 558.0 564.9 567.9	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61 Dry Dry Dry	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39 Dry Dry	54 54 48 45 14
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2174 HPRC2240 HPRC2242 HPRC2249 HPRC2267 HPRC2276	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5 7552117.4 550720.2 7551540.5 7551390.9	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5 550467.9 550411.6	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.3 569.8 552.4 552.4 552.4 552.4 552.4 554.9	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61 Dry Dry Dry Dry	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39 Dry Dry Dry 514.39	54 54 48 45 14
DELTA Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2118 HPRC2119 HPRC2144 HPRC2174 HPRC2242 HPRC2242 HPRC2249 HPRC2240 HPRC2242 HPRC2242 HPRC2243 HPRC2244 HPRC2245 HPRC2249 HPRC2276 HPRC2302 HPRC3019	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5 7552117.4 550720.2 7551540.5 7551390.9 550189.6 552339.7	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5 550467.9 550411.6 7550852.4 7551490.4	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.3 5649.1 552.4 552.4 558.0 564.9 567.9 577.5 568.5	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61 Dry Dry 23.46 57.99	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39 Dry Dry 514.39 Dry 554.00 510.51	54 48 45 14 15.8
Delta	HPRC3039 HPRC0216 HPRC0269 HPRC0285 HPRC2084 HPRC2094 HPRC2118 HPRC2119 HPRC2144 HPRC2240 HPRC2242 HPRC2242 HPRC2249 HPRC2267 HPRC2267 HPRC2276 HPRC2302	7552444.6 7551538.1 550278.2 551507.9 550088.9 548542.3 7552214.0 549487.2 7551888.9 550103.0 551059.2 7552278.5 7552278.5 7552117.4 550720.2 7551540.5 7551390.9 550189.6	551053.6 551687.6 7552257.5 7553095.9 7550744.5 7551893.9 550764.0 7551828.3 549449.4 7552277.0 7553294.1 551168.8 551280.7 7551836.5 550467.9 550447.9	15/04/2011 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11 Nov-11	548.4 565.6 557.0 539.6 579.9 591.8 552.3 569.9 570.2 559.4 549.1 552.4 552.4 552.4 552.4 556.8 557.9 564.9 567.9 577.5	35.45 29.70 Dry 40.22 64.79 Dry 51.18 Dry 46.82 47.12 44.14 Dry 43.61 Dry Dry Dry 23.46	530.14 527.34 Dry 539.69 526.99 Dry 518.67 Dry 512.55 502.00 506.62 Dry 514.39 Dry Dry Dry 514.39	54 48 45 14 15.8

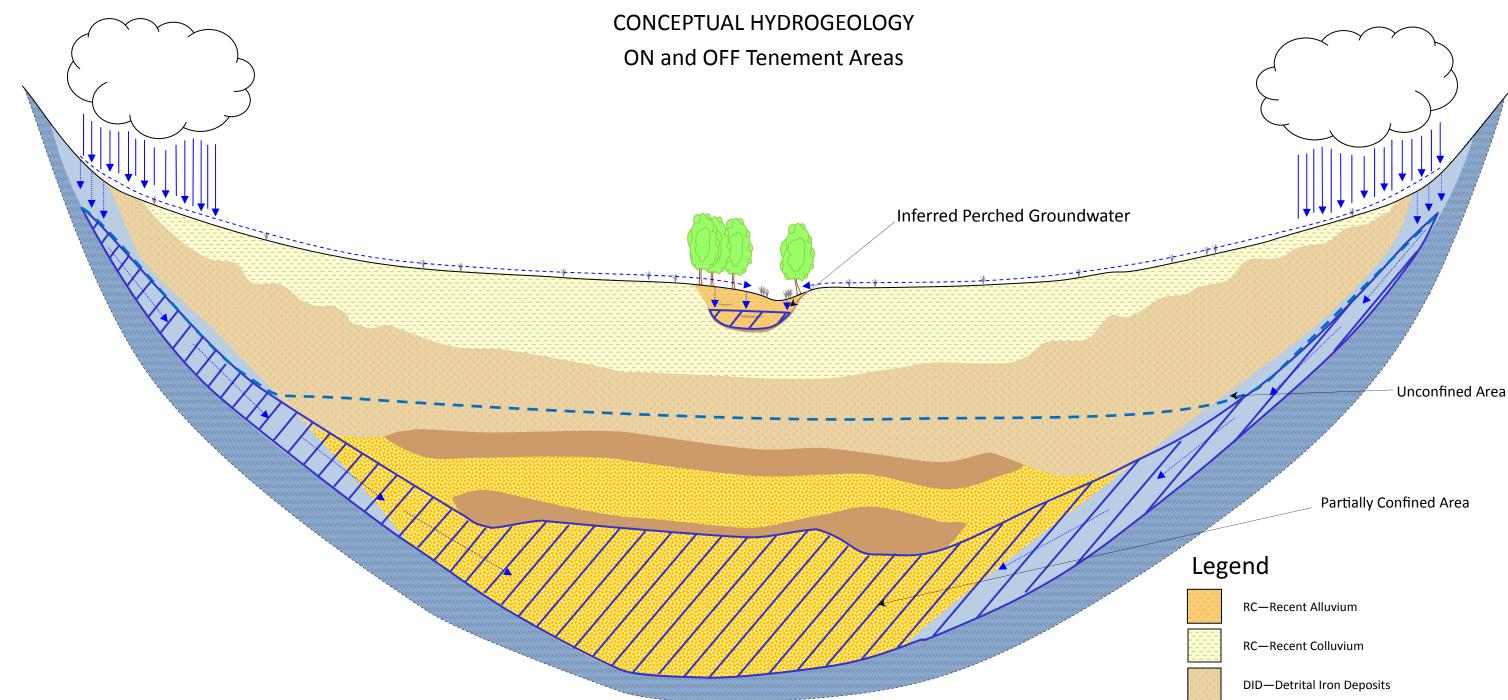
Dalla		75540447	550000 0	Nev 44	500.0	Date	Dat	05
Delta	HPRC3442 HPRC3442A	7551314.7	550386.6	Nov-11	569.2	Dry	Dry	35
Delta Delta	HPRC5034	7551309.0 551307.6	550379.0 7550982.2	Nov-11 Nov-11	569.2 577.0	Dry 18.68	Dry 558.29	38
Delta	HPRC5069	7552174.9	550784.7	Nov-11	553.6	Dry	Dry	46
Delta	HPRC5070	7552250.5	550723.1	Nov-11	551.3	57.70	493.64	47.165
Delta	HPRC5203A	7551697.0	551648.0	Nov-11	551.3	Drv	433.04 Drv	51
Delta	HPRC5210	551257.3	7552281.9	Nov-11	549.8	45.37	504.40	51
Delta	HPRC5225	7551731.7	551706.7	Nov-11	560.2	Dry	Dry	32.4
Delta	HPRC5275	551040.3	7552890.8	Nov-11	546.4	43.74	502.62	02.4
Delta	HPRC5320A	7551638.0	552085.0	Nov-11	010.1	Dry	Dry	46
Delta	HPRC5359	552705.3	7551089.4	Nov-11	590.0	23.03	566.97	10
Delta	HPRC5366	7551383.0	552494.0	Nov-11	580.0	Dry	Dry	40
Delta	HPRC5376	7551127.0	552753.0	Nov-11	580.0	Dry	Dry	26
Delta	HPRC5377	7551206.0	552696.0	Nov-11	589.0	Dry	Dry	40
Delta	HPRC5384	7551235.0	552747.0	Nov-11	589.0	Dry	Dry	40
Delta	HPRC5386	7551331.0	552685.0	Nov-11	581.0	43.35	537.65	46
Delta	HPRC5387	7551363.0	552661.0	Nov-11	579.0	Dry	Drv	52
Delta	HPRC5394	7551270.0	552786.0	Nov-11	587.0	27.20	559.80	28
Delta	HPRC5395	7551357.0	552729.0	Nov-11	577.0	Drv	Drv	40
Delta	HPRC5396	7551440.0	552678.0	Nov-11	576.0	Dry	Dry	52
Delta	HPRC5397	7551537.0	552619.0	Nov-11	580.0	Dry	Dry	34
Delta	HPRC5398	7551603.0	552558.0	Nov-11	573.0	Dry	Dry	28
Delta	DELTA PROD 1	551424.9	7553228.2	17/11/2011	540.5	39.23	501.30	20
Delta	HPRC2118	549487.2	7551828.3	17/11/2011	569.9	51.99	517.86	+
Delta	HPRC3019	552339.7	7551490.4	17/11/2011	568.5	58.80	509.70	+
Delta	HPRC5034	551307.6	7550982.2	17/11/2011	577.0	52.75	509.70	+
Delta	DELTA OBS 1	550922.6	7552536.9	23/11/2011	548.4	45.90	502.49	+
Delta	DELTA OBS 1 DELTA OBS 2	551237.3	7552861.8	23/11/2011	543.2	45.90 41.43	502.49	+
Delta	DELTA OBS 2 DELTA OBS 3	551411.9	7553238.6	23/11/2011	540.8	39.83	500.99	+
Delta	Delta-Obs-4-Deep	551411.9 551418.4	7553238.6	23/11/2011	540.8 540.7	39.83	500.99	+
DEIID	Delta-Obs-4-	551410.4	1000214.2	23/11/2011	J4U.1	33.34	301.31	+
Dolto	Shallow	551418.4	7552214 2	23/11/2011	540 7	20.24	501 21	
Delta Delta			7553214.2		540.7	39.34 Dru	501.31	
Delta	HPRC0216	550278.2	7552257.5	23/11/2011	557.0	Dry	Dry	
Delta	HPRC0269	551507.9	7553095.9	23/11/2011	539.6	27.92	511.66	
Delta	HPRC0284	7551415.2	550227.1	23/11/2011	575.0	65.34	509.71	
Delta	HPRC0285	550088.9	7550744.5	23/11/2011	579.9	41.16	538.76	
Delta	HPRC2144	550103.0	7552277.0	23/11/2011	559.4	48.37	511.00	
Delta	HPRC2174	551059.2	7553294.1	23/11/2011	549.1	48.02	501.10	
Delta	HPRC2249	550720.2	7551836.5	23/11/2011	558.0	44.35	513.64	
Delta	HPRC2302	550189.6	7550852.4	23/11/2011	577.5	26.38	551.08	
Delta	HPRC3029	551731.5	7551693.9	23/11/2011	561.5	52.80	508.72	
Delta	HPRC5210	551257.3	7552281.9	23/11/2011	549.8	20.66	529.11	
Delta	HPRC5275	551040.3	7552890.8	23/11/2011	546.4	46.09	500.27	
Delta	HPRC5359	552705.3	7551089.4	23/11/2011	590.0	44.59	545.42	
Eagle	HPWB0001	39641.0	7548807.6	551499.173	599.9290161	34.00	565.93	37
Eagle	HPRC0004	39650.0	7548198.6	551380.136	588.3519897	39.80	548.55	25.5
Eagle	HPRC0002	39658.0	7547397.6	551391.889	584.6049805	44.90	539.70	71.4
Eagle	HPRC0003	39659.0	7547804.0	551393.828	584.5499878	41.50	543.05	60.5
Eagle	HPRC0008	39661.0	7547403.9	550928.821	589.0689697	48.10	540.97	51.5
Eagle	HPRC0001	39663.0	7546995.3	551396.071	584.1359863	44.00	540.14	83.2
Eagle	HPRC0011	39679.0	7547800.7	550395.621		47.00	545.80	74.4
Eagle	HPRC0012	39680.0	7547626.4	550426.547	593.6190186		540.82	62.5
Eagle	HPRC0013	39683.0	7547396.7	550388.981		57.00	536.76	93.5
Eagle	HPRC0014	39684.0	7547227.8	550426.398		60.00	533.43	74.8
Eagle	HPRC0025	39689.0	7546999.2	548396.201	613.3469849		574.30	43.5
Eagle	HPRC0026	39690.0	7547185.4	548382.775	613.6309814		576.09	44.3
Eagle	HPRC0036	39936.0	7548868.1	546781.578	634.960022	47.00	587.96	61.2
Eagle	HPRC0037	39936.0	7549071.2	546858.693	637.0819702		597.38	98
Eagle	HPRC0040	39936.0	7549368.2	545897.155	648.6450195	28.88	619.77	108
Eagle	HPRC0072	39936.0	7548868.0	547334.655	633.9780273	46.65	587.33	26
Eagle	HPRC0079	39936.0	7549697.2	546591.747	659.8779907	23.20	636.68	106
Eagle	HPRC0080	39936.0	7549320.6	545335.522	659.3270264		607.13	120
Eagle	HPRC0081	39936.0	7549406.1	545386.982	656.8480225		611.60	108
Eagle	HPRC0084	39936.0	7549059.7	546317.889	641.940979	43.63	598.31	113
Eagle	HPRC0090	39936.0	7549199.1	545830.373	650.2069702	48.30	601.91	126
Eagle	HPRC0091	39936.0	7549277.7	545880.8	648.5430298		607.99	54
Eagle	HPRC0095	39936.0	7549333.2	546994.789	644.9229736		609.12	66
Eagle	HPRC0096	39936.0	7549514.6	547086.79	650.4550171	31.40	619.06	54
Eagle	HPRC0098	39936.0	7548718.1	547225.253	630.9180298		570.37	66
Eagle	HPRC0019	39937.0	7547212.1	549378.116		56.70	546.21	120
Eagle	HPRC0020	39937.0	7547395.1	549386.672	603.1699829	59.95	543.22	72
Eagle	HPRC0021	39937.0	7547599.4	549399.538	602.3359985	59.85	542.49	48
Eagle	HPRC0025	39937.0	7546999.2	548396.201	613.3469849		573.35	36
Eagle	HPRC0026	39937.0	7547185.4	548382.775	613.6309814		575.18	24
Eagle	HPRC0029	39937.0	7547797.8	548399.47	613.1710205		572.17	66
	HPRC0035	39937.0	7548996.2	548398.993	647.0629883	48.85	598.21	66

Eagle	HPRC0059	39937.0	7546996.4	549897.343	598.1110229	54.70	543.41	42
Eagle	HPRC0060	39937.0	7547199.4	549891.478	598.3640137	56.05	542.31	90
Eagle	HPRC0061	39937.0	7547399.9	549895.985	598.4689941	56.80	541.67	90
Eagle	HPRC0062	39937.0	7547605.5	549892.76	597.5900269	56.40	541.19	24
Eagle	HPRC0063	39937.0	7547795.4	549907.13	600.8029785	59.70	541.10	30
Eagle	HPRC0064	39937.0	7547997.0	549893.821	605.1409912	64.05	541.09	48
Eagle	HPRC0066	39937.0	7547004.2	548886.944	607.8759766	46.85	561.03	42
Eagle	HPRC0068	39937.0	7547396.1	548901.969	607.7180176	59.50	548.22	54
Eagle	HPRC0069	39937.0	7547599.6	548890.72	608.0629883	63.20	544.86	48
Eagle	HPRC0105	39937.0	7547683.4	548392.24	612.6339722	40.40	572.23	54
Eagle	HPRC0107	39937.0	7547998.2	548385.949	617.8959961	42.05	575.85	42
Eagle	HPRC0108	39937.0	7548102.5	548395.584	620.0159912	54.55	565.47	36
Eagle	HPRC0112	39937.0	7548681.2	548395.453	634.6309814	41.25	593.38	30
Eagle	HPRC0011	39938.0	7547800.7	550395.621	592.802002	51.95	540.85	18
Eagle	HPRC0012	39938.0	7547626.4	550426.547	593.6190186	52.65	540.97	102
Eagle	HPRC0013	39938.0	7547396.7	550388.981	593.7589722	51.10	542.66	96
Eagle	HPRC0014	39938.0	7547227.8	550426.398	593.4290161	52.95	540.48	60
Eagle	HPRC0015	39938.0	7546999.2	550400.602	592.1640015	50.00	542.16	90
Eagle	HPRC0016	39938.0	7548202.9	550395.498	599.1350098	39.00	560.14	90
Eagle	HPRC0017A	39938.0	7548033.7	550415.344	595.6959839	54.45	541.25	90
Eagle	HPRC0042	39938.0	7546996.2	551400.831	584.1069946	43.45	540.66	50
- U	HPRC0042	39938.0	7547234.3	551389.371	584.117981		540.88 540.32	54 66
Eagle					584.117981 584.0219727	43.80		
Eagle	HPRC0044	39938.0	7547640.7	551390.098		41.90	542.12	76
Eagle	HPRC0045	39938.0	7547798.4	551398.657	584.4869995	42.10	542.39	78
Eagle	HPRC0047	39938.0	7548196.2	551398.124	588.4439697	40.20	548.24	54
Eagle	HPRC0049	39938.0	7548598.2	551395.612	595.0079956	34.90	560.11	36
Eagle	HPRC0050	39938.0	7546999.3	550902.733	588.1610107	45.40	542.76	30
Eagle	HPRC0051	39938.0	7547250.3	550920.039	588.0040283	44.20	543.80	36
Eagle	HPRC0052	39938.0	7547398.3	550929.667	589.065979	48.30	540.77	20
Eagle	HPRC0053	39938.0	7547647.7	550881.958	589.0180054	48.35	540.67	76
Eagle	HPRC0056	39938.0	7548200.2	550896.744	597.5200195	35.50	562.02	66
Eagle	HPRC0058	39938.0	7548604.3	550907.704	600.7880249	41.85	558.94	96
Eagle	HPRC0102	39938.0	7547093.2	548377.355	613.2349854	36.50	576.73	72
Eagle	HPRC0103	39938.0	7547293.1	548414.819	612.8770142	42.00	570.88	
Eagle	HPRC0113	39938.0	7547102.9	550389.789	593.5130005	52.30	541.21	78
Eagle	HPRC0011	39996.0	7547800.7	550395.621	592.802002	56.66	536.14	
Eagle	HPRC0012	39996.0	7547626.4	550426.547	593.6190186	54.43	539.19	
Eagle	HPRC0013	39996.0	7547396.7	550388.981	593.7589722	53.07	540.69	
Eagle	HPRC0014	39996.0	7547227.8	550426.398	593.4290161	51.75	541.68	
Eagle	HPRC0015	39996.0	7546999.2	550400.602	592.1640015	48.50	543.66	
Eagle	HPRC0018	39996.0	7547002.7	549401.81	602.6339722	44.60	558.03	
Eagle	HPRC0019	39996.0	7547212.1	549378.116	602.9110107	55.89	547.02	
_ ·	HPRC0020	39996.0	7547395.1	549386.672	603.1699829	59.49	543.68	
Eagle	HPRC0020	39996.0	7547599.4	549399.538	602.3359985		543.00 542.80	
Eagle	HPRC0023			549396.816		59.54 35.62		
Eagle		39996.0	7548196.1		612.9550171		577.34	
Eagle	HPRC0025	39996.0	7546999.2	548396.201	613.3469849	39.26	574.08	
Eagle	HPRC0026	39996.0	7547185.4	548382.775	613.6309814	37.56	576.08	
Eagle	HPRC0028	39996.0	7547590.0	548392.269	611.8140259	43.35	568.46	
Eagle	HPRC0029	39996.0	7547797.8	548399.47	613.1710205	39.88	573.29	
Eagle	HPRC0034	39996.0	7548792.1	548415.884	638.3380127	42.61	595.73	
Eagle	HPRC0035	39996.0	7548996.2	548398.993	647.0629883		598.50	
Eagle	HPRC0036	39996.0	7548868.1	546781.578	634.960022	45.90	589.06	
Eagle	HPRC0037	39996.0	7549071.2	546858.693	637.0819702		586.00	
Eagle	HPRC0040	39996.0	7549368.2	545897.155	648.6450195		620.16	
Eagle	HPRC0042	39996.0	7546996.2	551400.831	584.1069946		540.89	
Eagle	HPRC0043	39996.0	7547234.3	551389.371	584.117981	43.81	540.31	
Eagle	HPRC0044	39996.0	7547640.7	551390.098	584.0219727	37.84	546.18	
Eagle	HPRC0045	39996.0	7547798.4	551398.657	584.4869995	41.49	543.00	
Eagle	HPRC0047	39996.0	7548196.2	551398.124	588.4439697	39.42	549.03	
Eagle	HPRC0048	39996.0	7548428.1	551378.093			555.52	
Eagle	HPRC0049	39996.0	7548598.2	551395.612			560.87	
Eagle	HPRC0050	39996.0	7546999.3	550902.733	588.1610107	45.35	542.81	
Eagle	HPRC0051	39996.0	7547250.3	550920.039	588.0040283		534.66	
Eagle	HPRC0052	39996.0	7547398.3	550929.667	589.065979	48.13	540.94	
Eagle	HPRC0053	39996.0	7547647.7	550881.958	589.0180054	48.20	540.82	
Eagle	HPRC0056	39996.0	7548200.2	550896.744	597.5200195		540.02	
Eagle	HPRC0058	39996.0	7548604.3	550907.704	600.7880249		565.36	
ě	HPRC0058	39996.0	7546996.4	549897.343			565.36 544.00	
Eagle								
Eagle	HPRC0060	39996.0	7547199.4	549891.478	598.3640137	55.70	542.66	
Eagle	HPRC0061 HPRC0062	39996.0	7547399.9	549895.985	598.4689941	56.45	542.02	
		39996.0	7547605.5	549892.76		56.09	541.50	
Eagle			7547705 4					
Eagle Eagle	HPRC0063	39996.0	7547795.4	549907.13		59.47	541.33	
Eagle Eagle Eagle	HPRC0063 HPRC0064	39996.0 39996.0	7547997.0	549893.821	605.1409912	63.89	541.25	
Eagle Eagle Eagle Eagle	HPRC0063 HPRC0064 HPRC0066	39996.0 39996.0 39996.0	7547997.0 7547004.2	549893.821 548886.944	605.1409912 607.8759766	63.89 45.55	541.25 562.33	
Eagle Eagle Eagle	HPRC0063 HPRC0064	39996.0 39996.0	7547997.0	549893.821	605.1409912	63.89 45.55 34.27	541.25	

							- 10.00	1
Eagle	HPRC0069	39996.0	7547599.6	548890.72	608.0629883	61.83	546.23	
Eagle	HPRC0072	39996.0	7548868.0	547334.655	633.9780273	46.17	587.81	
Eagle	HPRC0079	39996.0	7549697.2	546591.747	659.8779907	25.18	634.70	
Eagle	HPRC0080	39996.0	7549320.6	545335.522	659.3270264	51.81	607.52	
Eagle	HPRC0084	39996.0	7549059.7	546317.889	641.940979	42.84	599.10	
Eagle	HPRC0090	39996.0	7549199.1	545830.373	650.2069702	47.29	602.92	
Eagle	HPRC0091	39996.0	7549277.7	545880.8	648.5430298	40.13	608.41	
Eagle	HPRC0094	39996.0	7549160.2	546905.643	639.5629883	48.47	591.09	
Eagle	HPRC0095	39996.0	7549333.2	546994.789	644.9229736	38.50	606.42	
Eagle	HPRC0096	39996.0	7549514.6	547086.79	650.4550171	30.92	619.54	
Eagle	HPRC0099	39996.0	7548789.9	547281.046	632.3499756	53.96	578.39	
Eagle	HPRC0102	39996.0	7547093.2	548377.355	613.2349854	24.15	589.08	
Eagle	HPRC0103	39996.0	7547293.1	548414.819	612.8770142	41.50	571.38	
Eagle	HPRC0104	39996.0	7547498.0	548398.86	612.1820068	41.50	570.68	
Eagle	HPRC0105	39996.0	7547683.4	548392.24	612.6339722	37.10	575.53	
Eagle	HPRC0106	39996.0	7547894.1	548397.022	615.3280029	44.20	571.13	
Eagle	HPRC0107	39996.0	7547998.2	548385.949	617.8959961	19.50	598.40	
Eagle	HPRC0108	39996.0	7548102.5	548395.584	620.0159912	59.80	560.22	
Eagle	HPRC0113	39996.0	7547102.9	550389.789	593.5130005	52.14	541.37	
Eagle	HPRC4222	40647.0	7546997.0	551405.00	623.00	42.8	580.20	74
Eagle	HPRC0008	40648.0	7547403.9	550928.82	589.07	48.52	540.55	30
Eagle	HPRC0018	40648.0	7547002.7	549401.81	602.63	48.33	554.30	66
Eagle	HPRC0028	40648.0	7547590.0	548392.27	611.81	53.28	558.53	60
Eagle	HPRC0046	40648.0	7548031.1	551386.75	586.00	39.51	546.49	72
Eagle	HPRC0102	40648.0	7547093.2	548377.36	613.23	24.49	588.74	70
Eagle	HPRC4006	40648.0	7548674.3	551391.70	596.50	33.80	562.70	24
Eagle	HPRC4185	40648.0	7547385.0	549279.00	606.00	61.56	544.44	48
Eagle	HPRC4122	40848.0	544946.1	7549663.393	673.86	34.395	639.462	30
Eagle	HPRC4118	40848.0	545178.0	7549533.175	661.01	Dry	-	12
Eagle	HPRC0098	40848.0	547225.3	7548717.863	630.92	61.6	569.31803	36
Eagle	HPRC0108	40848.0	548395.6	7548102.472	620.02	54.5	565.515991	48
Eagle	HPRC0035	40848.0	548399.0	7548996.028	647.06	47.406	599.656988	42
Eagle	HPRC0068	40848.0	548902.0	7547396.143	607.72	61.2	546.518018	24
Eagle	HPRC4180	40848.0	549402.0	7547290.758	602.95	59.8	543.15	26
Eagle	HPRC4029	40848.0	550653.1	7548792.622	610.97	49.8	561.165	54
Eagle	HPRC4257	40848.0	550653.6	7546813.049	-	49.85	-	48
Eagle	HPRC0052	40848.0	550929.5	7547398.306	589.07	48.4	540.665979	30
Eagle	HPRC4052	40848.0	551272.7	7548503.04	592.82	Dry	-	18
Eagle	HPRC4053	40848.0	551286.0	7548613.494	594.42	32.6	561.821	54
Eagle	HPRC0004	40848.0	551380.3	7548198.296	588.35	38.3	550.05199	48
Eagle	HPRC0002	40848.0	7547397.6	551391.889	584.60	blocked	-	24
Eagle	HPRC0008	40848.0	7547403.9	550928.821	589.07	48.4	540.66897	18
Eagle	HPRC0010	40848.0	7548196.6	550901.341	597.32	dry	-	24
Eagle	HPRC0011	40848.0	7547800.7	550395.621	592.80	51.95	540.852002	30
Eagle	HPRC0012	40848.0	7547626.4	550426.547	593.62	52.65	540.969019	54
Eagle	HPRC0013	40848.0	7547396.7	550388.981	593.76	51.1	542.658972	42
Eagle	HPRC0014	40848.0	7547227.8	550426.398	593.43	52.95	540.479016	24
Eagle	HPRC0015	40848.0	7546999.2	550400.602	592.16	50	542.164001	57
Eagle	HPRC0016	40848.0	7548202.9	550395.498	599.14	39	560.13501	54
Eagle	HPRC0017A	40848.0	7548033.7	550415.344	595.70	54.45	541.245984	42
		10010.0				10.1		10
Eagle Eagle	HPRC0018 HPRC0019	40848.0 40848.0	7547002.7 7547212.1	549401.81 549378.116	602.63 602.91	46.1 56.7	556.533972 546.211011	42 24
Eagle	HPRC0020	40848.0	7547395.1	549386.672	602.91	59.95	543.219983	24 56
Eagle	HPRC0020	40848.0	7547599.4	549399.538	602.34	59.85	542.485999	26
	HPRC0021	40848.0	7547793.8	549402.227	602.34 606.34		-	18
Eagle Eagle	HPRC0022 HPRC0023	40848.0	7548196.1	549402.227 549396.816	606.34 612.96	dry dry	-	60
Eagle	HPRC0023 HPRC0024	40848.0	7548385.4	549396.816 549397.481	622.75	dry	-	48
	HPRC0024 HPRC0025	40848.0	7546999.2	548396.201	613.35	40	- 573.346985	48
Eagle Eagle			7546999.2 7547185.4			40 38.5		42 54
Eagle			104/100.4	548382.775	613.63	30.0	575.130981	54 78
	HPRC0026	40848.0		549401 042		12 25	570 02501	
Eagle	HPRC0027	40848.0	7547400.7	548401.042	612.39	42.35	570.03501	
Eagle	HPRC0027 HPRC0028	40848.0 40848.0	7547400.7 7547590.0	548392.269	612.39 611.81	46.7	565.114026	78
Eagle Eagle	HPRC0027 HPRC0028 HPRC0029	40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8	548392.269 548399.47	612.39 611.81 613.17	46.7 41		78 56
Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030	40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8	548392.269 548399.47 548392.923	612.39 611.81 613.17 618.07	46.7 41 dry	565.114026	78 56 36
Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031	40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8	548392.269 548399.47 548392.923 548395.46	612.39 611.81 613.17	46.7 41 dry dry	565.114026	78 56 36 30
Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1	548392.269 548399.47 548392.923 548395.46 548384.667	612.39 611.81 613.17 618.07 622.10	46.7 41 dry dry dry	565.114026	78 56 36 30 42
Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753	612.39 611.81 613.17 618.07 622.10 631.88	46.7 41 dry dry dry dry	565.114026	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884	612.39 611.81 613.17 618.07 622.10 631.88 638.34	46.7 41 dry dry dry dry dry dry	565.114026 572.171021 - - - - - -	78 56 36 30 42
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 7548868.1	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548410.753 548415.884 546781.578	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96	46.7 41 dry dry dry dry dry 47	565.114026 572.171021 - - - - 587.960022	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548599.3 7548792.1 754868.1 7549071.2	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546858.693	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 637.08	46.7 41 dry dry dry dry 47 39.7	565.114026 572.171021 - - - - - -	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 7548792.1 7548868.1 7549071.2 7549245.7	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546858.693 546952.41	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 637.08 642.34	46.7 41 dry dry dry dry dry 47 39.7 dry	565.114026 572.171021 - - - - 587.960022	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038 HPRC0039	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 7548792.1 7548868.1 7549071.2 7549245.7 7549426.5	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546781.578 546858.693 546952.41 547022.964	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 634.96 637.08 642.34 647.63	46.7 41 dry dry dry dry dry 47 39.7 dry dry	565.114026 572.171021 - - - 587.960022 597.38197 -	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038 HPRC0039 HPRC0039	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 754868.1 754868.1 7549071.2 7549245.7 7549426.5 7549368.2	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546858.693 546858.693 546952.41 547022.964 545897.155	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 637.08 642.34 647.63 648.65	46.7 41 dry dry dry dry dry 47 39.7 dry	565.114026 572.171021 - - - - - 587.960022	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038 HPRC0039 HPRC0034	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 7548768.1 7549071.2 7549245.7 7549426.5	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546781.578 546858.693 546952.41 547022.964	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 634.96 637.08 642.34 647.63	46.7 41 dry dry dry dry dry 47 39.7 dry dry	565.114026 572.171021 - - - 587.960022 597.38197 -	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038 HPRC0039 HPRC0039	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 754868.1 754868.1 7549071.2 7549245.7 7549426.5 7549368.2	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546858.693 546858.693 546952.41 547022.964 545897.155	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 637.08 642.34 647.63 648.65	46.7 41 dry dry dry dry 47 39.7 dry dry 28.88	565.114026 572.171021 - - - 587.960022 597.38197 -	78 56 36 30 42 90
Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle Eagle	HPRC0027 HPRC0028 HPRC0029 HPRC0030 HPRC0031 HPRC0032A HPRC0033 HPRC0034 HPRC0036 HPRC0037 HPRC0038 HPRC0039 HPRC0034	40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0 40848.0	7547400.7 7547590.0 7547797.8 7547996.8 7548198.8 7548391.1 7548599.3 7548792.1 754868.1 7549071.2 7549245.7 7549426.5 7549368.2 7549359.5	548392.269 548399.47 548392.923 548395.46 548384.667 548400.753 548415.884 546781.578 546858.693 546858.693 546952.41 547022.964 545978.55 545978.546	612.39 611.81 613.17 618.07 622.10 631.88 638.34 634.96 637.08 642.34 642.34 647.63 648.65 657.04	46.7 41 dry dry dry dry 47 39.7 dry dry 28.88 dry	565.114026 572.171021 - - - 587.960022 597.38197 - - 619.76502 -	78 56 36 30 42 90

		40040.0	75 47700 4	554000 057	504.40	40.4	E 40.007
Eagle	HPRC0045 HPRC0046	40848.0	7547798.4	551398.657	584.49	42.1	542.387
Eagle	HPRC0046	40848.0 40848.0	7548031.1 7548196.2	551386.751 551398.124	586.00 588.44	blocked 40.2	- 548.24397
Eagle Eagle	HPRC0048	40848.0	7548428.1	551378.093	500.44 591.36	blocked	-
Eagle	HPRC0049	40848.0	7548598.2	551395.612	595.01	34.9	560.107996
Eagle	HPRC0050	40848.0	7546999.3	550902.733	588.16	45.4	542.761011
Eagle	HPRC0051	40848.0	7547250.3	550920.039	588.00	44.2	543.804028
Eagle	HPRC0053	40848.0	7547647.7	550881.958	589.02	48.35	540.668005
Eagle	HPRC0054	40848.0	7547802.5	550907.083	588.67	dry	-
Eagle	HPRC0055	40848.0	7548040.5	550916.018	593.36	dry	-
Eagle	HPRC0056	40848.0	7548200.2	550896.744	597.52	35.5	562.02002
Eagle	HPRC0057	40848.0	7548523.3	550910.303	599.63	dry	-
Eagle	HPRC0058	40848.0	7548604.3	550907.704	600.79	41.85	558.938025
Eagle	HPRC0059	40848.0	7546996.4	549897.343	598.11	54.7	543.411023
Eagle	HPRC0060	40848.0	7547199.4	549891.478	598.36	56.05	542.314014
Eagle	HPRC0061	40848.0	7547399.9	549895.985	598.47	56.8	541.668994
Eagle	HPRC0062 HPRC0063	40848.0	7547605.5	549892.76 549907.13	597.59 600.80	56.4 59.7	541.190027
Eagle	HPRC0064	40848.0 40848.0	7547795.4 7547997.0	549907.13 549893.821	600.80 605.14	59.7 64.05	541.102979 541.090991
Eagle Eagle	HPRC0065	40848.0	7548197.4	549898.265	608.72	dry	-
Eagle	HPRC0066	40848.0	7547004.2	548886.944	607.88	46.85	561.025977
Eagle	HPRC0067	40848.0	7547200.5	548887.048	608.41	blocked	-
Eagle	HPRC0069	40848.0	7547599.6	548890.72	608.06	63.2	544.862988
Eagle	HPRC0070	40848.0	7547801.9	548908.578	610.10	dry	-
Eagle	HPRC0071	40848.0	7547979.7	548883.022	616.09	dry	-
Eagle	HPRC0072	40848.0	7548868.0	547334.655	633.98	46.65	587.328027
Eagle	HPRC0073	40848.0	7549050.9	547426.974	637.34	dry	-
Eagle	HPRC0074	40848.0	7549229.4	547507.01	642.09	dry	-
Eagle	HPRC0075	40848.0	7548970.2	546255.846	646.21	dry	<u>-</u>
Eagle	HPRC0076	40848.0	7549149.6	546338.119	641.76	dry	-
Eagle	HPRC0077	40848.0	7549334.9	546414.088	644.34	dry	-
Eagle	HPRC0078	40848.0	7549507.7	546514.188	652.34	dry	-
Eagle	HPRC0079	40848.0	7549697.2	546591.747	659.88	23.2	636.677991
Eagle Eagle	HPRC0080 HPRC0081	40848.0 40848.0	7549320.6 7549406.1	545335.522 545386.982	659.33 656.85	52.2 45.25	607.127026 611.598022
Eagle	HPRC0082	40848.0	7549497.7	545434.658	658.50	dry	-
Eagle	HPRC0083	40848.0	7549654.8	545490.821	670.65	dry	-
Eagle	HPRC0084	40848.0	7549059.7	546317.889	641.94	43.63	598.310979
Eagle	HPRC0085	40848.0	7549246.3	546367.191	641.76	dry	-
Eagle	HPRC0086	40848.0	7549430.7	546443.574	647.76	dry	-
Eagle	HPRC0087	40848.0	7549612.0	546571.08	657.71	dry	-
Eagle	HPRC0088	40848.0	7549003.5	545727.267	656.91	blocked	-
Eagle	HPRC0089	40848.0	7549108.7	545793.131	653.27	dry	-
Eagle	HPRC0090	40848.0	7549199.1	545830.373	650.21	48.3	601.90697
Eagle	HPRC0091	40848.0	7549277.7	545880.8	648.54	40.55	607.99303
Eagle	HPRC0092	40848.0	7549448.4	545926.596	651.47	dry	-
Eagle	HPRC0093	40848.0	7548972.7	546821.937	634.79	dry	-
Eagle	HPRC0094	40848.0	7549160.2	546905.643	639.56	dry	-
Eagle	HPRC0095	40848.0	7549333.2	546994.789	644.92	35.8	609.122974
Eagle	HPRC0096	40848.0	7549514.6	547086.79	650.46	31.4	619.055017
Eagle Eagle	HPRC0097 HPRC0099	40848.0 40848.0	7549609.0 7548789.9	547123.709 547281.046	653.99 632.35	dry 66.65	- 565.699976
Eagle	HPRC0100	40848.0	7548971.0	547382.326	637.03	dry	-
Eagle	HPRC0101	40848.0	7549165.4	547472.615	639.68	dry	-
Eagle	HPRC0102	40848.0	7547093.2	548377.355	613.23	36.5	576.734985
Eagle	HPRC0103	40848.0	7547293.1	548414.819	612.88	42	570.877014
Eagle	HPRC0104	40848.0	7547498.0	548398.86	612.18	dry	
Eagle	HPRC0105	40848.0	7547683.4	548392.24	612.63	40.4	572.233972
Eagle	HPRC0106	40848.0	7547894.1	548397.022	615.33	blocked	-
Eagle	HPRC0107	40848.0	7547998.2	548385.949	617.90	42.65	575.245996
Eagle	HPRC0109	40848.0	7548196.3	548391.018	622.02	dry	
Eagle	HPRC0110	40848.0	7548293.9	548391.941	624.43	dry	<u>-</u>
Eagle	HPRC0111	40848.0	7548507.3	548396.629	629.61	dry	-
Eagle	HPRC0112	40848.0	7548681.2	548395.453	634.63	41.25	593.380981
Eagle	HPRC0113	40848.0	7547102.9	550389.789	593.51	52.3	541.213
Eagle	HPRC0114	40848.0	7548069.7	549387.009 7547011.000	611.36	dry 44.01	dry 540.723
Eagle Eagle	EAGLE OBS 4 s EAGLE OBS 4 m	40874.0 40874.0	551407.0 551407.0	7547011.000	584.733 584.733	44.01 44.029	540.723 540.704
Eagle	EAGLE OBS 4 m EAGLE OBS 4 d	40874.0	551407.0 551407.0	7547011.000	584.733 584.733	43.96	540.704 540.773
Eagle	EAGLE PROD 1	40874.0	551396.2	7547002.153	584.554	43.90	540.834
Eagle	HPRC0004	40874.0	551380.3	7548198.296	589.141	39.245	549.896
				7547398.306	589.815	49.092	540.723
-	HPRC0052	40874.0	550929.5				
Eagle	HPRC0052 HPRC0121	40874.0 40874.0	550929.5 549899.4				
Eagle Eagle	HPRC0052 HPRC0121 HPRC4257	40874.0 40874.0 40874.0	550929.5 549899.4 550653.6	7547696.095 7546813.049	600.765 592.180	59.7 50.387	541.065 541.793
Eagle	HPRC0121	40874.0	549899.4	7547696.095	600.765	59.7	541.065

	11000000				1000 001			1
Eagle	HPRC0068	40875.0	548902.0	7547396.143	608.381	49.055	559.326	
Eagle	HPRC0098	40875.0	547225.3	7548717.863	631.616	50.025	631.616	
Eagle	HPRC4029	40875.0	550653.1	7548792.622	611.735	50.935 35.55	560.800 558.008	
Eagle	HPRC4052 HPRC4053	40875.0	551272.7	7548503.040	593.558			
Eagle	HPRC4055	40875.0 40875.0	551286.0 545178.0	7548613.494 7549533.175	595.048 661.670	33.762	561.286 661.670	
Eagle		40875.0					674.512	
Eagle	HPRC4122		544946.1	7549663.393	674.512	54.00		
Eagle	EAGLE OBS 1	40876.0	550278.4	7547283.521	595.353	54.29	541.063	
Eagle	HPRC0035	40876.0	548399.0	7548996.028	647.744	48.225	599.519	
Eagle	HPRC0108	40876.0	548395.6	7548102.472	620.782	55.782	565.000	
Eagle	HPRC4180	40876.0	549402.0	7547290.758	603.814	60.557	543.257	
Champion	HPRC0689	Nov-11	544663.444	7554588.262	592.522	25.4	567.132	32
Champion	HPRC0531	Nov-11	545490.472	7553341.661	577.1619873	36.1	541.026987	41.8
Champion	HPRC0352	Nov-11	545564.959	7553282.635	577.210022	Dry	-	30
Champion	HPRC0766	Nov-11	545920.967	7554368.005	568.5	39.9	528.63	56.5
Champion	HPRC0919	Nov-11	546259.945	7553639.857	568.58	38.1	530.45	59
Champion	HPRC0641	Nov-11	546441.869	7554919.119	567.028	49.6	517.403	70.7
Champion	HPRC0321	Nov-11	546581.314	7554467.782	559.2509766	31.0	528.275977	34.64
Champion	HPRC0395	Nov-11	546661.13	7555504.01	555.1970215	39.8	515.397021	52
Champion	HPRC0631	Nov-11	546893.535	7555104.519	552.87	35.5	517.33	48.5
Champion	HPRC0792	Nov-11	546895.888	7553541.338	574.91	Dry	-	38
Champion	HPRC0672	Nov-11	547008.045	7553444.277	577.446	47.2	530.276	55.75
Champion	HPRC0549	Nov-11	547642.192	7555493.228	554.019	30.5	523.564	60
Champion	HPRC1026	Nov-11	547882.973	7553186.708	598	16.5	581.545	24
Champion	HPRC0973	Nov-11	548034.734	7555166.046	570	22.9	547.07	52
Champion	HPRC0581	Nov-11	547234.092	7555967.636	545.135	28.4	516.735	54.9
Champion	HPRC0615	Nov-11	547089.013	7555464.768	548.838	31.3	517.538	58
Champion	HPRC0614	Nov-11	547022.506	7555503.721	548.918	31.4	517.478	40.7
Champion	HPRC0399	Nov-11	546481.564	7553933.501	565.2420044	36.0	529.242004	40.7
Champion	HPRC0787	Nov-11	546462.01	7553778	565.74	36.4	529.375	64
Champion	HPRC0786	Nov-11	546382.54	7553824.92	565.96	36.4	529.575	39.8
Champion	HPRC0905	Nov-11	546482.65	7553637.1	567.65	38.1	529.55	46
	HPRC0788	Nov-11	546553.95	7553729	567.67	38.3	529.55 529.41	40 49.7
Champion		-						
Champion	HPRC0920	Nov-11	546346.07	7553588.92	569.57	39.1	530.5	50.5
Champion	HPRC0345	Nov-11	545410.727	7553985.441	575.7000122	42.8	532.950012	53.5
Champion	HPRC0329	Nov-11	546226.945	7554081.688	564.9719849	Dry	-	24.5
Champion	HPRC0530	Nov-11	545668.687	7553255.864	576.2230225	Dry	-	31
Champion	HPRC0685	Nov-11	544584.093	7554851.044	597.776	Dry	-	31
Champion	HPRC0707	Nov-11	545408.974	7554290.976	575.548	Dry	-	34.55
Champion	HPRC0768	Nov-11	546094	7554278	565.13	Dry	-	36
Champion	HPRC0904	Nov-11	546390.88	7553676.43	567.17	dry	-	52.6
Champion	HPRC0906	Nov-11	546561.67	7553582.8	568.43	dry	-	40
Champion	HPRC0918	Nov-11	546172.41	7553678.21	569.2	Dry	-	40.2
Champion	CHAMP OBS 1	1/12/2001	546889.991	7555876.47	552.433	37.3	515.128	
Champion	CHAMP OBS 2	2/12/2001	546965.249	7556117.324	548.85	34.0	514.823	
Champion	CHAMP OBS 3	2/12/2001	547145.737	7556023.679	544.574	31.2	513.329	
	CHAMP OBS							
Champion								
Champier	4shallow	2/12/2001	546969.662	7556139.732	548.997	34.1	514.887	
Champion Champion	CHAMP OBS4 m	2/12/2001	546969.662	7556139.732	548.997	34.1	514.902	
Champion	CHAMP OBS4 m CHAMP OBS 4d	2/12/2001 2/12/2001	546969.662 546969.662	7556139.732 7556139.732	548.997 548.997			
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01	2/12/2001 2/12/2001 2/12/2001	546969.662 546969.662 546976.97	7556139.732 7556139.732 7556127.717	548.997 548.997 548.937	34.1 34.0	514.902 514.985	
Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321	2/12/2001 2/12/2001 2/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314	7556139.732 7556139.732 7556127.717 7554467.782	548.997 548.997 548.937 560.01	34.1 34.0 31.8	514.902 514.985 528.25	
Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635	548.997 548.997 548.937 560.01 577.954	34.1 34.0 31.8 dry	514.902 514.985 528.25 dry	
Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01	548.997 548.997 548.937 560.01 577.954 555.915	34.1 34.0 31.8 dry 40.7	514.902 514.985 528.25 dry 515.185	
Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7553341.661	548.997 548.997 548.937 560.01 577.954 555.915 577.857	34.1 34.0 31.8 dry 40.7 36.9	514.902 514.985 528.25 dry 515.185 540.997	
Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 545490.472	7556139.732 7556139.732 7556127.717 75554467.782 7553282.635 7555504.01 7555504.01 75555493.228	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684	34.1 34.0 31.8 dry 40.7 36.9 31.2	514.902 514.985 528.25 dry 515.185 540.997 523.439	
Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535	7556139.732 7556139.732 7556127.717 7554467.782 7555282.635 7555504.01 7553540.01 755341.661 7555493.228 7555104.519	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198	
Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0355 HPRC0531 HPRC0549 HPRC0631 HPRC0641	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 5476893.535 546441.869	7556139.732 7556139.732 7556127.717 7554467.782 75553282.635 7555504.01 7555341.661 7555341.661 7555493.228 7555104.519 75554919.119	548.997 548.997 548.937 560.01 577.954 555.915 557.857 554.684 553.578 567.759	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274	
Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0531 HPRC0631 HPRC0641 HPRC0672	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 547642.192 546893.535 546441.869 547008.045	7556139.732 7556139.732 7556127.717 7554467.782 75553282.635 7555504.01 7555341.661 7555493.228 7555104.519 7555491.119 7553444.277	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192	
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0672 HPRC0689	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 547642.192 546893.535 546441.869 547008.045 544663.444	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7555341.661 7555493.228 7555104.519 7555104.519 75554919.119 7553444.277 7554588.262	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274	
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0672 HPRC0689 HPRC0766	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7555341.661 7555493.228 7555104.519 7555104.519 75554919.119 7553444.277 7554588.262 7554368.005	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66	29
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0395 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0641 HPRC0689 HPRC072 HPRC0766 HPRC0792	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888	7556139.732 7556139.732 7556127.717 75554467.782 7553282.635 7555304.01 7555504.01 7555493.228 7555104.519 75554919.119 7553444.277 7554588.262 7554368.005 7553541.338	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry	38
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0531 HPRC0631 HPRC0631 HPRC0641 HPRC0642 HPRC0689 HPRC0766 HPRC0792 HPRC0919	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945	7556139.732 7556139.732 7556127.717 75554467.782 75553282.635 7555504.01 7555504.01 7555493.228 7555104.519 7554919.119 7553444.277 7554588.262 7554368.005 7553541.338 7553639.857	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 569.387	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387	38
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0672 HPRC0672 HPRC0766 HPRC0792 HPRC0792 HPRC0919 HPRC0973	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734	7556139.732 7556139.732 7556127.717 7554467.782 7555282.635 7555504.01 7553341.661 7555493.228 7555104.519 7555493.228 75554919.119 7553444.277 7554588.262 7554368.005 7553541.338 7553639.857 7555166.046	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 569.387 563.608	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828	38
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0641 HPRC0641 HPRC0672 HPRC0689 HPRC0766 HPRC0792 HPRC0792 HPRC0919 HPRC0973 HPRC0973	2/12/2001 2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734	7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7553341.661 7555493.228 7555104.519 7554919.119 7553444.277 7554588.262 7554588.262 75554588.262 7555468.005 7553541.338 75555166.046 7553186.708	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 569.387 563.608 596.526	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196	38
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0641 HPRC0641 HPRC0641 HPRC0689 HPRC0766 HPRC0766 HPRC0792 HPRC0919 HPRC0973 HPRC1026 HPRC0301	2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594	7556139.732 7556139.732 7556127.717 7554467.782 75553282.635 7555504.01 7555341.661 7555493.228 7555104.519 7555493.228 7555104.519 7553444.277 7554588.262 7553443.38 7553639.857 7555166.046 7553186.708 547246.719	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.008 596.526 546.80	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34	38
Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0631 HPRC0631 HPRC0641 HPRC0672 HPRC0689 HPRC0766 HPRC0792 HPRC0919 HPRC0919 HPRC0973 HPRC1026 HPRC0301 HPRC0302	2/12/2001 2/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 1/12/2001 Jul-09 Jul-09	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 7555412.502	7556139.732 7556139.732 7556127.717 7554467.782 75553282.635 7555504.01 7555341.661 7555341.661 7555493.228 7555104.519 7555493.228 75553444.277 7554588.262 7553541.338 7553639.857 7555166.046 7553186.708 547246.719 546940.08	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.008 596.526 546.80 549.52	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.198 517.274 530.192 530.192 530.387 539.828 579.196 522.34 523.30	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0641 HPRC0689 HPRC072 HPRC0766 HPRC0792 HPRC0919 HPRC0919 HPRC0973 HPRC0301 HPRC0302 HPRC0303	2/12/2001 2/12/2001 2/12/2001 1/12/2001 2/2001 2/200 2/200 2/200 2/200 2/200 2/200 2/200 2/200 2/200 2/200	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 7555821.594	7556139.732 7556139.732 7556127.717 75554467.782 7553282.635 7555282.635 7555504.01 75553341.661 7555493.228 7555104.519 75554919.119 7553444.277 7554588.262 7553541.338 7553639.857 7553541.338 75535166.046 7553186.708 547246.719 546940.08 547140.621	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.387 563.608 596.526 5448.80 549.52 550.43	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 523.30 522.66	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0641 HPRC072 HPRC0766 HPRC0766 HPRC0792 HPRC073 HPRC0919 HPRC0919 HPRC0910 HPRC0301 HPRC0302 HPRC0303 HPRC0304	2/12/2001 2/12/2001 2/12/2001 1/12/2001 2/2001 2/2000 2/2000 2/200 2/200 2/200 2/200 2/200 2/200 2/200 2/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 7555412.502 7555275.988 7555354.173	7556139.732 7556139.732 7556127.717 75554467.782 7553282.635 7555282.635 7555504.01 75555493.228 7555104.519 7554919.119 7553444.277 7554588.262 7554368.005 7553541.338 7553639.857 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.387 563.608 596.526 546.80 546.80 549.66	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 25.6 27.8 28.0	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 522.34 522.34 522.66 521.71	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0641 HPRC0766 HPRC0766 HPRC0792 HPRC0766 HPRC0792 HPRC0919 HPRC0919 HPRC0910 HPRC0301 HPRC0302 HPRC0303 HPRC0304 HPRC0306	2/12/2001 2/12/2001 2/12/2001 1/12/2001 2/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 75555821.594 75555412.502 7555275.988 7555354.173	7556139.732 7556139.732 7556139.732 7556127.717 7555467.782 7555282.635 7555504.01 7553341.661 7555493.228 7555104.519 75554919.119 7553444.277 7554588.262 7554588.262 7554588.262 755346.005 7553541.338 75553639.857 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.608 596.526 546.80 549.52 550.43 549.66 551.28	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8 28.0 31.7	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 523.90 522.66 521.71 519.55	38
Champion Champion	CHAMP OBS4 m CHAMP OBS4 d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0531 HPRC0531 HPRC0531 HPRC0631 HPRC0641 HPRC0672 HPRC0672 HPRC0766 HPRC0792 HPRC0792 HPRC0919 HPRC0919 HPRC0910 HPRC0301 HPRC0302 HPRC0304 HPRC0306 HPRC0307	2/12/2001 2/12/2001 2/12/2001 1/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 75555412.502 7555275.988 7555541.73 7555504.04 755559.244	7556139.732 7556139.732 7556139.732 7556127.717 7555467.782 7555282.635 7555504.01 7553341.661 7555493.228 7555104.519 7554919.119 7553444.277 7554588.262 7554588.262 7554588.005 7553541.338 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984 546774.172 546580.695	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.608 596.526 546.80 549.52 550.43 549.66 551.28 552.61	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8 28.0 31.7 30.2	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 522.34 523.90 522.66 521.71 519.55 522.44	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0395 HPRC0531 HPRC0549 HPRC0631 HPRC0641 HPRC0641 HPRC0766 HPRC0766 HPRC0792 HPRC0766 HPRC0792 HPRC0919 HPRC0919 HPRC0910 HPRC0301 HPRC0302 HPRC0303 HPRC0304 HPRC0306	2/12/2001 2/12/2001 2/12/2001 1/12/2001 2/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 75555821.594 75555412.502 7555275.988 7555354.173	7556139.732 7556139.732 7556139.732 7556127.717 7555467.782 7555282.635 7555504.01 7553341.661 7555493.228 7555104.519 75554919.119 7553444.277 7554588.262 7554588.262 7554588.262 755346.005 7553541.338 75553639.857 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.608 596.526 546.80 549.52 550.43 549.66 551.28	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8 28.0 31.7	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 523.90 522.66 521.71 519.55	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0641 HPRC0641 HPRC0672 HPRC0689 HPRC0766 HPRC0792 HPRC0796 HPRC0919 HPRC0919 HPRC0973 HPRC0301 HPRC0302 HPRC0304 HPRC0306 HPRC0307 HPRC0308 HPRC0309	2/12/2001 2/12/2001 2/12/2001 1/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 75555412.502 7555275.988 7555541.73 7555504.04 755559.244	7556139.732 7556139.732 7556139.732 7556127.717 7555467.782 7555282.635 7555504.01 7553341.661 7555493.228 7555104.519 7554919.119 7553444.277 7554588.262 7554588.262 7554588.005 7553541.338 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984 546774.172 546580.695	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.608 596.526 546.80 549.52 550.43 549.66 551.28 552.61	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8 28.0 31.7 30.2	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 522.34 523.90 522.66 521.71 519.55 522.44	38
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0641 HPRC0641 HPRC0672 HPRC0792 HPRC0792 HPRC0792 HPRC0793 HPRC0793 HPRC0304 HPRC0304 HPRC0304 HPRC0306 HPRC0307 HPRC0308	2/12/2001 2/12/2001 2/12/2001 1/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 75555275.988 7555354.173 7555504.04 7555579.244 755549.45	7556139.732 7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7553341.661 7553431.661 7553431.661 7553431.661 7553444.277 7554588.262 7554588.262 7553468.005 7553541.338 7555166.046 7553186.708 547246.719 546940.08 547140.621 547032.984 546774.172 546580.695 546743.386	548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 563.608 596.526 544.80 549.62 550.43 549.66 551.28 552.61 554.59	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 39.0 23.8 17.3 24.5 25.6 27.8 28.0 31.7 30.2 33.2	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 523.90 522.66 521.71 519.55 522.44 521.35	
Champion Champion	CHAMP OBS4 m CHAMP OBS 4d CHAMP PROD 01 HPRC0321 HPRC0352 HPRC0535 HPRC0531 HPRC0549 HPRC0641 HPRC0641 HPRC0672 HPRC0689 HPRC0766 HPRC0792 HPRC0796 HPRC0919 HPRC0919 HPRC0973 HPRC0301 HPRC0302 HPRC0304 HPRC0306 HPRC0307 HPRC0308 HPRC0309	2/12/2001 2/12/2001 2/12/2001 1/12/2	546969.662 546969.662 546976.97 546581.314 545564.959 546661.13 545490.472 547642.192 546893.535 546441.869 547008.045 544663.444 545920.967 546895.888 546259.945 548034.734 547882.973 7555821.594 75555275.988 75555354.173 7555504.04 7555579.244 755549.654 7554878.184	7556139.732 7556139.732 7556139.732 7556127.717 7554467.782 7553282.635 7555504.01 7555493.228 7555104.519 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 7555493.228 755544.338 7555166.046 7555166.046 7555186.046 7553186.708 547246.719 546940.08 547140.621 546774.172 546580.695 546743.386 546833.513	548.997 548.997 548.997 548.937 560.01 577.954 555.915 577.857 554.684 553.578 567.759 578.162 593.17 569.156 575.687 569.387 563.608 596.526 546.80 549.62 550.43 549.66 551.28 552.61 554.59 554.51	34.1 34.0 31.8 dry 40.7 36.9 31.2 36.4 50.5 48.0 26.5 dry 23.8 17.3 24.5 25.6 27.8 28.0 31.7 30.2 33.2 32.7	514.902 514.985 528.25 dry 515.185 540.997 523.439 517.198 517.274 530.192 566.66 dry 530.387 539.828 579.196 522.34 523.90 522.66 521.71 519.55 522.44 521.35 521.85	


Champion	HPRC0314	Jul-09	7556005.687	546883.697	545.98	26.6	519.35	
Champion	HPRC0315	Jul-09	7556098.455	546715.041	546.72	27.5	519.21	
Champion	HPRC0316	Jul-09	7555270.834	547225.639	553.26	29.5	523.73	
Champion	HPRC0318	Jul-09	7554992.794	546547.732	567.35	46.1	521.27	
Champion	HPRC0319	Jul-09	7555089.677	546381.416	567.46	46.9	520.56	
Champion	HPRC0321	Jul-09	7554467.722	546581.464	559.25	29.4	529.83	
Champion	HPRC0322	Jul-09	7554573.518	546383.069	560.41	20.7	539.74	
Champion	HPRC0323	Jul-09	7554633.138	546204.821	562.02	33.3	528.75	
Champion	HPRC0324	Jul-09	7553587.162	547102.021	578.39	42.0	536.39	
Champion	HPRC0326	Jul-09	7553791.7	546752	570.20	39.0	531.17	
Champion	HPRC0327	Jul-09	7553889.672	546580.82	567.14	36.2	530.99	
Champion	HPRC0328	Jul-09	7553984.613	546392.458	564.61	33.9	530.74	
Champion	HPRC0329	Jul-09	7554081.688	546226.945	564.97	34.2	530.82	
Champion	HPRC0330	Jul-09	7554140.361	546018.947	565.87	32.2	533.67	
Champion	HPRC0331	Jul-09	7554251.056	545861.95	568.55	46.8	521.72	
Champion	HPRC0332	Jul-09	7554345.81	545678.945	572.45	32.2	540.23	
Champion	HPRC0333	Jul-09	7554460.855	545522.28	575.84	43.8	532.09	
Champion	HPRC0334	Jul-09	7554557.732	545331.676	579.60	38.6	540.99	
Champion	HPRC0336	Jul-09	7554740.213	544988.8	587.53	31.5	556.06	
Champion	HPRC0341	Jul-09	7553584.332	546098.573	570.81	37.8	533.01	
Champion	HPRC0342	Jul-09	7553676.056	545906.258	570.94	37.0	533.92	
Champion	HPRC0343	Jul-09	7553768.769	545744.504	571.12	37.0	534.07	
Champion	HPRC0344	Jul-09	7553861.836	545556.083	571.25	37.1	534.15	
Champion	HPRC0345	Jul-09	7553985.441	545410.727	575.70	19.1	556.60	
Champion	HPRC0346	Jul-09	7554058.903	545212.408	580.68	47.0	533.68	
Champion	HPRC0358	15/04/2011	7552630.83	545793.89	585.60	37.8	547.77	
Champion	HPRC0559	15/04/2011	7555216.53	547948.66	561.04	22.0	539.07	
Champion	HPRC0578	15/04/2011	7556303.00	546702.00	548.33	32.8	515.56	
Champion	HPRC0580	14/04/2011	7556019.00	547129.00	544.20	26.0	518.20	
Champion	HPRC0581	15/04/2011	7555969.00	547238.00	545.14	28.5	516.66	
Champion	HPRC0582	15/04/2011	7555921.95	547319.69	546.74	28.5	518.28	
Champion	HPRC0591	14/04/2011	7555784.00	547047.00	545.84	27.9	517.90	
Champion	HPRC0592	14/04/2011	547134.77	7555731.25	546.60	28.7	517.89	
Champion	HPRC0593	15/04/2011	7555683.13	547221.12	547.01	27.0	520.05	
Champion	HPRC0624	15/04/2011	7555206.56	546945.05	551.81	34.2	517.61	
Champion	HPRC0631	15/04/2011	7555104.45	546893.23	552.87	35.2	517.69	
Champion	HPRC0690	15/04/2011	7554502.57	544635.37	593.47	15.9	577.59	
Champion	HPRC0707	14/04/2011	7554276.00	545333.00	575.55	34.4	541.19	
Champion	HPRC0919	14/04/2011	7553316.00	546261.00	571.00	38.0	532.98	

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 6: Conceptual Cross Sections

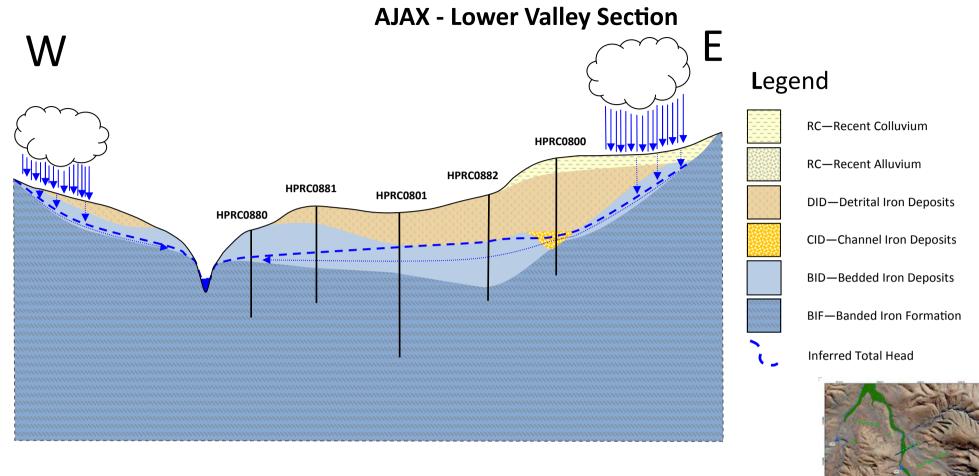
Not to Scale. Vertical Exaggeration approx. 1:10

Disclaimer: This Figure is a <u>conceptual</u> diagram only and is a result of an <u>interpretation</u> of data collected.

Clay

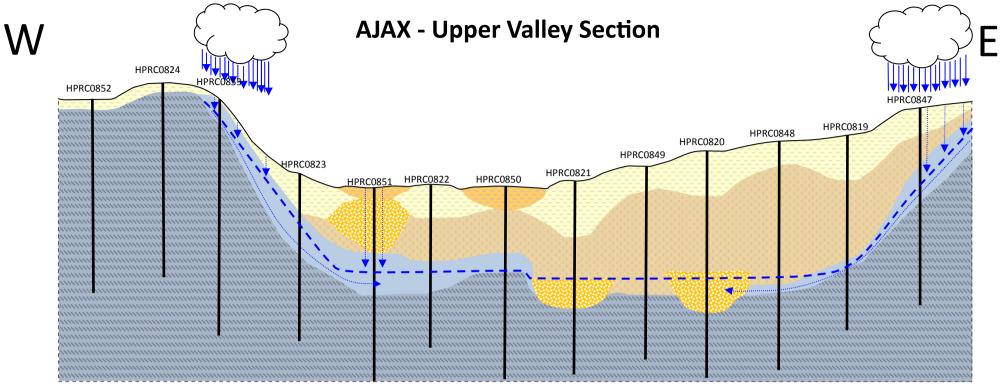
CID—Channel Iron Deposits

BID—Bedded Iron Deposits

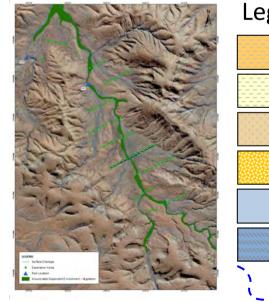

BIF—Banded Iron Formation

Inferred Saturated Zone

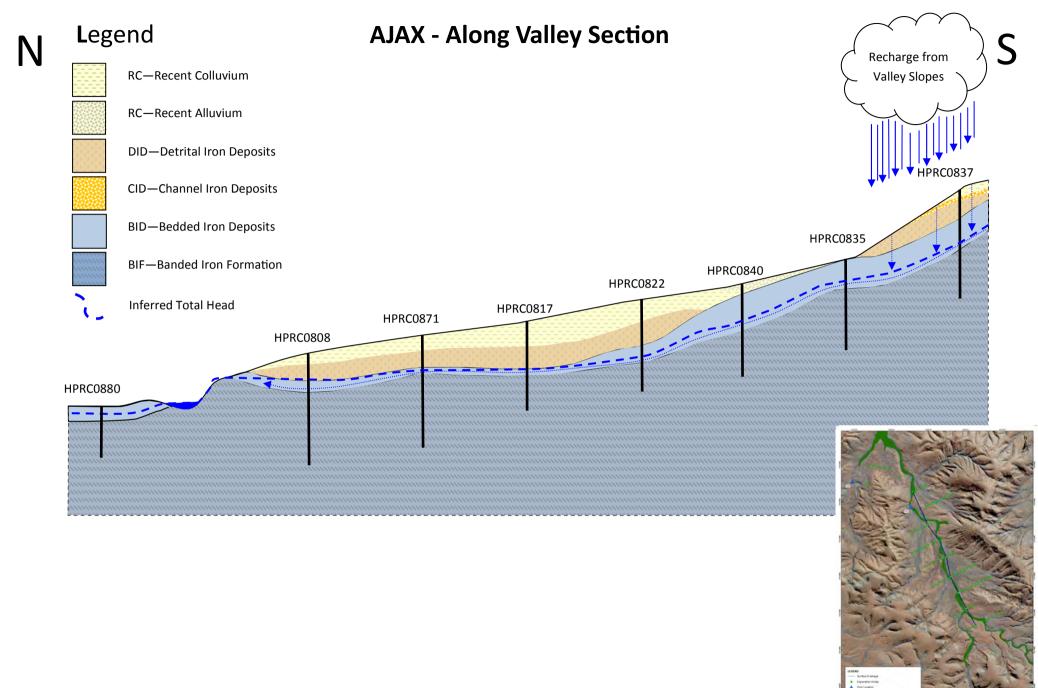
Inferred Total Head


Inferred Groundwater Recharge

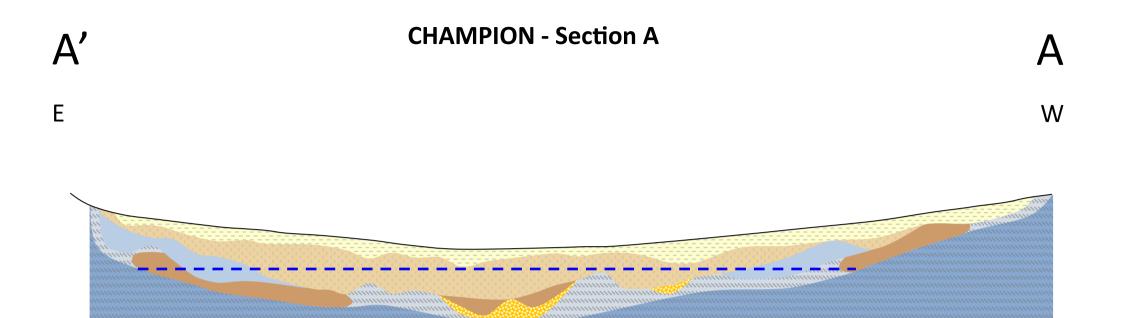
Surface Runoff



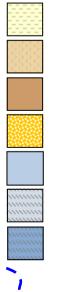
Approximately 10x Vertical exaggeration



Approximately 9x Vertical exaggeration



Legend



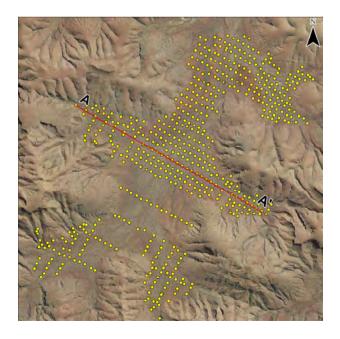
Approximately 10x Vertical exaggeration

Legend

RC-Recent Alluvium/Colluvium

DID—Detrital Iron Deposits

Clay

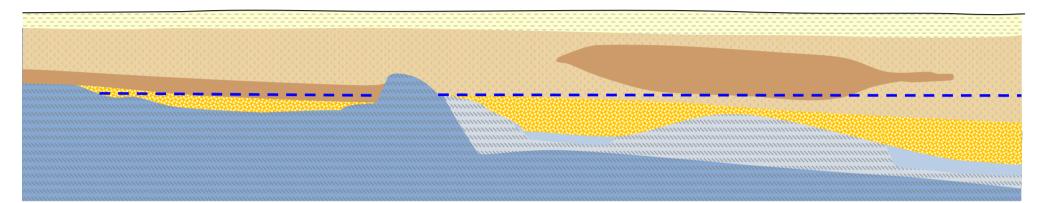

CID—Channel Iron Deposits

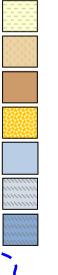
BID—Bedded Iron Deposits

WBIF—Weathered Banded Iron Formation

BIF—Banded Iron Formation

Inferred Total Head


CHAMPION - Section B


B

S

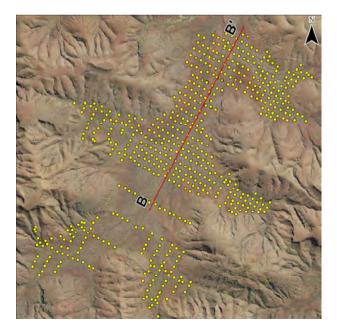
Ν

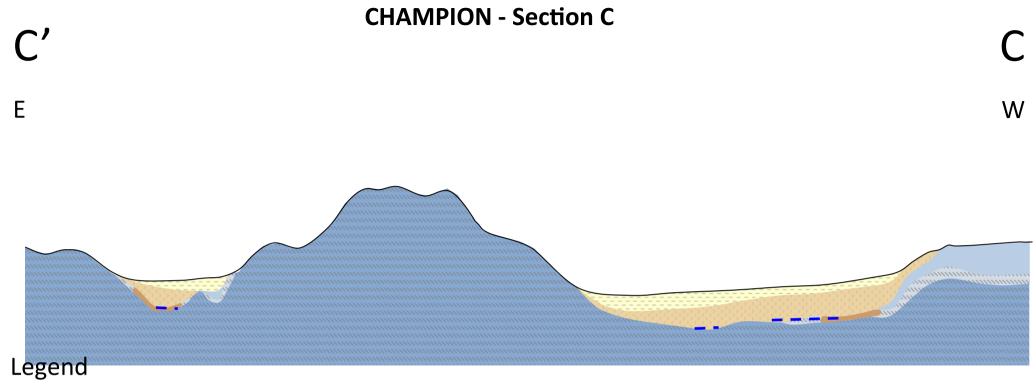
Legend

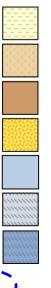
RC-Recent Alluvium/Colluvium

DID—Detrital Iron Deposits

Clay


- CID—Channel Iron Deposits
- BID—Bedded Iron Deposits


WBIF—Weathered Banded Iron Formation


BIF—Banded Iron Formation

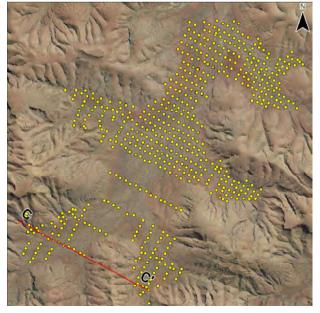
Inferred Total Head

Not to Scale

RC-Recent Alluvium/Colluvium

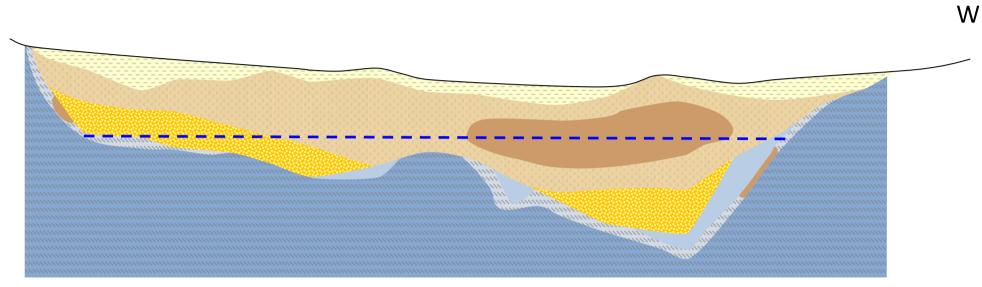
DID—Detrital Iron Deposits

Clay

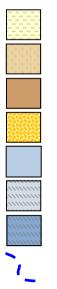

CID—Channel Iron Deposits

BID—Bedded Iron Deposits

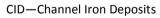
WBIF—Weathered Banded Iron Formation


BIF—Banded Iron Formation

Inferred Total Head



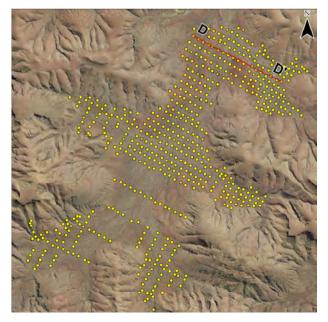
CHAMPION - Section D

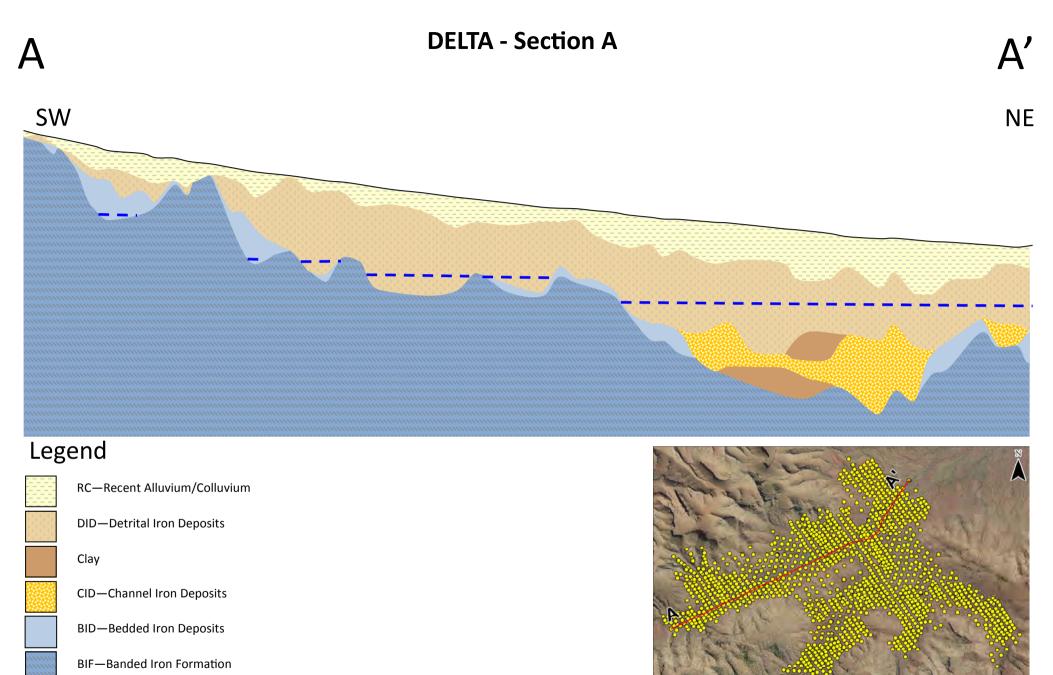

Legend

RC-Recent Alluvium/Colluvium

DID—Detrital Iron Deposits

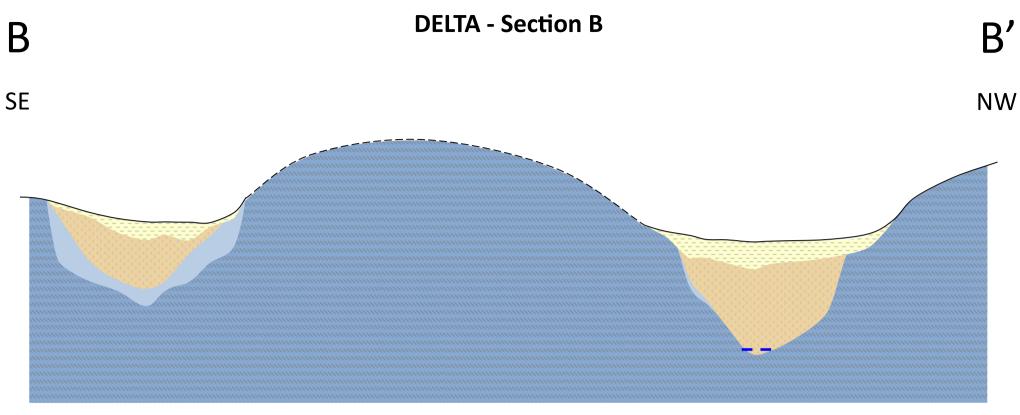
Clay




BID—Bedded Iron Deposits

WBIF—Weathered Banded Iron For-

BIF—Banded Iron Formation


Inferred Total Head

3x Vertical exaggeration

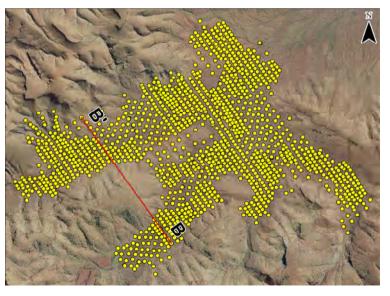
Inferred Total Head

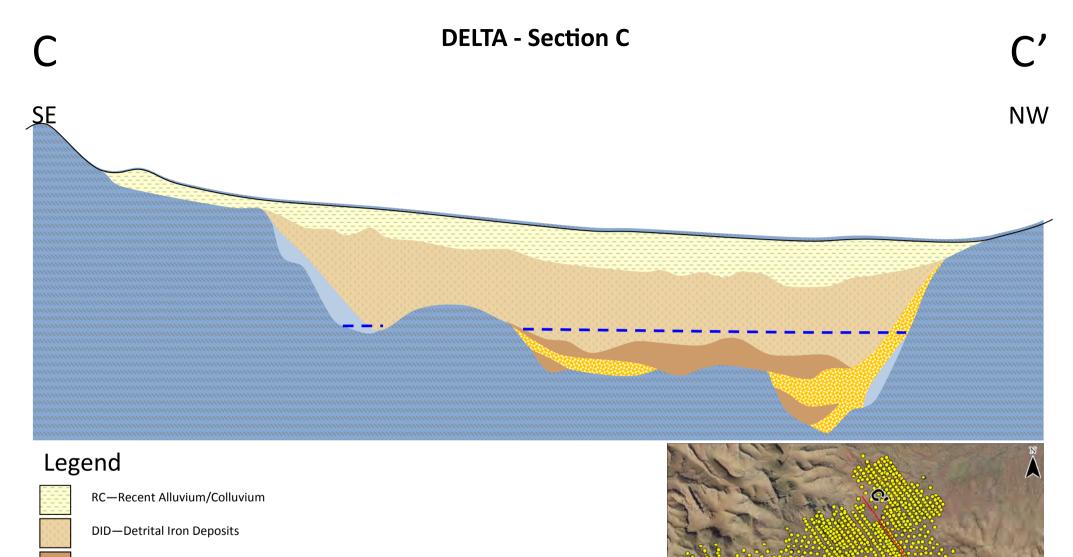
Legend

RC-Recent Alluvium/Colluvium

DID—Detrital Iron Deposits

Clay



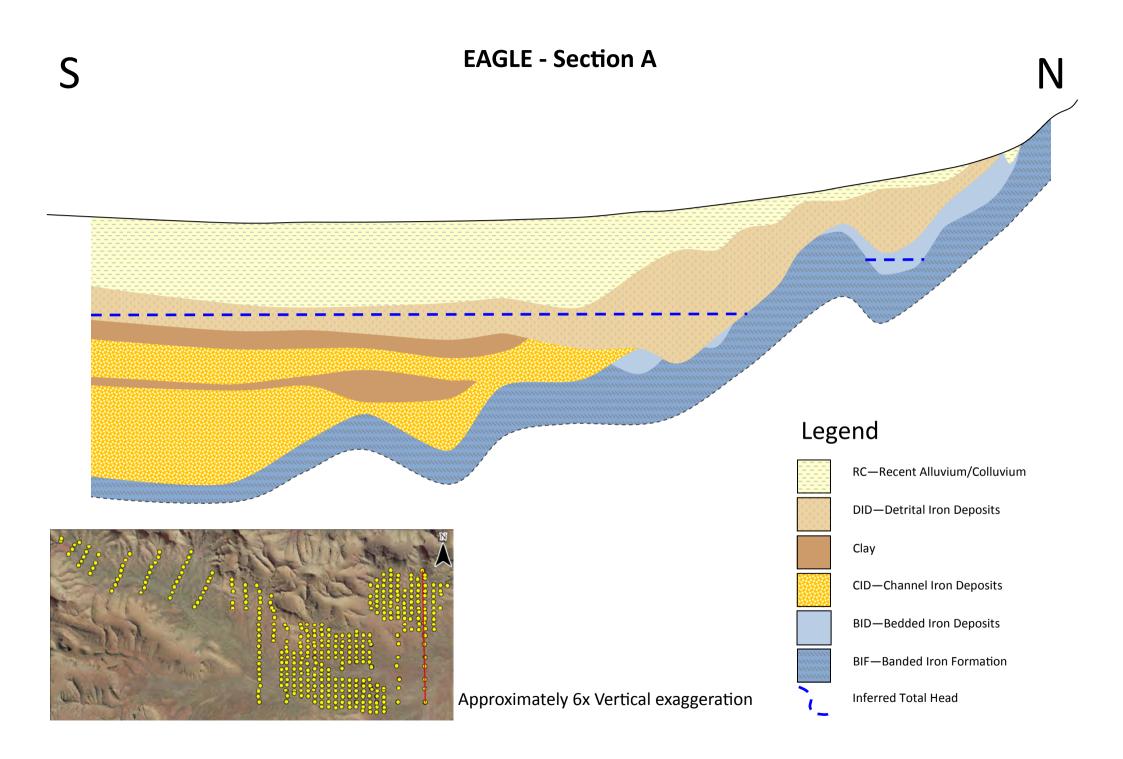

CID—Channel Iron Deposits

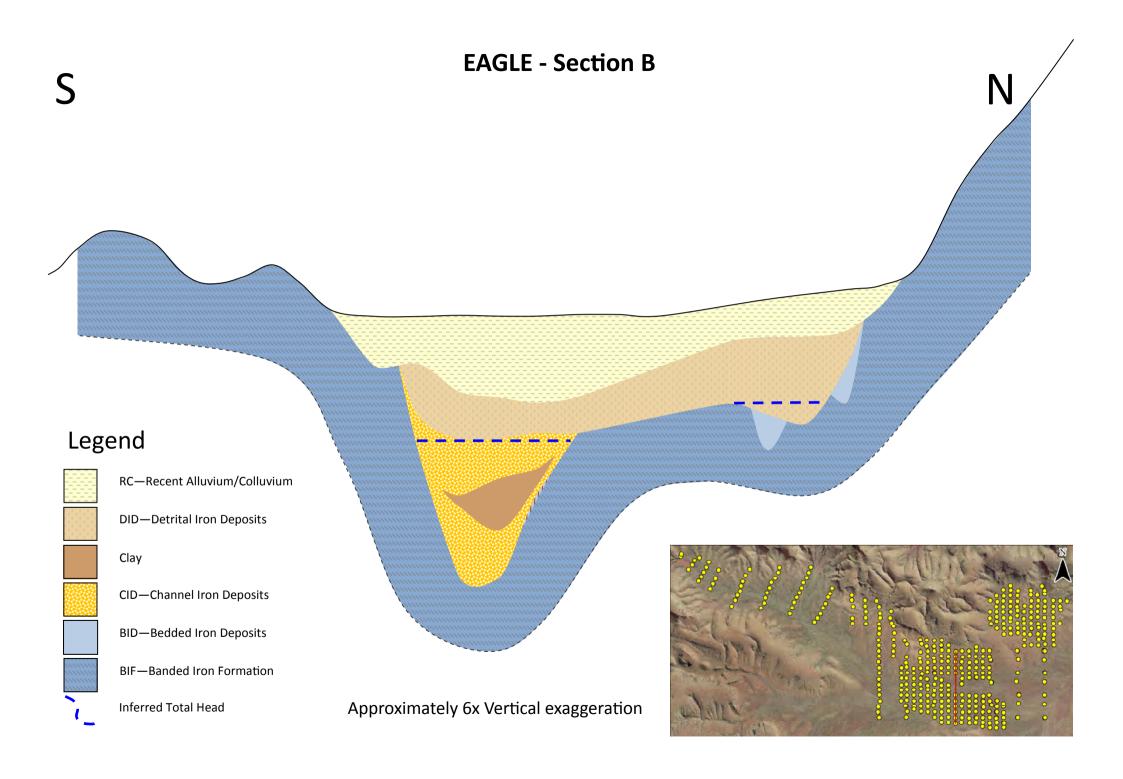
BID—Bedded Iron Deposits

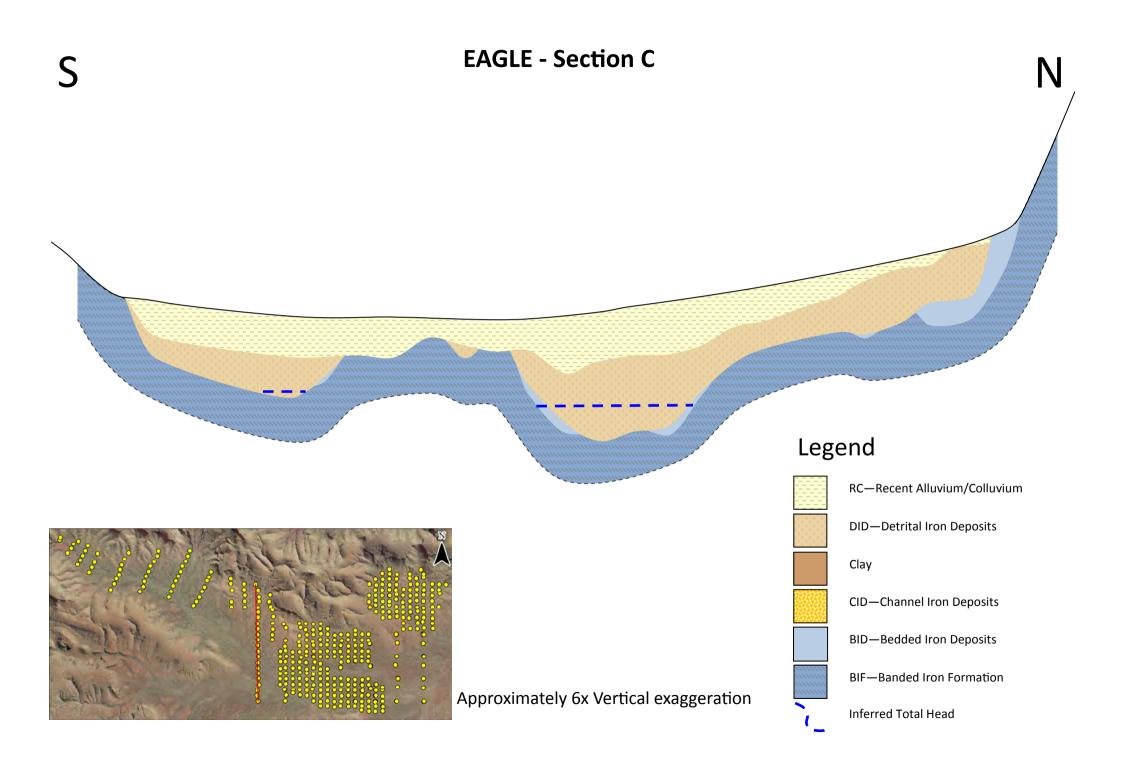
BIF—Banded Iron Formation

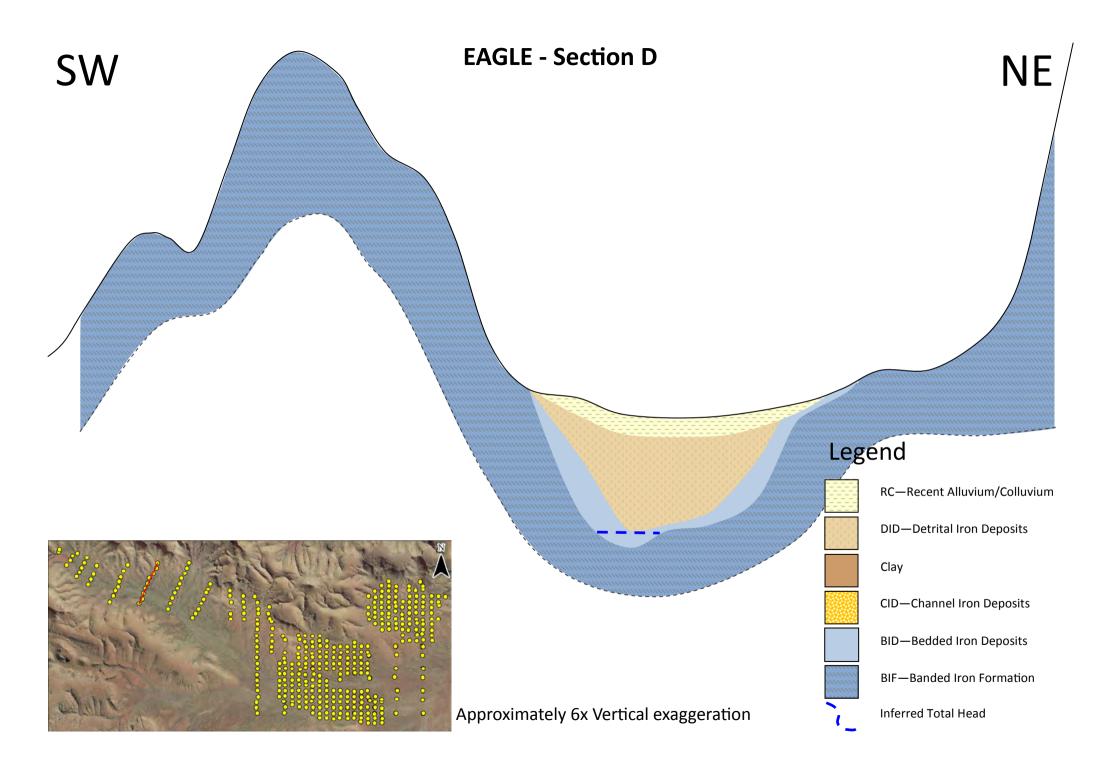
Inferred Total Head

Õ


Clay


CID—Channel Iron Deposits


BID—Bedded Iron Deposits


BIF—Banded Iron Formation

Inferred Total Head

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 7: Recharge Estimates

Flinders PIOP Recharge Calculations 25th Feb 2012

CATCHMENT NAME	Total Catchment Area (m ²)	Total Catchment Area (km ²)	% of the Millstream area	Estimated Recharge to Millstream based on catchment area (GL/yr)	Estimated Catchment Recharge to Local Aquifers Assuming 5% (GL/yr)
Ajax	35662277	36	0.7%	0.18	0.8
Blackjack	11340884	11	0.2%	0.06	0.3
Champion	30970726	31	0.6%	0.16	0.7
Delta	18790218	19	0.3%	0.09	0.4
Eagle	27400164	27	0.5%	0.14	0.6
Serenity	203329847	203	3.7%	1.03	4.6
Entire Millstream Catchment *	548000000	5480	100.0%	27.7	125

* Based on the 27.7 GL/yr average annual recharge at Millstream presented in:

Source: Barnett and Davidson, 1985. Hydrogeology of the Western Fortescue Valley, Pilbara Region, WA, Geological Survey 1985.

Annual Rainfall at Wittenoom (mm/yr) 457

Recharge Estimates taken from Barnett and Davidson (1985)

Catchment	Recharge Estimates (m3/a)	% of total
Hamersley Range-Mount Flora	2600000	9.4%
Hamersley Range-Mount Pyrton	1400000	5.1%
Caliwingina Creek	7700000	27.8%
Weelumurra Creek	1600000	57.8%
Total	27,700,000	m3/a
	27.7	GL/a

FLINDERS MINES LIMITED PILBARA IRON ORE PROJECT GROUNDWATER IMPACT ASSESSMENT REPORT

Appendix 8: Area and Volume Calculations

Flinders PIOP Approximate aquifer volume and areas 25/02/2012

				Aj	proximate Values Derive	d from Available Data *			
	Volume of Aquifer	Porosity	Volume of Water in	Volume of Water in	Volume of Aquifer	Volume of Aquifer	% Impacted	Maximum reduction in saturated	Maximum Drawdown in Total
Location	(m ³)		Aquifer (m ³)	Aquifer (GL)	Impacted (m3)	Impacted (GL)		aquifer thickness (m)	Head (m)
Eagle	54,590,000	0.15	8,188,500	8.2	8,188,500	8.2	100%	60	70
Delta	43,850,000	0.15	6,577,500	6.6	6,577,500	6.6	100%	48	70
Champion	35,750,000	0.15	5,362,500	5.4	5,362,500	5.4	100%	66	66
Blackjack	1,297,500	0.15	194,625	0.2	194,625	0.2	100%	Insufficient data available	Insufficient data available
Ajax	6,376,250	0.15	956,438	1.0	956,438	1.0	100%	Insufficient data available	Insufficient data available
Off-Tenement at Serenity (at Eagle and Delta)	760,995,503	0.15	114,149,326	114.1	-	0.0	0%	0	9.5
Off-Tenement at Champion	72,834,234	0.15	10,925,135	10.9	3,899,647	3.9	36%	40	40
Total	975,693,487	0.15	146,354,023	146.4	25,179,210	25.2	17%	N/A	N/A

	Approximate	Values Derived from A	vailable Data *
Location	Area of Aquifer (m ²)	Area of Aquifer Impacted (m ²)	% Impacted
Eagle	7,939,973	7,939,973	100%
Delta	6,847,489	6,847,489	100%
Champion	7,244,153	7,244,153	100%
Blackjack	1,575,252	1,575,252	100%
Ajax	3,941,913	3,941,913	100%
Off-Tenement at Serenity (at Eagle and Delta)	46,632,552	-	0%
Off-Tenement at Champion	4,310,723	2,305,900	53%
Total	78,492,055	29,854,680	38%
Total considering CID aquifer within Caliwigina Creek and Weelumurra Creek catchments	165,672,000	29,854,680	18%
Total estimated aquifer within Caliwigina Creek and Weelumurra Creek catchments	292,640,460	29,854,680	10%

* The calculations and modelling for off-tenement areas has been based on little or no available off tenement data. The data collected for on tenement areas at Eagle, Champion and Delta has been extrapolated to off-tenement areas, and is assumed to be representative. The estimates for Ajax and Blackjack are also based on limited available groundwater data. Additional data is needed for off-tenement areas as well as at Ajax and Blackjack to confirm these calculated values.

Assumptions:

1) The off tenement impacts at Ajax and Blackjack are assumed to be negligible because it is assumed that all mine dewater will be returned to the aquifer.

2) The results reflect the net impact of pumping 1.33GL/a from Delta, Eagle and Champion to meet the project water demands (4GL/a in total). It has been assumed that all excess mine dewater is returned to the aquifer.

3) The volume of aquifer impacted is defined here as the volume of the aquifer that has been dried out due to dewatering. The area of aquifer impacted is the corresponding extent of the aquifer that has been dried out due to dewatering. This assumes that the saturated thickness must be reduced to dry portions of the aquifer (ie. dewatering must lower the total head in the aquifer to a level below the Clay Layer located at the top of the ClD/BID aquifer).